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Number Systems and Codes

OUTLINE

1 Digital versus Analog
2 Digital Representations of Analog Quantities
3 Decimal Numbering System (Base 10)
4 Binary Numbering System (Base 2)
5 Decimal-to-Binary Conversion
6 Octal Numbering System (Base 8)
7 Octal Conversions
8 Hexadecimal Numbering System (Base 16)
9 Hexadecimal Conversions

10 Binary-Coded-Decimal System
11 Comparison of Numbering Systems
12 The ASCII Code
13 Applications of the Numbering Systems

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Determine the weighting factor for each digit position in the decimal, binary,
octal, and hexadecimal numbering systems.

• Convert any number in one of the four number systems (decimal, binary, octal,
and hexadecimal) to its equivalent value in any of the remaining three numbering
systems.

• Describe the format and use of binary-coded decimal (BCD) numbers.
• Determine the ASCII code for any alphanumeric data by using the ASCII code

translation table.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 1 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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INTRODUCTION

Digital circuitry is the foundation of digital computers and many automated control
systems. In a modern home, digital circuitry controls the appliances, alarm systems,
and heating systems. Under the control of digital circuitry and microprocessors, newer
automobiles have added safety features, are more energy efficient, and are easier to
diagnose and correct when malfunctions arise.

Other uses of digital circuitry include the areas of automated machine control,
energy monitoring and control, inventory management, medical electronics, and music.
For example, the numerically controlled (NC) milling machine can be programmed by
a production engineer to mill a piece of stock material to prespecified dimensions with
very accurate repeatability, within 0.01% accuracy. Another use is energy monitoring
and control. With the high cost of energy, it is very important for large industrial and
commercial users to monitor the energy flows within their buildings. Effective control
of heating, ventilating, and air-conditioning can reduce energy bills significantly. More
and more grocery stores are using the universal product code (UPC) to check out and
total the sale of grocery orders as well as to control inventory and replenish stock auto-
matically. The area of medical electronics uses digital thermometers, life-support sys-
tems, and monitors. We have also seen more use of digital electronics in the reproduction
of music. Digital reproduction is less susceptible to electrostatic noise and therefore
can reproduce music with greater fidelity.

Digital electronics evolved from the principle that transistor circuitry could eas-
ily be fabricated and designed to output one of two voltage levels based on the levels
placed at its inputs. The two distinct levels (usually +5 volts [V] and 0 V) are HIGH
and LOW and can be represented by 1 and 0.

The binary numbering system is made up of only 1s and 0s and is therefore used
extensively in digital electronics. The other numbering systems and codes covered in
this chapter represent groups of binary digits and therefore are also widely used.

1 Digital versus Analog

Digital systems operate on discrete digits that represent numbers, letters, or symbols.
They deal strictly with ON and OFF states, which we can represent by 0s and 1s.
Analog systems measure and respond to continuously varying electrical or physical
magnitudes. Analog devices are integrated electronically into systems to continuously
monitor and control such quantities as temperature, pressure, velocity, and position
and to provide automated control based on the levels of these quantities. Figure 1
shows some examples of digital and analog quantities.

Review Questions

1. List three examples of analog quantities.

2. Why do computer systems deal with digital quantities instead of analog
quantities?

2 Digital Representations of Analog Quantities

Most naturally occurring physical quantities in our world are analog in nature. An
analog signal is a continuously variable electrical or physical quantity. Think about a
mercury-filled tube thermometer; as the temperature rises, the mercury expands in

NUMBER SYSTEMS AND CODES
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analog fashion and makes a smooth, continuous motion relative to a scale measured in
degrees. A baseball player swings a bat in an analog motion. The velocity and force
with which a musician strikes a piano key are analog in nature. Even the resulting vi-
bration of the piano string is an analog, sinusoidal vibration.

So why do we need to use digital representations in a world that is naturally analog?
The answer is that if we want an electronic machine to interpret, communicate, process,
and store analog information, it is much easier for the machine to handle it if we first
convert the information to a digital format. A digital value is represented by a combi-
nation of ON and OFF voltage levels that are written as a string of 1s and 0s.

For example, an analog thermometer that registers 72°F can be represented in a
digital circuit as a series of ON and OFF voltage levels. (We’ll learn later that the
number 72 converted to digital levels is 0100 1000.) The convenient feature of using
ON/OFF voltage levels is that the circuitry used to generate, manipulate, and store them
is very simple. Instead of dealing with the infinite span and intervals of analog voltage
levels, all we need to use is ON or OFF voltages (usually +5 V = ON and 0 V = OFF).

A good example of the use of a digital representation of an analog quantity is the
audio recording of music. Compact disks (CDs) and digital versatile disks (DVDs) are
commonplace and are proving to be superior means of recording and playing back
music. Musical instruments and the human voice produce analog signals, and the
human ear naturally responds to analog signals. So, where does the digital format fit
in? Although the process requires what appears to be extra work, the recording indus-
tries convert analog signals to a digital format and then store the information on a CD
or DVD. The CD or DVD player then converts the digital levels back to their corre-
sponding analog signals before playing them back for the human ear.

To accurately represent a complex musical signal as a digital string (a series
of 1s and 0s), several samples of an analog signal must be taken, as shown in

NUMBER SYSTEMS AND CODES
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Figure 1 Analog versus digital: (a) analog waveform; (b) digital waveform; 
(c) analog watch; (d) digital watch.
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Time

Analog signal
voltage level

(a)

0000 0100

0000 0011

0000 0010

Digital
representation

Figure 2 (a) Digital representation of three data points on an analog waveform; 
(b) converting a 2-V analog voltage into a digital output string.

CD recorder

(A-to-D
conversion)

Analog
sound

Analog
sound

CD
(Digital)

Audio
amplifier

(Analog)

CD player

(D-to-A
conversion)

*Figure 3 The process of converting analog sound to digital and then back to analog.

Figure 2(a). The first conversion illustrated is at a point on the rising portion of the ana-
log signal. At that point, the analog voltage is 2 V. Two volts are converted to the digital
string 0000 0010, as shown in Figure 2(b). The next conversion is taken as the analog sig-
nal in Figure 2(a) is still rising, and the third is taken at its highest level. This process con-
tinues throughout the entire piece of music to be recorded. To play back the music, the
process is reversed. Digital-to-analog conversions are made to recreate the original analog
signal (see Figure 3). If a high-enough number of samples are taken of the original analog
signal, an almost-exact reproduction of the original music can be made. 

NUMBER SYSTEMS AND CODES

Analog
signal

Analog-to-
digital converter

0  0  0  0  0  0  1  0

2 V

Digital output equivalent to 2 V

(b)

Inside
Your PC

A typical 4-minute song
requires as many as
300 million ON/OFF 
digital levels (bits) to be
represented accurately. To
be transmitted efficiently
over the Internet, data
compression schemes such
as the MP3 standard are
employed to reduce the
number of bits 10-fold. 

Helpful
Hint

One of the more interesting
uses of analog-to-digital 
(A-to-D) and digital-to-
analog (D-to-A) conversion
is in CD audio systems. 

Inside 
Your PC

The CD player uses the
optics of a laser beam to
look for pits or nonpits on
the CD as it spins beneath
it. These pits, which are
burned into the CD by the
CD recorder, represent the
1s and 0s of the digital
information the player
needs to recreate the
original data. A CD
contains up to 650 million
bytes of digital 1s and 0s 
(1 byte � 8 bits).

Another optical storage
medium is the digital
versatile disk (DVD). 
A DVD is much denser
than a CD. It can hold up
to 17 billion bytes of data!

*For additional information on A-to-D and D-to-A be sure to view the podcasts provided on the text website 
www.pearsonhighered.com/kleitz.
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Figure 4 Adding unwanted electrostatic noise to (a) an analog waveform and
(b) a digital waveform.
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(shift register)
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Data
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(detail below)

Personal
computer

Solar energy
values to be
measured
(Analog)

USB
(Digital)

USB
(Digital)

Printer
(spreadsheet

graph)

(a)

Figure 5 Solar radiation data-logger system: (a) system block diagram; (b) data logger sub-
system.

It certainly is extra work, but digital recordings have virtually eliminated prob-
lems such as electrostatic noise and the magnetic tape hiss associated with earlier
methods of audio recording. These problems have been eradicated because, when im-
perfections are introduced to a digital signal, the slight variation in the digital level
does not change an ON level to an OFF level, whereas a slight change in an analog
level is easily picked up by the human ear as shown in Figure 4.

NUMBER SYSTEMS AND CODES

Another application of digital representations of analog quantities is data log-
ging of alternative energy sources. It is very important for energy technicians to keep
track of the efficiency of their energy-collection systems. In the case of the solar-
collection system shown in Figures 5(a) and (b), system efficiency can be deter-
mined by dividing the number of watts produced by the solar photovoltaic (PV)
panels by the total solar energy (irradiance) striking the panels. However, since all
naturally occurring quantities like solar, wind, temperature, and pressure are analog
values, we need to convert them to a digital representation before they can be under-
stood by a computer system.
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In Figure 5(a) there are five analog solar quantities input to a data-logging sys-
tem. The data logger digitizes these values and outputs them as a data stream in the
USB (Universal Serial Bus) format to a personal computer, which can then be used to
analyze the data via a spreadsheet to determine efficiency.

The details of the data-logging system are shown in Figure 5(b). It shows the in-
put to the system as four solar PV panels and one solar pyranometer. The pyranometer
is used to measure the solar energy striking the earth at that location in watts-per-me-
ter2. As the solar PV panels convert sunlight to power (watts), each panel also provides
an analog voltage that is proportional to the watts produced. These four analog values
are connected to a multiplexer, which alternately routes each of the analog quantities,
one at a time, to the analog-to-digital converter (ADC). As each value is received, the
ADC outputs its equivalent as an 8-bit digital number (8-, 10-, 12- and higher-bit ADC
converters are available). These data need to be time-stamped to help the technician
keep track of efficiency at different times of the day and other modifications he or she
may have made to the panels during the day. A digital real-time clock circuit provides
this time stamp.

Finally, before the data logger can communicate to the PC, the digital data which
are now in “parallel” format must be converted to “serial” format to comply with the
USB standard used by PCs. This parallel-to-serial conversion is made by a shift regis-
ter similar to those discussed in a separate chapter. The following sections teach you
how to develop and interpret these binary codes that are used in digital systems.

Review Questions

3. Complete the following sentences with the word analog or digital:

a) Wind speed is an example of a(an) _______ quantity?

b) A music CD contains _______ information?

c) A USB connector transmits _______ data?

d) Hourly outdoor air temperatures exhibit _______ variations?

4. An automobile speedometer display is (digital, analog, or could be
either)

5. An analog-to-digital converter outputs an analog voltage. True or false?

6. A music CD player is an example of a(n) (ADC or DAC) process?

7. Electrostatic noise causes more of a problem with which type of signal
(analog or digital). Why?

8. Figure 5 implies that the internal circuitry of a PC can only work on
(digital, analog) signals?

9. What is the purpose of the multiplexer in Figure 5(b)?

10. What is the purpose of the shift register in Figure 5(b)?

3 Decimal Numbering System (Base 10)

In the decimal numbering system, each position contains 10 different possible digits.
These digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each position in a multidigit number will
have a weighting factor based on a power of 10.

NUMBER SYSTEMS AND CODES
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Example 1 illustrates the procedure used to convert from some number system
to its decimal (base 10) equivalent. (In the example, we converted a base 10 number
to a base 10 answer.) Now let’s look at base 2 (binary), base 8 (octal), and base 16
(hexadecimal).

4 Binary Numbering System (Base 2)

Digital electronics use the binary numbering system because it uses only the digits 0
and 1, which can be represented simply in a digital system by two distinct voltage lev-
els, such as +5 V = 1 and 0 V = 0.

The weighting factors for binary positions are the powers of 2 shown in Table 1.

NUMBER SYSTEMS AND CODES

➤

➤

➤

➤

E X A M P L E  1

In a four-digit decimal number, the least significant position (rightmost)
has a weighting factor of 100; the most significant position (leftmost) has a
weighting factor of 103:

103 102 101 100

where 103
= 1000

102
= 100

101
= 10

100
= 1

To evaluate the decimal number 4623, the digit in each position is
multiplied by the appropriate weighting factor:

Answer   4623

 4 * 103
=

 
+4000

 6 * 102
=

 600

 2 * 101
=

 20

 3 * 100
=

 3

4 6 2 3

TABLE 1 Powers-of-2 Binary Weighting Factors

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

27
= 128

26
= 64

25
= 32

24
= 16

23
= 8

22
= 4

21
= 2

20
= 1

8



23 = 8

22 = 4

21 = 2

20 = 1

2–1 = 1  = 1  = 0.5
21 2

2–2 = 1  = 1  = 0.25
22 4

2–3 = 1  = 1  = 0.125
23 8

2–4 = 1  = 1  = 0.0625
24 16

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

Figure 6 Successive division by 2 to develop fractional binary weighting factors and show
that 20 is equal to 1.

Although seldom used in digital systems, binary weighting for values less than 1
is possible (fractional binary numbers). These factors are developed by successively
dividing the weighting factor by 2 for each decrease in the power of 2. This is also use-
ful to illustrate why 20 is equal to 1, not zero (see Figure 6).

NUMBER SYSTEMS AND CODES

E X A M P L E  2

Convert the binary number 010101102 to decimal. (Notice the subscript 2
used to indicate that 01010110 is a base 2 number. A capital letter B can
also be used, i.e., 01010110B.)

Solution: Multiply each binary digit by the appropriate weight factor and
total the results.

128 64 32 16 8 4 2 1
0 1 0 1 0 1 1 0

Answer8610

0 * 27
= 0

1 * 26
= 64

0 * 25
= 0

1 * 24
= 16

0 * 23
= 0

1 * 22
= 4

1 * 21
= 2

0 * 20
= 0➤

➤

➤

➤

➤

➤

➤

➤
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Review Questions

11. Why is the binary numbering system commonly used in digital elec-
tronics?

12. How are the weighting factors determined for each binary position in a
base 2 number?

13. Convert 0110 11002 to decimal.

14. Convert 1101.01102 to decimal.

5 Decimal-to-Binary Conversion

The conversion from binary to decimal is usually performed by the digital computer
for ease of interpretation by the person reading the number. Conversely, when a person
enters a decimal number into a digital computer, that number must be converted to bi-
nary before it can be operated on. Let’s look at decimal-to-binary conversion.

NUMBER SYSTEMS AND CODES

E X A M P L E  3

Convert the fractional binary number 1011.10102 to decimal.

Solution: Multiply each binary digit by the appropriate weighting factor
given in Figure 6, and total the results. (We skip the multiplication for the
binary digit 0 because it does not contribute to the total.)

1 0 1 1 . 1 0 1 0

Answer11.62510

1 * 23  
= 8

1 * 21  
= 2

1 * 20  
= 1

1 * 2-1 
= 0.500

1 * 2-3 
= 0.125➤

➤

➤

➤

➤

E X A M P L E  4

Convert 13310 to binary.

Solution: Referring to Table 1, we can see that the largest power of 2 that
will fit into 133 is 27 (27

= 128), but that will still leave the value 5(133 -
128 = 5) to be accounted for. Five can be taken care of by 22 and 20 (22

=

4, 20
= 1). So the process looks like this:

0

1
-  1 S 20

5
-  4 S 22

1
20

0
21

1
22

0
23

0
24

0
25

0
26

1
27

133
-128 S 27

➤ ➤ ➤
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E X A M P L E  5

Convert 12210 to binary.

Solution:

Answer: 0  1  1  1  1  0  1  02

0

2
- 2 S 21

10
- 8 S 23

26
-16 S 24

58
-32 S 25

0
20

1
21

0
22

1
23

1
24

1
25

1
26

0
27

122
-64 S 26

NUMBER SYSTEMS AND CODES

➤ ➤ ➤ ➤➤

Helpful 
Hint

This is a good time to
realize that a useful way to
learn new material like this
is to re-solve the examples
with the solutions covered
up. That way, when you
have a problem, you can
uncover the solution and
see the correct procedure.

Another method of converting decimal to binary is by successive division.
Successive division involves dividing repeatedly by the number of the base to which
you are converting. Continue the process until the answer is 0. For example, to convert
12210 to base 2, use the following procedure:

The first remainder, 0, is the least significant bit (LSB) of the answer; the last
remainder, 1, is the most significant bit (MSB) of the answer. Therefore, the answer
is as follows:

LSB

However, because most computers or digital systems deal with groups of 4, 8, 16,
or 32 bits (binary digits), we should keep all our answers in that form. Adding a lead-
ing zero to the number 1 1 1 1 0 1 02 will not change its numeric value; therefore, the
8-bit answer is as follows:

1  1  1  1  0  1  02 = 0  1  1  1  1  0  1  02

1  1  1  1  0  1  0 2

 1 � 2 = 0  with a remainder of 1 (MSB)

 3 � 2 = 1  with a remainder of 1

 7 � 2 = 3  with a remainder of 1

 15 � 2 = 7  with a remainder of 1

 30 � 2 = 15  with a remainder of 0

 61 � 2 = 30  with a remainder of 1

 122 � 2 = 61  with a remainder of 0 (LSB)

➤

Answer: 1 0 0 0 0 1 0 12

Note: The powers of 2 needed to give the number 133 were first deter-
mined. Then all other positions were filled with zeros.
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Review Questions

15. Convert 4310 to binary.

16. Convert 17010 to binary.

6 Octal Numbering System (Base 8)

The octal numbering system is a method of grouping binary numbers in groups of
three. The eight allowable digits are 0, 1, 2, 3, 4, 5, 6, and 7.

The octal numbering system is used by manufacturers of computers that utilize
3-bit codes to indicate instructions or operations to be performed. By using the octal
representation instead of binary, the user can simplify the task of entering or reading
computer instructions and thus save time.

In Table 2, we see that when the octal number exceeds 7, the least significant oc-
tal position resets to zero and the next most significant position increases by 1.

Common
Misconception

Remember not to reverse
the LSB and MSB when
listing the binary answer.

E X A M P L E  6

Convert 15210 to binary using successive division.

Solution:

Answer: 1  0  0  1  1  0  0  0 2 

 1 � 2 = 0  remainder 1 (MSB)
 2 � 2 = 1   remainder 0
 4 � 2 = 2  remainder 0
 9 � 2 = 4  remainder 1

 19 � 2 = 9  remainder 1
 38 � 2 = 19  remainder 0
 76 � 2 = 38  remainder 0

 152 � 2 = 76  remainder 0 (LSB)

TABLE 2 Octal Numbering System

Decimal Binary Octal

0 000 0
1 001 1
2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 10
9 1001 11

10 1010 12

7 Octal Conversions

Converting from binary to octal is simply a matter of grouping the binary positions in
groups of three (starting at the least significant position) and writing down the octal
equivalent.

12
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E X A M P L E  9

Convert 6 2 48 to binary.

Solution:

Answer1  1   0    0  1  0    1  0  0 =  1   1  0  0  1  0  1  0  02

426

E X A M P L E  1 0

Convert 3 2 68 to decimal.

Solution:

3 2 6

Answer21410

3 * 82
= 3 * 64 = 192

2 * 81
= 2 * 8 = 16

6 * 80
= 6 * 1 = 6

E X A M P L E  8

Convert 1 0 1 1 1 0 0 12 to octal.

Solution:

add a leading zero

Answer= 2718172

0  1  0

121  0    1  1  1    0  0

E X A M P L E  7

Convert 0 1 1 1 0 12 to octal.

Solution:

Answer= 35853

0  1  1    1  0  1r r

r

➤

➤ ➤

r

r

r

To convert octal to binary, you reverse the process.

r rr

To convert from octal to decimal, follow a process similar to that in Section 3
(multiply by weighting factors).

➤

➤

➤

Helpful 
Hint

When converting from
octal to decimal, some
students find it easier to
convert to binary first and
then convert binary to
decimal.

13



To convert from decimal to octal, the successive-division procedure can be
used.

NUMBER SYSTEMS AND CODES

Review Questions

17. The only digits allowed in the octal numbering system are 0 to 8. True
or false?

18. Convert 1110112 to octal.

19. Convert 2638 to binary.

20. Convert 6148 to decimal.

21. Convert 9010 to octal.

8 Hexadecimal Numbering System (Base 16)

The hexadecimal numbering system, like the octal system, is a method of grouping
bits to simplify entering and reading the instructions or data present in digital computer
systems. Hexadecimal uses 4-bit groupings; therefore, instructions or data used in 8-,
16-, or 32-bit computer systems can be represented as a two-, four-, or eight-digit hexa-
decimal code instead of using a long string of binary digits (see Table 3).

Hexadecimal (hex) uses 16 different digits and is a method of grouping binary
numbers in groups of four. Because hex digits must be represented by a single charac-
ter, letters are chosen to represent values greater than 9. The 16 allowable hex digits are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

To signify a hex number, a subscript 16 or the letter H is used (that is, A716 or
A7H). Two hex digits are used to represent 8 bits (also known as a byte). Four bits (one
hex digit) are sometimes called a nibble.

E X A M P L E  1 1

Convert 4 8 610 to octal.

Solution:

remainder 6

remainder 4 7468

remainder 7

Answer

Check:

7 4 6

486   U
7 * 82

= 448

4 * 81
=  32

6 * 80
=  6

 48610 = 7468

 7 � 8 = 0

 60 � 8 = 7

 486 � 8 = 60 r

➤

➤

➤

14
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TABLE 3 Hexadecimal Numbering System

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 1 0
17 0001 0001 1 1
18 0001 0010 1 2
19 0001 0011 1 3
20 0001 0100 1 4

E X A M P L E  1 3

Convert A916 to binary.

Solution:

A 9

1 0 1 0 1 0 0 1 � 101010012 Answer

E X A M P L E  1 2

Convert 011011012 to hex.

Solution:

0 1 1 0 1 1 0 12

6 D � 6D16 Answer

9 Hexadecimal Conversions

To convert from binary to hexadecimal, group the binary number in groups of four
(starting in the least significant position) and write down the equivalent hex digit.

r r

To convert hexadecimal to binary, use the reverse process.

r r
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To convert hexadecimal to decimal, use a process similar to that in Section 3.

NUMBER SYSTEMS AND CODES

E X A M P L E  1 6

Convert 15110 to hex.

Solution:

(LSD)

(MSD)

Answer

Check:

151   U
9 * 161

= 144

7 * 160
=  7

9716

15110 = 9716

 9 � 16 = 0 remainder 9

 151 � 16 = 9 remainder 7

E X A M P L E  1 5

Redo Example 14 by converting first to binary and then to decimal.

Solution:

2 A 6

Answer0010 1010 0110 =  2 + 4 + 32 + 128 + 512 = 67810

E X A M P L E  1 4

Convert 2 A 616 to decimal.

Solution:

2 A 6

Answer67810

 2 * 162
=

 2 * 256 = 512

 A * 161
= 10 *  16 = 160

6 * 160
=

 6 *   1 =   6

Helpful 
Hint

When converting from
hexadecimal to decimal,
some students find it easier
to convert to binary first
and then to convert binary
to decimal.

Helpful 
Hint

At this point, you may be
asking if you can use your
hex calculator key instead
of the hand procedure to
perform these conversions.
It is important to master
these conversion procedures
before depending on your
calculator so that you
understand the concepts
involved.

➤

➤

➤

r r r

To convert from decimal to hexadecimal, use successive division. (Note:
Successive division can always be used when converting from base 10 to any other
base numbering system.)

➤

➤

E X A M P L E  1 7

Convert 49810 to hex.

Solution:

(LSD)

(MSD)

Answer49810 = 1  F  216

  1 � 16 =  0 remainder 1

 31 � 16 =  1 remainder 15 1 = F2
498 � 16 = 31 remainder 2

Team
Discussion

Which is the largest
number—1428, 14210, or
14216?
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Review Questions

22. Why is hexadecimal used instead of the octal numbering system when
working with 8- and 16-bit digital computers?

23. The successive-division method can be used whenever converting
from base 10 to any other base numbering system. True or false?

24. Convert 0110 10112 to hex.

25. Convert E716 to binary.

26. Convert 16C16 to decimal.

27. Convert 30010 to hex.

10 Binary-Coded-Decimal System

The binary-coded-decimal (BCD) system is used to represent each of the 10
decimal digits as a 4-bit binary code. This code is useful for outputting to displays
that are always numeric (0 to 9), such as those found in digital clocks or digital
voltmeters.

To form a BCD number, simply convert each decimal digit to its 4-bit binary
code.

NUMBER SYSTEMS AND CODES

E X A M P L E  1 9

Convert 0111 0101 1000BCD to decimal.

Solution:

0111 0101 1000

7 5 8 Answer= 75810

E X A M P L E  1 8

Convert 4 9 610 to BCD.

Solution:

4 9 6

Answer0100 1001 0110 = 0100 1001 0110BCD

Check:

498   �
1 * 162

=
 1 * 256 = 256

F * 161
= 15 *  61 = 240

2 * 160
=

 2 *   1 =   21  F  216

r r r

To convert BCD to decimal, just reverse the process.

rrr
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11 Comparison of Numbering Systems

Table 4 compares numbers written in the five number systems commonly used in dig-
ital electronics and computer systems.

NUMBER SYSTEMS AND CODES

E X A M P L E  2 0

Convert 0110 0100 1011BCD to decimal.

Solution:

0110 0100 1011

6 4 *

*This conversion is impossible because 1011 is not a valid binary-coded decimal. It is not in the range 0 to 9.

TABLE 4 Comparison of Numbering Systems

Decimal Binary Octal Hexadecimal BCD

0 0000 0 0 0000
1 0001 1 1 0001
2 0010 2 2 0010
3 0011 3 3 0011
4 0100 4 4 0100
5 0101 5 5 0101
6 0110 6 6 0110
7 0111 7 7 0111
8 1000 1 0 8 1000
9 1001 1 1 9 1001

10 1010 1 2 A 0001 0000
11 1011 1 3 B 0001 0001
12 1100 1 4 C 0001 0010
13 1101 1 5 D 0001 0011
14 1110 1 6 E 0001 0100
15 1111 1 7 F 0001 0101
16 0001 0000 2 0 1 0 0001 0110
17 0001 0001 2 1 1 1 0001 0111
18 0001 0010 2 2 1 2 0001 1000
19 0001 0011 2 3 1 3 0001 1001
20 0001 0100 2 4 1 4 0010 0000

12 The ASCII Code

To get information into and out of a computer, we need more than just numeric repre-
sentations; we also have to take care of all the letters and symbols used in day-to-day
processing. Information such as names, addresses, and item descriptions must be input
and output in a readable format. But remember that a digital system can deal only with
1s and 0s. Therefore, we need a special code to represent all alphanumeric data (letters,
symbols, and numbers).

Most industry has settled on an input/output (I/O) code called the American
Standard Code for Information Interchange (ASCII). The ASCII code uses 7 bits to
represent all the alphanumeric data used in computer I/O. Seven bits will yield 128 dif-
ferent code combinations, as listed in Table 5.
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TABLE 5 American Standard Code for Information Interchange

MSB

LSB 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P � p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 ” 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB � 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L \ l |
1101 CR GS - = M ] m }
1110 SO RS . > N n ~
1111 SI US / ? O — o DEL

Definitions of control abbreviations: FS Form separator
ACK Acknowledge GS Group separator
BEL Bell HT Horizontal tab
BS Backspace LF Line feed
CAN Cancel NAK Negative acknowledge
CR Carriage return NUL Null
DC1–DC4 Direct control RS Record separator
DEL Delete idle SI Shift in
DLE Data link escape SO Shift out
EM End of medium SOH Start of heading
ENQ Enquiry SP Space
EOT End of transmission STX Start text
ESC Escape SUB Substitute
ETB End of transmission block SYN Synchronous idle
ETX End text US Unit separator
FF Form feed VT Vertical tab

c

Each time a key is depressed on an ASCII keyboard, that key is converted into
its ASCII code and processed by the computer. Then, before outputting the computer
contents to a display terminal or printer, all information is converted from ASCII into
standard English.

To use the table, place the 4-bit group in the least significant positions and the
3-bit group in the most significant positions.

NUMBER SYSTEMS AND CODES

E X A M P L E  2 2

Using Table 5, determine the ASCII code for the lowercase letter p.

Solution: 1110000 (Note: Often, a leading zero is added to form an 8-bit
result, making p 0111 0000.)=

E X A M P L E  2 1

100 0111 is the code for G.

3-bit group 4-bit group

Team
Discussion

Have you ever tried display-
ing non-ASCII data to your
PC screen using a disk util-
ity program? If you were to
read a file created by the
IRS for your tax return,
which fields would be
ASCII?

r r➤ ➤
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Review Questions

28. How does BCD differ from the base 2 binary numbering system?

29. Why is ASCII code required by digital computer systems?

30. Convert 94710 to BCD.

31. Convert 1000 0110 0111BCD to decimal.

32. Determine the ASCII code for the letter E.

13 Applications of the Numbering Systems

Because digital systems work mainly with 1s and 0s, we have spent considerable time
working with the various number systems. Which system is used depends on how the
data were developed and how they are to be used. In this section, we work with
several applications that depend on the translation and interpretation of these digital
representations.

NUMBER SYSTEMS AND CODES

A P P L I C AT I O N  1

A geothermal electricity generation facility uses a computer to monitor the
temperature and pressure of four liquid storage tanks, as shown in Figure
7(a). Whenever a temperature or a pressure exceeds the danger limit, an in-
ternal tank sensor applies a 1 to its corresponding output to the computer.
If all conditions are OK, then all outputs are 0.

Tank
D

P
T

PD TD PC TC PB TB PA TA

Computer
monitoring

system

PD TD PC TC PB TB PA TA

M
S
B

L
S
B

P = pressure sensor
T = temperature sensor

(a)

(b)

Tank
C

P
T

Tank
B

P
T

Tank
A

P
T

Figure 7 (a) Circuit connections for temperature and pressure monitors at a ge-
othermal electricity generation facility; (b) layout of binary data read by the com-
puter monitoring system.

(a) If the computer reads the binary string 0010 1000, what problems exist?

Solution: Entering that binary string into the chart of Figure 7(b) shows us
that the pressure in tanks C and B is dangerously high.

Helpful 
Hint

This and the following five
applications illustrate the
answer to the common
student question, “Why are
we learning this stuff?”
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(b) What problems exist if the computer is reading 55H (55 hex)?

Solution: 55H 0101 0101, meaning that all temperatures are too high

(c) What hexadecimal number is read by the computer if the temperature
and pressure in both tanks D and B are high?

Solution: CCH (1100 1100 CCH)

(d) Tanks A and B are taken out of use, and their sensor outputs are con-
nected to 1s. A computer programmer must write a program to ignore these
new circuit conditions. The computer program must check that the value
read is always less than what decimal equivalent when no problem exists?

Solution: 63110, because, with the 4 low-order bits HIGH, if TC goes
HIGH, then the binary string will be 0001 1111, which is equal to 3110.

(e) In another area of the plant, only three tanks (A, B, and C) have to be
monitored. What octal number is read if tank B has a high temperature
and pressure?

Solution: 148 (001 1002 = 148)

=

=

A P P L I C AT I O N  2

A particular brand of CD player has the capability of converting 12-bit sig-
nals from a CD into their equivalent analog values.

(a) What are the largest and smallest hex values that can be used in this
CD system?

Solution: Largest: FFF16; smallest: 00016

(b) How many different analog values can be represented by this system?

Solution: FFF16 is equivalent to 4095 in decimal. Including 0, this is a
total of 4096 unique representations.

A P P L I C AT I O N  3

Typically, digital thermometers use BCD to drive their digit displays.

(a) How many BCD bits are required to drive a 3-digit thermometer display?

Solution: 12; 4 bits for each digit

(b) What 12 bits are sent to the display for a temperature of 147°F?

Solution: 0001 0100 0111

A P P L I C AT I O N  4

Most PC-compatible computer systems use a 20-bit address code to iden-
tify each of over 1 million memory locations.

(a) How many hex characters are required to identify the address of each
memory location?

Solution: Five (Each hex digit represents 4 bits.)

Common
Misconception

You may have a hard time
visualizing why we add or
subtract 1 to determine
memory locations. Answer
this question: How many
problems must you solve if
your teacher assigns
problems 5 through 10?
(You would subtract 5 from
10 and then add 1.) How
about if you solve 8
problems starting with 10:
Would the last problem be
18 or 17?

NUMBER SYSTEMS AND CODES
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(b) What is the 5-digit hex address of the 200th memory location?

Solution: 000C7H (20010 C8H; but the first memory location is
00000H, so we have to subtract 1).

(c) If 50 memory locations are used for data storage starting at location
00C8H, what is the location of the last data item?

Solution: 000F9H (000C8H 20010, 200 + 50 25010, 250 1 24910,
24910 F9H [We had to subtract 1 because location C8H (20010) received
the first data item, so we needed only 49 more memory spaces.])

=

=-==

=

A P P L I C AT I O N  5

If the part number 651-M is stored in ASCII in a computer memory, list the
binary contents of its memory locations.

Solution:

Because most computer memory locations are formed by groups of 8
bits, let’s add a zero to the leftmost position to fill each 8-bit memory loca-
tion. (The leftmost position is sometimes filled by a parity bit.)

Therefore, the serial number, if strung out in five memory locations,
would look like the following:

0011 0110 0011 0101 0011 0001 0010 1101 0100 1101

If you look at these memory locations in hexadecimal, they will read as
follows:

36 35 31 2D 4D

 M = 100  1101

 - = 010  1101

 1 = 011  0001

 5 = 011  0101

 6 = 011  0110

A P P L I C AT I O N  6

To look for an error in a BASIC program, a computer programmer uses a
debugging utility to display the ASCII codes of a particular part of her pro-
gram. The codes are displayed in hex as 474F5430203930. Assume that the
leftmost bit of each ASCII string is padded with a 0.

(a) Translate the program segment that is displayed.

Solution: GOT0 90.

(b) If you know anything about programming in BASIC, try to determine
what the error is.

Solution: Apparently a number zero was typed in the GOTO statement
instead of the letter O. Change it, and the error should go away.

Inside 
Your PC

The address settings of
your PC I/O devices are
given as hexadecimal
numbers. They can be
determined on a Windows-
based machine by pressing
the sequence: 
My Computer > Control
Panel > System > Device
Manager > Properties >
I/O. Determine from the
list on your screen what
the address settings are for
your keyboard, printer,
and floppy disk.

NUMBER SYSTEMS AND CODES
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Summary

In this chapter, we have learned the following:

1. Numeric quantities occur naturally in analog form but must be con-
verted to digital form to be used by computers or digital circuitry.

2. The binary numbering system is used in digital systems because the 1s
and 0s are easily represented by ON or OFF transistors, which output 0 V
for 0 and 5 V for 1.

3. Any number system can be converted to decimal by multiplying each
digit by its weighting factor.

4. The weighting factor of the least significant digit in any numbering sys-
tem is always 1.

5. Binary numbers can be converted to octal by forming groups of 3 bits
and to hexadecimal by forming groups of 4 bits, beginning with the LSB.
Each group is then converted to an octal or hex digit.

6. The successive-division procedure can be used to convert from decimal
to binary, octal, or hexadecimal.

7. The binary-coded-decimal system uses groups of 4 bits to drive decimal
displays such as those in a calculator.

8. ASCII is used by computers to represent all letters, numbers, and sym-
bols in digital form.

Glossary

Alphanumeric: Characters that contain alphabet letters as well as numbers and symbols.

Analog: A system that deals with continuously varying physical quantities such as
voltage, temperature, pressure, or velocity. Most quantities in nature occur
in analog, yielding an infinite number of different levels.

ASCII Code: American Standard Code for Information Interchange. ASCII is a 7-bit
code used in digital systems to represent all letters, symbols, and numbers
to be input or output to the outside world.

BCD: Binary-coded decimal. A 4-bit code used to represent the 10 decimal digits 0 to 9.

Binary: The base 2 numbering system. Binary numbers are made up of 1s and 0s, each
position being equal to a different power of 2 (23, 22, 21, 20, and so on).

Bit: A single binary digit. The binary number 1101 is a 4-bit number.

Decimal: The base 10 numbering system. The 10 decimal digits are 0, 1, 2, 3, 4, 5, 6,
7, 8, and 9. Each decimal position is a different power of 10 (103, 102, 101,
100, and so on).

Digital: A system that deals with discrete digits or quantities. Digital electronics deals
exclusively with 1s and 0s or ONs and OFFs. Digital codes (such as ASCII)
are then used to convert the 1s and 0s to a meaningful number, letter, or
symbol for some output display.

Hexadecimal: The base 16 numbering system. The 16 hexadecimal digits are 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Each hexadecimal position repre-
sents a different power of 16 (163, 162, 161, 160, and so on).

Least Significant Bit (LSB): The bit having the least significance in a binary string. The
LSB will be in the position of the lowest power of 2 within the binary number.

NUMBER SYSTEMS AND CODES

Helpful 
Hint

Skimming through the
glossary terms is a good
way to review the chapter.
You should also feel that
you have a good
understanding of all the
topics listed in the
objectives at the beginning
of the chapter.
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Most Significant Bit (MSB): The bit having the most significance in a binary string.
The MSB will be in the position of the highest power of 2 within the binary
number.

Octal: The base 8 numbering system. The eight octal numbers are 0, 1, 2, 3, 4, 5, 6,
and 7. Each octal position represents a different power of 8 (83, 82, 81, 80,
and so on).

Problems

Section 4
1. Convert the following binary numbers to decimal.

(a) 0110 (b) 1011 (c) 1001 (d) 0111
(e) 1100 (f) 0100 1011 (g) 0011 0111
(h) 1011 0101 (i) 1010 0111 (j) 0111 0110

Section 5
2. Convert the following decimal numbers to 8-bit binary.

(a) 18610 (b) 21410 (c) 2710 (d) 25110 (e) 14610

Sections 6 and 7
3. Convert the following binary numbers to octal.

(a) 011001 (b) 11101 (c) 1011100
(d) 01011001 (e) 1101101

4. Convert the following octal numbers to binary.

(a) 468 (b) 748 (c) 618 (d) 328 (e) 578

5. Convert the following octal numbers to decimal.

(a) 278 (b) 378 (c) 148 (d) 728 (e) 518

6. Convert the following decimal numbers to octal.

(a) 12610 (b) 4910 (c) 8710 (d) 9410 (e) 10810

Sections 8 and 9
7. Convert the following binary numbers to hexadecimal.

(a) 1011 1001 (b) 1101 1100 (c) 0111 0100
(d) 1111 1011 (e) 1100 0110

8. Convert the following hexadecimal numbers to binary.

(a) C516 (b) FA16 (c) D616 (d) A9416 (e) 6216

9. Convert the following hexadecimal numbers to decimal.

(a) 8616 (b) F416 (c) 9216 (d) AB16 (e) 3C516

10. Convert the following decimal numbers to hexadecimal.

(a) 12710 (b) 6810 (c) 10710 (d) 6110 (e) 2910

Section 10
11. Convert the following BCD numbers to decimal.

(a) 1001 1000BCD (b) 0110 1001BCD (c) 0111 0100BCD

(d) 0011 0110BCD (e) 1000 0001BCD
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12. Convert the following decimal numbers to BCD.

(a) 8710 (b) 14210 (c) 9410 (d) 6110 (e) 4410

13. Fill in all of the empty cells in Table P13 by performing the indicated
conversion as shown in the row labeled “sample.”

14. Fill in all of the empty cells in Table P14 by performing the indicated
conversion as shown in the row labeled “sample.”

Decimal Binary Octal BCD Hexadecimal

Sample 16 0001 0000 020 0001 0110 10
(a) 35
(b) 0010 1001
(c) 053
(d) 0111 1000
(e) 3A

Decimal Binary Octal BCD Hexadecimal

Sample 59 0011 1011 073 0101 1001 3B
(a) 44
(b) 1001 1000
(c) 127
(d) 0011 0100
(e) 45

Section 12
15. Use Table 5 to convert the following letters, symbols, and numbers to
ASCII.

(a) % (b) $14 (c) N-6 (d) CPU (e) Pg

16. Insert a zero in the MSB of your answers to Problem 13, and list your
answers in hexadecimal.

Section 13
17. The computer monitoring system at the geothermal facility shown in
Figure 7 is receiving the following warning codes. Determine the problems
that exist for each code (H stands for hex).

(a) 0010 00012 (b) C016 (c) 88H (d) 0248 (e) 4810

18. What is the BCD representation that is sent to a three-digit display on
a voltmeter that is measuring 120 V?

19. A computer programmer observes the following hex string when look-
ing at a particular section of computer memory: 736B753433.

(a) Assume that the memory contents are ASCII codes with leading zeros
and translate this string into its alphanumeric equivalent.

(b) The programmer realizes that the program recognizes only capital (up-
percase) letters. Convert all letters in the alphanumeric equivalent to cap-
ital letters, and determine the new hex string.

*The letter C signifies problems that are more Challenging and thought provoking.

C*

C

TABLE P13

TABLE P14

C
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Schematic Interpretation Problems

20. Locate the HC11D0 master board schematic in Appendix: Schematic
Diagrams for Chapter-End Problems. Determine the component name and
grid coordinates of the following components. (Example: Q3 is a 2N2907
located at A3.)

(a) U1 (b) U16 (c) Q1 (d) P2

21. Find the date and revision number for the HC11D0 master board
schematic.

22. Find the quantity of the following devices that are used on the watch-
dog timer schematic.

(a) 74HC85 (b) 74HC08 (c) 74HC74 (d) 74HC32

MultiSIM® Exercises

MultiSIM is a software simulation tool that is used to reinforce the theory presented in
this chapter. It provides an accurate simulation of digital and analog circuit operation
along with a simulation of instruments used by a technician to measure IC, component,
and circuit characteristics. With this software, you have the ability to build and test
most of the circuits presented in this text. The data files for all MultiSIM examples and
problems in this chapter are provided on the text Web site.

The problems at the end of this chapter are based on the circuits and theory pre-
sented in the section corresponding to the file name. Before attempting any MultiSIM
problems, you must thoroughly understand the material presented in that chapter sec-
tion. The problem definition for each MultiSIM circuit is fully explained in the
Description Window that appears in each MultiSIM file.

The problems are basically of three types: (1) circuit interaction problems require
the student to change input values and take measurements at the outputs to verify circuit
operation; (2) design problems require the student to design, or modify, a circuit to
perform a particular task; and (3) troubleshooting problems require the student to find
and fix the fault that exists in the circuit that is given.

You will notice that the MultiSIM problems use a slightly different notation to
represent certain variables. For example, is represented by A�, Cp is represented by
Cp, and 20 is represented by 2^0.

E1. (Note: You need to understand binary to hexadecimal conversions
[Section 8] before attempting this exercise.) Load the circuit file for
Section 08. This circuit is used to demonstrate the conversion between the
binary and hexadecimal numbering systems similar to Examples 12 and
13. The Word Generator is used to drive eight binary lights and two hexa-
decimal displays. Read the instructions for the circuit in the Description win-
dow at the bottom of the screen.

(a) What 8-bit binary number will you see on the lights if you press Step
five times? (An ON light is a 1.) Try it.

(b) How many times must you press Step to get the binary number 
0000 1011? Try it.

A

*The letter S designates Schematic interpretation problem.

S*

S

S

(Note: Appendix: Schematic Diagrams for Chapter-End Problems contains four schematic
diagrams of actual digital systems. At the end of this chapter, you will have the opportunity
to work with these diagrams to gain experience with real-world circuitry and observe the
application of digital logic that was presented in the chapter.)
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(c) What hexadecimal number will you see if you press Step 14 times? Try it.

(d) How many times must you press Step to see the hexadecimal number
1b? Try it.

E2. (Note: You need to understand the operation of the geothermal facility
monitoring system presented in Figure 7 before attempting this exercise.)
Load the circuit file for Section 13. Turn the power switch ON. The hex
display should read 00H, which indicates that there are no high tempera-
ture or pressure levels.
(a) Read the instructions for the circuit in the Description window at the

bottom of the screen. What would you expect the hex display to read
if there is a high temperature in Tank D? To check your answer, raise
the temperature in Tank D by pressing the indicated key several
times. Return the temperature to a low level by holding the Ctrl key
as you press 2 repeatedly.

(b) What would you expect the display to read if all temperatures are
high? Check your answer, then return the levels to a low state.

(c) What levels are too high if the hex display reads 0CH? Check your
answer by raising the levels on the appropriate tank(s). Return all
levels to a low state.

(d) What levels are too high if the hex display reads AAH? Check your
answer by raising the levels on the appropriate tanks(s). Return all
levels to a low state.

Answers to Review Questions

1. Temperature, pressure,
velocity, weight, sound

2. Because digital quantities are
easier for a computer system to
store and interpret

3. (a) Analog (b) Digital
(c) Digital (d) Analog

4. Could be either
5. False
6. DAC
7. Analog, because small irregu-

larities in the waveform will be
heard, but a digital signal with
noise still looks like a HIGH or
LOW (1 or 0) voltage level.

8. Digital

9. To route just one input at a
time to the ADC

10. To convert the parallel data
into serial before outputting to
the USB connector

11. Because it uses only two digits,
0 and 1, which can be repre-
sented by using two distinct
voltage levels

12. By powers of 2

13. 10810

14. 13.37510

15. 0010 10112

16. 1010 10102

17. False

18. 738

19. 010 110 0112 or 1011 00112

20. 39610

21. 1328

22. Because hexadecimal uses
4-bit groupings

23. True
24. 6B16

25. 1110 01112

26. 36410

27. 12C16

28. BCD is used only to represent
decimal digits 0 to 9 in 4-bit
groupings.

29. To get alphanumeric data into
and out of a computer

30. 1001 0100 0111BCD

31. 86710

32. 0100 0101ASCII
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Answers to Odd-Numbered Problems

1. (a) 610 (b) 1110 (c) 910 (d) 710
(e) 1210 (f) 7510 (g) 5510 (h) 18110
(i) 16710 (j) 11810

3. (a) 318 (b) 358 (c) 1348 (d) 1318
(e) 1558

5. (a) 2310 (b) 3110 (c) 1210 (d) 5810
(e) 4110

7. (a) B916 (b) DC16 (c) 7416 (d) FB16
(e) C616

9. (a) 13410 (b) 24410 (c) 14610
(d) 17110 (e) 96510

11. (a) 9810 (b) 6910 (c) 7410 (d) 3610
(e) 8110

13.

15. (a) 010 0101
(b) 0100100 0110001 0110100
(c) 1001110 0101101 0110110
(d) 1000011 1010000 1010101
(e) 1010000 1100111

17. (a) Tank A, temperature high; tank C,
pressure high

(b) Tank D, temperature and pressure high
(c) Tanks B and D, pressure high
(d) Tanks B and C, temperature high
(e) Tank C, temperature and pressure high

19. (a) sku43 (b) 534B55343316

21. 16-MAR 1995 Revision A

E1. (a) 0000 0101 (b) Eleven (c) 0E (d) 2

Decimal Binary Octal BCD Hexadecimal

(a) 35 0010 0011 043 0011 0101 23
(b) 41 0010 1001 051 0100 0001 29
(c) 43 0010 1011 053 0100 0011 2B
(d) 78 0100 1110 116 0111 1000 4E
(e) 58 0011 1010 072 0101 1000 3A
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Digital Electronic Signals 
and Switches

OUTLINE

1 Digital Signals
2 Clock Waveform Timing
3 Serial Representation
4 Parallel Representation
5 Switches in Electronic Circuits
6 A Relay as a Switch
7 A Diode as a Switch
8 A Transistor as a Switch
9 The TTL Integrated Circuit

10 MultiSIM® Simulation of Switching Circuits
11 The CMOS Integrated Circuit
12 Surface-Mount Devices

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Describe the parameters associated with digital voltage-versus-time waveforms.
• Convert between frequency and period for a periodic clock waveform.
• Sketch the timing waveform for any binary string in either the serial or parallel

representation.
• Discuss the application of manual switches and electromechanical relays in

electric circuits.
• Explain the basic characteristics of diodes and transistors when they are forward

biased and reverse biased.
• Calculate the output voltage in an electric circuit containing diodes or transistors

operating as digital switches.
• Perform input/output timing analysis in electric circuits containing electro-

mechanical relays or transistors.
• Explain the operation of a common-emitter transistor circuit used as a digital

inverter switch.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 2 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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INTRODUCTION

Digital electronics deals with 1s and 0s. These logic states will typically be represented
by a high and a low voltage level 

In this chapter, we see how these logic states can be represented by means of a tim-
ing diagram and how electronic switches are used to generate meaningful digital signals.

1 Digital Signals

A digital signal is made up of a series of 1s and 0s that represent numbers, letters, sym-
bols, or control signals. Figure 1 shows the timing diagram of a typical digital signal.
Timing diagrams are used to show the HIGH and LOW (1 and 0) levels of a digital sig-
nal as it changes relative to time. In other words, it is a plot of voltage versus time. The
y axis of the plot displays the voltage level and the x axis, the time. Digital systems re-
spond to the digital state (0 or 1), not the actual voltage levels. For example, if the volt-
age levels in Figure 1(a) were not exactly 0 V and the digital circuitry would still
interpret it as the 0 state and 1 state and respond identically. 

Figure 1(a) is a timing diagram showing the bit configuration 1 0 1 0 as it would
appear on an oscilloscope. Notice in the figure that the LSB comes first in time. In this
case, the LSB is transmitted first. The MSB could have been transmitted first as long
as the system on the receiving end knows which method is used.

Figure 1(b) is a photograph of an oscilloscope, which is a very important test in-
strument for making accurate voltage versus time measurements.

+5 V,

0 = 0 V).(usually 1 = 5 V and

2 Clock Waveform Timing

Most digital signals require precise timing. Special clock and timing circuits are used
to produce clock waveforms to trigger the digital signals at precise intervals.

Figure 2 shows a typical periodic clock waveform as it would appear on an os-
cilloscope displaying voltage versus time. The term periodic means that the wave-
form is repetitive, at a specific time interval, with each successive pulse identical to
the previous one.

Time

+5 V

0 V
0 0

1 1

LSB MSB

V
ol

ta
ge

(a) (b)

Figure 1 (a) Typical digital signal; (b) an oscilloscope displaying the digital waveform from
a clock generator instrument.

DIGITAL ELECTRONIC SIGNALS AND SWITCHES
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DIGITAL ELECTRONIC SIGNALS AND SWITCHES

Figure 2 shows eight clock pulses, which we label 0, 1, 2, 3, 4, 5, 6, and 7. The
period of the clock waveform is defined as the length of time from the falling edge of
one pulse to the falling edge of the next pulse (or rising edge to rising edge) and is
abbreviated tp in Figure 2. The frequency of the clock waveform is defined as the re-
ciprocal of the clock period. Written as a formula,

f =

1

tp
   and   tp =

1

f

5 V

0 V
0 1 2 3 4 5 6 7CpCpClock

circuitry

Falling
edge

Rising
edge

t p

Figure 2 Periodic clock waveform as seen on an oscilloscope displaying voltage versus time.

The basic unit for frequency is hertz (Hz), and the basic unit for period is seconds (s).
Frequency is often referred to as cycles per second (cps) or pulses per second (pps).

E X A M P L E  1

What is the frequency of a clock waveform whose period is 2 microseconds
(ms)?

Solution:

f =

1

tp
=

1

2 ms
= 0.5 megahertz (0.5 MHz or 500 kHz)

Hint: To review engineering notation, see Table 1.

TABLE 1 Common Engineering Prefixes

Prefix Abbreviation Power of 10

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Milli m 10�3

Micro m 10�6

Nano n 10�9

Pico p 10�12

E X A M P L E  2

A PC manufacturer specifies a microprocessor speed of 4 GHz (Gigahertz).
What is the period of the microprocessor’s waveform?

Solution:

tp =

1

f
=

1

4 GHz
= 250 pS

Helpful 
Hint

Frequency and time
calculations can often be
made without a calculator
if you realize some of the
common reciprocal
relationships (e.g.,

. When using a
calculator, if the result is
not a power of 3, 6, 9, or
12, then the answer must
be converted to one of
these common engineering
prefixes using algebra or, if
available, the ENG key on
your calculator.

mega)
1/milli � kilo, 1/micro �

Team 
Discussion

An interesting exercise is to
sketch the waveform from
a 10-cps clock that is
allowed to run for 1s. How
long did it take to complete
one cycle? How did you
find that time? Next,
repeat for a 1-MHz clock.

32



DIGITAL ELECTRONIC SIGNALS AND SWITCHES

4.5 V
0.2 V

17.9 μs

Figure 3 Solution to Example 3.

5 V
0 V

34.7 μs

Figure 4 Waveform for Example 4.

Review Questions

1. What are the labels on the x axis and y axis of a digital signal mea-sured
on an oscilloscope?

2. What is the relationship between clock frequency and clock period?

3. What is the time period from the rising edge of one pulse to the rising
edge of the next pulse on a waveform whose frequency is 8 MHz?

4. What is the frequency of a periodic waveform having a period of 50 ns?

5. Repeat Example 1 for a period of 200 ns.

6. Repeat Example 2 for a frequency of 2.6 GHz.

7. Repeat Example 3 for a waveform frequency of 2.8 Mbps and voltage of
0.4 and 4.8 V.

8. Repeat Example 4 for a period of 17.1 ms.

Digital communications concerns itself with the transmission of bits (1s and 0s).
The rate, or frequency, at which they are transmitted is given in bits-per-second (bps).
Common transmission rates for a PC connected to the Internet via a telephone line are
28.8 kilobits-per-second (28.8 kbps) and 56 kbps. 

E X A M P L E  3

Sketch and label the x and y axis representing a 56 kbps (kilobits per sec-
ond) clock waveform transmitted between a PC and a peripheral device.
(Assume that the voltage levels were measured on an oscilloscope at

Solution:

tp =

1

f
=

1

56 kbps
= 17.9 ms

LOW = 0.2 V and HIGH = 4.5 V.)

E X A M P L E  4

Determine the frequency of the waveform in Figure 4.

Solution:

f =

1

tp 
=

1

34.7 ms
= 28.8 kHz (or 28.8 kbps)

Team 
Discussion

For those students who have
a PC: Do you know (or
could you find out) at what
frequency and period your
internal microprocessor
operates?

Common
Misconception

The period is labeled from
rising edge to rising edge
(or falling edge to falling
edge) and is not just the
positive pulse.
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3 Serial Representation

Binary information to be transmitted from one location to another will be in either
serial or parallel format. The serial format uses a single electrical conductor (and a
common ground) for the data to travel on. The serial format is inexpensive because it
only uses a single conductor and one set of input/output circuitry, but it is slow because
it can only transmit 1 bit for each clock period. Communication over telephone lines
(like the Internet) and computer-to-computer communication (like office networks)
use serial communication (see Figure 5). The ports labels COM on a PC are most often
used for the serial communication connection to telephone lines. A plug-in card is used
in a PC to provide network serial communication (e.g., Ethernet).

Serial communication can be sped up by using extremely high-speed clock sig-
nals. Modern Internet connections and office networks communicate at speeds ex-
ceeding 1 million bps. Several standards have been developed for high-speed serial
communications, the most common of which are V.90, ISDN, T1, T2, T3, Universal
Serial Bus (USB), Ethernet, 10baseT, 100baseT, 1000baseT, cable, and DSL.

0 0 1 1 0 1 1 0

Computer
A

Computer
B

Serial data are transmitted 
over a single conductor.

Figure 5 Serial communication between computers.

Cp

So

1

0

1

0

0   1   2   3   4   5   6   7

LSB MSB

0   0   1   1   0   1   1   0

Figure 6 Serial representation of the binary number 0110110.

Let’s use Figure 6 to illustrate the serial representation of the binary number 0 1
1 0 1 1 0 0. The serial representation (So) is shown with respect to some clock wave-
form (Cp), and its LSB is drawn first. Each bit from the original binary number occu-
pies a separate clock period, with the change from one bit to the next occurring at each
falling edge of Cp (Cp is drawn just as a reference). 

4 Parallel Representation

The parallel format uses a separate electrical conductor for each bit to be transmitted
(and a common ground). For example, if the digital system is using 8-bit numbers,
eight lines are required (see Figure 7). This tends to be expensive, but the entire 8-
bit number can be transmitted in one clock period, making it very fast.

Inside a computer, binary data are almost always transmitted on parallel channels
(collectively called the PCI data bus). Two parallel data techniques previously used by
computers to communicate to external devices were the Centronics printer interface
(port LPT1) and the Small Computer Systems Interface (SCSI, pronounced scuzzy).

Helpful 
Hint

Although this is too
complicated to detail here,
you should realize that
often there are other
handshaking signals
involved in serial
communication (i.e., ready
to receive, ready to
transmit, start bits, stop
bits, parity, and so on).

Inside 
Your PC

Standard transmission
speed for a PC’s serial 
port (labeled COM on
Windows-based machines)
is 115 kbps. Much higher
serial speeds are achieved
using the newer (USB)
standard. The original
version 1.1 standard called
for 12 Mbps transmission
speeds. Version 2.0 specifies
480 Mbps and version 3.0
can transmit at speeds up
to 5 Gbps!
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Figure 8 illustrates the same binary number that was used in Figure 6
(01101100), this time in the parallel representation.

If the clock period were 2 ms, it would take to transmit
the number in serial and only to transmit the same 8-bit
number in parallel. Thus, you can see that when speed is important, parallel transmission
is preferred over serial transmission.

The following examples further illustrate the use of serial and parallel repre-
sentations. 

2 ms * 1 period = 2 ms
2 ms * 8 periods = 16 ms

0 (LSB)

0

1

1

0

1

1

0 (MSB)

Parallel data were transmitted to
the printer on 8 conductors,
simultaneously.

Printer

Computer

Figure 7 Original parallel communication between a computer and a printer.

0   1   2   3   4   5   6   7Cp
1
0

20
1

0

21
1

0

22
1

0

23
1

0

24
1

0

25
1

0

26
1

0

27
1

0

(LSB)

(MSB)

Pa
ra

lle
l d

at
a 

lin
es

Figure 8 Parallel representation of the binary number 01101100.

Team
Discussion

What other devices 
might use parallel
communication? How
about serial
communication?

Inside 
Your PC

Most communication inside
of a modern PC uses a
parallel connection scheme.
The newest internal
parallel standard is called
PCI (Peripheral
Component Interconnect)
and PCI-Express. These
busses range anywhere
from 1 to 32 bits in width
and can transmit at speeds
up to 16 Gbps!
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E X A M P L E  5

Sketch the serial and parallel representations of the 4-bit number 0 1 1 1.
If the clock frequency is 5 MHz, find the time to transmit using each
method.

Solution: Figure 9 shows the representation of the 4-bit number 0 1 1 1.

Figure 9

0 1 2 3Sketch the serial
data on a single
line relative to the
clock reference.

Sketch the same
data in parallel
by using several
lines.

1

0

1

0

1

0

1

0

1

0

1

0

CP

So

20

21

22

23

Po

 tparallel = 1 * 0.2 ms = 0.2 ms

 tserial = 4 * 0.2 ms = 0.8 ms

 tp =

1

f
=

1

5 MHz
= 0.2 ms

E X A M P L E  6

Sketch the serial and parallel representations of the decimal number 74.
(Assume a clock frequency of 4 kHz.) Also, what is the state (1 or 0) of the
serial line 1.2 ms into the transmission?

Solution:

Therefore, the increment of time at each falling edge increases by 
0.25 ms. Because each period is 0.25 ms, 1.2 ms will occur within the
number 4 period, which, on the So line, is a 0 logic state (see Figure 10).

tp =

1

f
=

1

4 kHz
= 0.25 ms

7410 = 0  1  0  0  1  0  1  02.
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Figure 10

S E R I A L  T R A N S M I S S I O N  S I M U L AT I O N

Figure 11 shows a MultiSIM simulation of the transmission of the three ASCII characters MP3 from
a transmitting device (the Word Generator) to a receiving device (the Logic Analyzer). ASCII char-
acters are generally transmitted most significant character first (but with the LSB of each 8-bit code
coming first). The top trace in the Logic Analyzer displays a clock reference waveform (CP) of 24

Transmitting device
Word Generator-XWG1

Receiving device
Logic Analyzer-XLA1

Cp

So

16

TR

0

3115

O

O

O

O

X

X

X

X

1

C

F

Q T

clock reference signal

M

serial output

P 3

Figure 11 A MultiSIM simulation of the serial transmission of the ASCII characters MP3.

Po

20

0

21
1

0

22
1

0

23
1

0

25
1

0

26
1

0

24
1

0

27
1

1

0

Cp
1

0
0   1   2   3   4   5   6   7

(Time, ms)0.250.0 0.50 0.75 1.0 1.25 1.50 1.75 2.0

So
1

0

1.2 ms occurs within

74 serial

this period.

74 parallel

LSB
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Review Questions

9. What advantage does parallel have over serial in the transmission of
digital signals?

10. Which system requires more electrical conductors and circuitry, serial
or parallel?

clock periods, each period lasting 1 ms. The third trace shows the serial output data (SO). Since
ASCII is a 7-bit code, and since digital systems work in 8-bit groupings, a leading zero is added to
the MSB of each ASCII code. Also, since the LSB of each character is output first (on the left), the
bits read from 8 ms back to 0 ms are 01001101, which is the ASCII code for the letter M. Look up
the next two 8-bit groupings in an ASCII chart and you will see that it is transmitting the letters MP3.

Exercise: (a) On graph paper, draw a 24-cycle CP reference waveform and then the 24-bit serial
waveform for the ASCII letters USB. (b) Repeat for the letters jpg.

PA R A L L E L  T R A N S M I S S I O N  S I M U L AT I O N

Figure 12 shows a MultiSIM simulation of the transmission of the three parallel ASCII characters
Y2K from a transmitting device (the Word Generator) to a receiving device (the Logic Analyzer).
The top trace in the Logic Analyzer displays a clock reference waveform (CP) of 3 clock periods,
each period lasting 1 ms. The next eight traces show the parallel output data (PO-P7). Since ASCII is
a 7-bit code and since digital systems work in 8-bit groupings, a leading zero is added to the MSB of
each ASCII code. During the first period (the first column), the parallel data lines contain the code
0101 1001, which is the ASCII code for the letter Y. Look up the next two 8-bit columns in an ASCII
chart and you will see that it is transmitting the letters Y2K.

Exercise: (a) On graph paper, draw a 3-period CP reference waveform and then the 3-bit parallel
waveforms for the ASCII letters ATM. (b) Repeat for the letters CDR.

Transmitting device
(Word Generator)

Receiving device
(Logic Analyzer)

Parallel Data Lines

Cp

LSB

16

TR

0

3115

O

O

O

O

X

X

X

X
1

C

F

Q T

8-bit parallel data

Y

clock reference signal

2 K

Figure 12 A MultiSIM simulation of the parallel transmission of the ASCII characters Y2K.
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*The fundamentals of basic electricity are provided in Appendix: Review of Basic Electricity Principles. Ohm’s law, simple se-
ries circuits, open circuits, and short circuits are explained to help you understand the electrical principles used in the remainder
of this chapter.

Open

Ohm-
meter

SW

(a)

Closed

Ohm-
meter

SW
AA B B

(b)

R = ∞ Ω R = 0 Ω

Figure 13 Manual switch: (a) switch open, (b) switch closed, R = 0 ohms.R = �  ohms;

+5 V

SW Vout = +5 V ≡ 1

Figure 13(c) 1-Level output.

+5 V

SW Vout = 0 V ≡ 0

Figure 13(d) 0-Level output.

11. How long will it take to transmit three 8-bit binary strings in serial if
the clock frequency is 5 MHz?

12. Repeat Question 11 for an 8-bit parallel system.

5 Switches in Electronic Circuits*

The transitions between 0 and 1 digital levels are caused by switching from one volt-
age level to another One way that switching is accomplished is
to make and break a connection between two electrical conductors by way of a manual
switch or an electromechanical relay. Another way to switch digital levels is by use of
semiconductor devices such as diodes and transistors.

Manual switches and relays have almost ideal ON and OFF resistances in that
when their contacts are closed (ON) the resistance (measured by an ohmmeter) is
0 ohms (�) and current is allowed to flow. When their contacts are open (OFF), the
resistance is infinite and no current can flow. Figures 13(a) and (b) show the single-
pole, single-throw manual switch. When used in a digital circuit, a single-pole,
double-throw manual switch can produce 0 and 1 states at some output terminal, 
as shown in Figures 13(c) and 13(d), by moving the switch (SW) to the up or down
position.

(usually 0 V to +5 V).
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6 A Relay as a Switch*

An electromechanical relay has contacts like a manual switch, but it is controlled by
external voltage instead of being operated manually. They are often used to deliver
HIGH/LOW digital levels to a high power load like a motor or a high-wattage 
lamp. Figure 14 shows the physical layout of an electromechanical relay. In Figure
14(a) the magnetic coil is energized by placing a voltage at terminals C1–C2; this 
will cause the lower contact to bend downward, opening the contact between X1 and 
X2. This relay is called normally closed (NC) because, at rest, the contacts are 
touching, or closed. In Figure 14(b), when the coil is energized, the upper contact will be

*Systems requiring complex relay switching schemes are generally implemented using programmable logic controllers (PLCs).
PLCs are microprocessor-based systems that are programmed to perform complex logic operations, usually to control electrical
processes in manufacturing and industrial facilities. They use a programming technique called ladder logic to monitor and control
several processes, eliminating the need for individually wired relays. PLC is a registered trademark of Allen-Bradley Corporation.

Magnetic
attraction

X1

X2

C1

C2

Contacts

Insulating material

(a)

Coil

Magnetic
attraction

X1

X2

C1

C2

Contacts

Insulating material

(b)

Coil

These contacts open when
the coil is energized.

These contacts close when
the coil is energized.

Figure 14 Physical representation of an electromechanical relay: (a) normally closed (NC)
relay; (b) normally open (NO) relay; (c) photograph of actual relays.

(c)
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attracted downward, making a connection between X1 and X2. This is called a normally
open (NO) relay because at rest, the contacts are not touching, they are open.

A relay provides total isolation between the triggering source applied to C1�C2
and the output X1�X2. This total isolation is important in many digital applications,
and it is a feature that certain semiconductor switches (e.g., transistors, diodes, and in-
tegrated circuits) cannot provide. Also, the contacts are normally rated for currents
much higher than the current rating of semiconductor switches.

There are several disadvantages, however, of using a relay in electronic circuits.
To energize the relay coil, the triggering device must supply several milliamperes,
whereas a semiconductor requires only a few microamperes to operate. A relay is also
much slower than a semiconductor. It will take several milliseconds to switch, com-
pared to microseconds (or nanoseconds) for a semiconductor switch.

In Figure 15 a relay is used as a shorting switch in an electric circuit. The 
source is used to energize the coil, and the source is supplying the external
electric circuit. When the switch (SW) in Figure 15(a) is closed, the relay coil will be-
come energized, causing the relay contacts to open, which will make Vout change from
0 V to 6 V with respect to ground. The voltage-divider equation is used to calculate
Vout as follows:

Vout =

12 V * 5 k�

5 k� + 5 k�
= 6 V

+12@V
+5@V

X1

Contacts
R1

X2

C 1

C 2

R1

5 kΩ

5 kΩ
Coil

SW
Vout 1

+12 V

+5 V

NC relay

(a)

X1

Contacts
R2

X2

C 1

C 2

R2

5 kΩ

5 kΩ
Coil

SW
Vout 2

+12 V

+5 V

NO relay

(b)

Applying +5 V to
the coil opens
the NC contacts.

Applying +5 V to
the coil closes
the NO contacts.

Figure 15 Symbolic representation of an electromechanical relay: (a) NC relay used in a cir-
cuit and (b) NO relay used in a circuit.

When the switch in Figure 15(b) is closed, the relay coil becomes an energized relay
coil, causing the relay contacts to close, changing Vout2 from 6 V to 0 V.

Now, let’s go a step further and replace the 5-V battery and switch with a clock
oscillator and use a timing diagram to analyze the results. In Figure 16, the relay is trig-
gered by the clock waveform, Cp. The diode D1 is placed across the relay coil to pro-
tect it from arcing each time the coil is deenergized. Timing diagrams are very useful
for comparing one waveform to another because the waveform changes states (1 or 0)
relative to time. The timing diagram in Figure 17 shows that when the clock goes
HIGH (1), the relay is energized, causing Vout3 to go LOW (0). When Cp goes LOW
(0), the relay is deenergized, causing Vout3 to go to (using the voltage divider
equation, Vout = [10 V * 5 k�]> [5 k� + 5 k�] = 5 V).

+5 V
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The following examples illustrate electronic switching and will help to prepare
you for more complex timing analysis. 

Contacts

R3

Cp

R3

5 kΩ

5 kΩ
Coil

Vout 3

+10 V

Clock
oscillator

D1

These contacts close
when CP goes HIGH.

Figure 16 Relay used in a digital circuit.

Vout 3

5 V

0 V
Cp

5 V

0 V

0   1   2   3   4

Coil energized, contacts closed.

Coil deenergized, contacts open.

Figure 17 Timing diagram for Figure 16.

E X A M P L E  7

Draw a timing diagram for the circuit shown in Figure 18, given the Cp
waveform in Figure 19.

Solution:

Figure 18

Vout 1

R1

R1

Cp

Clock
oscillator

1 kΩ

+5 V

Vout 1

Cp

+5 V

0 V

0   1   2   3
+5 V

0 V

Figure 19

Common
Misconception

The effects of opens 
and shorts are often
miscalculated. Occasionally,
it is instructive to assume
that an open is equivalent
to a resistor and
calculate the voltage across
it using the voltage divider
equation.

10@M�
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E X A M P L E  8

Draw a timing diagram for the circuit shown in Figure 20(a), given the Cp
waveform in Figure 20(b).

Explanation: When Cp is LOW, the R1 coil is deenergized, the 
R1 contacts are open, and

When Cp is HIGH, the R1 coil is energized,
the R1 contacts are closed, and .Vout1 = 0 V

0V drop = 5 V.Vout1 = 5 V -

Vdrop1k� = I * R = 0 V,I1 k� = 0 A,

Cp

Clock
oscillator

R2

Vout 2

6 kΩ

4 kΩ

10 V

R2

A

Figure 20(a)

Cp

+ 5 V

0 V
0   1   2   3

Vout 2

+4 V

0 V

Figure 20(b)

Explanation: When the R2 contacts are closed (R2 is energized), the volt-
age at point A is 0 V, making Vout2 equal to 0 V. When the R2 contacts are 

open (R2 is deenergized), the voltage at point A is 

and Vout2 = VA = 4 V.

VA =

10 V * 4 k�

6 k� + 4 k�
= 4 V

Helpful 
Hint

Remember that Vout is the
voltage measured from the
point in question to
ground.

Solution:

E L E C T R O - M E C H A N I C A L  R E L AY  S W I TC H I N G  S I M U L AT I O N

Figure 21 shows a MultiSIM simulation of a relay connected in a voltage-divider circuit. As the clock
energizes/de-energizes the relay coil, the relay contacts repeatedly short the 8 k resistor, causing the
Vout waveform (Channel_B) to change from 0 V (3.000 mV) to 8 V repeatedly as shown in the oscil-
loscope display.

MultiSIM Exercise: Use MultiSIM to open file fig02_21 from the text website. Run the simulation to
create the waveforms shown in Figure 21. Move the measurement cursers ‘1’ and ‘2’ to display the
voltage levels shown. Make the following changes, predict the new values for Vout and rerun the
simulation:

(a) Change the 4 k to 8 k and the 8 k to 4 k.

(b) Change the top resistor to 20 k and the bottom resistor to 4 k.
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Review Questions

13. Describe the operation of a relay coil and relay contacts.

14. How does a normally open relay differ from a normally closed relay?

7 A Diode as a Switch

Manual switches and electromechanical relays have limited application in today’s dig-
ital electronic circuits. Most digital systems are based on semiconductor technology,
which uses diodes and transistors. Most electronics students should also take a sepa-
rate course in electronic devices to cover the in-depth theory of the operation of diodes
and transistors. However, without getting into a lot of detail, let’s look at how a diode
and a transistor can operate as a simple ON/OFF switch.

A diode is a semiconductor device that allows current to flow in one direction but
not the other. Figure 22 shows a diode in both the conducting and nonconducting

Ext Trig
12v

Relay

Oscilloscope

K

A B

+

+

+

−

−

Vout

4 kΩ

8 kΩCp

+ −

Cp

Vout

Note: a HIGH Cp
produces a Low Vout

Cp = 5V–T0–0V
Vout = 0V–T0–8V

Figure 21 A MultiSIM simulation of an electro-mechanical relay switching circuit.
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states. The term forward biased refers to a diode whose anode voltage is more positive
than its cathode, thus allowing current flow in the direction of the arrow. (Bias is the
voltage necessary to cause a semiconductor device to conduct or cut off current flow.)
A reverse-biased diode will not allow current flow because its anode voltage is equal
to or more negative than its cathode. A diode is analogous to a check valve in a water
system (see Figure 23).

A diode is not a perfect short in the forward-biased condition, however. The
voltage-versus-current curve shown in Figure 24 shows the characteristics of a diode.
Notice in the figure that for the reverse-biased condition, as Vrev becomes more nega-
tive, there is still practically zero current flow.

In the forward-biased condition, as Vforw becomes more positive, no current
flows until a 0.7-V cut-in voltage is reached.‡* After that point, the voltage across the
diode (Vforw) will remain at approximately 0.7 V, and Iforw will flow, limited only by the
external resistance of the circuit and the 0.7-V internal voltage drop.

*0.7 V is the typical cut-in voltage of a silicon diode, whereas 0.3 V is typical for a germanium diode. We use the silicon diode
because it is most commonly used in digital circuitry.

+

−

Diode

(a)

5 V
I flow Light

bulb

Anode Cathode
−

+

Diode

A reversed-biased diode
acts like an open circuit

(b)

5 V

No I flow

Figure 22 Diode in a series circuit: (a) forward biased and (b) reverse biased.

Only possible
direction of
water flow

Figure 23 Water system check valve.

Iforw

Vrev

Irev

Vforw0.7 V

Figure 24 Diode voltage versus current characteristic curve.

45



DIGITAL ELECTRONIC SIGNALS AND SWITCHES

What this means is that current will flow only if the anode is more positive than
the cathode, and under those conditions, the diode acts like a short circuit except for
the 0.7 V across its terminals. This fact is better illustrated in Figure 25.

Diode

5 V

(a)

1 kΩ

Vout

5 V

(b)

1 kΩ

Vout

Ideal 0.7 V

I

= 5 – 0.7
= 4.3 V

I = 5 – 0.7  = 4.3 mA
1 kΩ

+ −

+ +

Figure 25 Forward-biased diode in an electric circuit: (a) original circuit and (b) equivalent
circuit showing the diode voltage drop and Vout = 5 - 0.7 = 4.3 V.

The following examples and the problems at the end of the chapter demonstrate
the effect that diodes have on electric circuits.

E X A M P L E  9

Determine if the diodes shown in Figure 26 are forward or reverse biased.

+5 V

1 kΩ

V1

D1

+5 V
1 kΩ

V4

D4

+5 V
1 kΩ

V3

D3

1 kΩ

V2

D2

+5 V

0 V

1 kΩ

V5

D6

+5 V
D5

1 kΩ

V6

D7

D8

0 V

+5 V

+5 V

Figure 26
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E X A M P L E  1 0

Determine V1, V2, V3, and V4 (with respect to ground) for the circuits in
Example 9.

Solution: V1: D1 is forward biased, dropping 0.7 V across its terminals.
Therefore, 

V2: D2 is reverse biased. No current will flow through the 1-k� resis-
tor, so 

V3: D3 is forward biased, dropping 0.7 V across its terminals, making

V4: D4 is reverse biased, acting like an open. Therefore, 
V5: Because D6 is reverse biased (open), it has no effect on the circuit.

D5 is forward biased, dropping 0.7 V, making 
V6: D8 is reverse biased (open), so it has no effect on the circuit. D7 is

forward biased, so it has on its anode side, which is �0.7 above the
0-V ground level, making V6 = +0.7 V.

+0.7 V

V5 = 4.3 V.

V4 = 5 V.
V3 = 0.7 V.

V2 = 0 V.

V1 = 4.3 V (5.0 - 0.7).

Solution: The diode is forward biased if the anode is more positive than
the cathode.

D1 is forward biased.

D2 is reverse biased.

D3 is forward biased.

D4 is reverse biased.

D5 is forward biased.

D6 is reverse biased.

D7 is forward biased.

D8 is reverse biased.

Review Questions

15. To forward bias a diode, the anode is made more ___________ 
(positive/negative) than the cathode.

16. A forward-biased diode has how many volts across its terminals?

8 A Transistor as a Switch

The bipolar transistor is a very commonly used switch in digital electronic circuits. It
is a three-terminal semiconductor component that allows an input signal at one of its
terminals to cause the other two terminals to become a short or an open circuit. The
transistor is most commonly made of silicon that has been altered into N-type material
and P-type material. N-type silicon is made by bombarding pure silicon with atoms
having structures with one more electron than silicon does. P-type silicon is made by
bombarding pure silicon with atoms having structures with one less electron than
silicon does.

Three distinct regions make up a bipolar transistor: emitter, base, and collector.
They can be a combination of N-P-N-type material or P-N-P-type material bonded to-
gether as a three-terminal device. Figure 27 shows the physical layout and symbol for
an NPN transistor. (In a PNP transistor, the emitter arrow points the other way.) 
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Collector

Emitter

Base

N

P

N

(a)

Collector

Emitter

(b)

Base

Figure 27 The NPN bipolar transistor: (a) physical layout; (b) symbol; (c) photograph.

In an electronic circuit, the input signal (1 or 0) is usually applied to the base of
the transistor, which causes the collector–emitter junction to become a short or an open
circuit. The rules of transistor switching are as follows:

1. In an NPN transistor, applying a positive voltage from base to emitter causes
the collector-to-emitter junction to short (this is called “turning the transistor
ON”). Applying a negative voltage or 0 V from base to emitter causes the col-
lector-to-emitter junction to open (this is called “turning the transistor OFF”).

2. In a PNPß* transistor, applying a negative voltage from base to emitter turns
it ON. Applying a positive voltage or 0 V from base to emitter turns it OFF.

Figure 28 shows how an NPN transistor functions as a switch in an electronic cir-
cuit. In the figure, resistors RB and RC are used to limit the base current and the collec-
tor current. In Figure 28(a), the transistor is turned ON because the base is more
positive than the emitter This causes the collector-to-emitter
junction to short, placing ground potential at Vout (Vout = 0 V).

(input signal = +2 V).

(c)

*PNP transistor circuits are analyzed in the same way as NPN circuits except that all voltage and current polarities are reversed.
NPN circuits are much more common in industry and will be used most often in this text.

+
2 V

(a)

Input
signal

RB

Vout = 0 V

RC

C

E

Transistor ON
(short C-to-E)

+5 V

0 V

(b)

RB

Vout = 5 V

RC

C

E

Transistor OFF
(open C-to-E)

+5 V

A positive voltage on the
base of an NPN causes
C-to-E to short.

Figure 28 NPN transistor switch: (a) transistor ON and (b) transistor OFF.

Common
Misconception

Students often think that
the input signal to the base
of a transistor must
somehow be part of the
output at the collector or
emitter, but it is not. Once
you determine if the C-to-E
is a short or an open, you
can ignore the base circuit
altogether.
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In Figure 28(b), the input signal is removed, making the base-to-emitter junction 0
V, turning the transistor OFF. With the transistor OFF, there is no current (0 amps)
through RC, so 

Digital input signals are usually brought in at the base of the transistor, and the
output is taken off the collector or emitter. The following examples use timing analy-
sis to compare the input and output waveforms.

Vout = 5 V - (0 A * RC) = 5 V.

E X A M P L E  1 1

Sketch the waveform at Vout in the circuit shown in Figure 29, given the in-
put signal Cp in Figure 30.

Solution:

Explanation: When the transistor is OFF and the equivalent
circuit is as shown in Figure 31(a).

Therefore,

VC = 5 V - (0 A * 2 k�) = 5 V

IC = 0 A

Cp = 0 V,

When the transistor is ON and the equivalent circuit is
as shown in Figure 31(b). The collector is shorted directly to ground; there-
fore, Vout = 0 V.

Cp = +5 V,

0 V

(a)

Cp

Vout

2 kΩ

C

E

+5 

= 5 V = 0 V

V

B

100 kΩ

+5 V

(b)

Cp

Vout

2 kΩ

C

E

+5 V

B

100 kΩ

Figure 31 Equivalent circuits: (a) transistor OFF and (b) transistor ON.

Figure 29 Figure 30

100 kΩ

Vout

+5 V

Cp

2 kΩ

C

E

B

Cp

Vout

+5 V

0 V

+5 V

0 V

OFF ON OFF ON OFF ON

The positive CP

causes C-to-E to
short (transistor ON).
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Figure 32 Figure 33

E X A M P L E  1 2

Sketch the waveform at Vout in the circuit shown in Figure 32, given the in-
put signal Cp in Figure 33.

Explanation: When the transistor is OFF and the equivalent
circuit is as shown in Figure 34(a). From the voltage-divider equation,

Next, when the transistor is ON and the equivalent circuit is as
shown in Figure 34(b). Now the collector is shorted to ground, making

Notice the difference in Vout as compared to Example 11,
which had no load resistor connected to Vout.
Vout = 0 V.

Cp = +5 V,

Vout =

5 V * 20 k�

20 k� + 1 k�
= 4.76 V

Cp = 0 V,

Cp

Vout

+5 V

0 V

+4.76 V

0 V

Solution:

100 kΩ

Vout

+5 V

Cp

1 kΩ

20 kΩ

RC

Figure 34 Equivalent circuits: (a) transistor OFF and (b) transistor ON.

+

0 V

(a)

Cp

1 kΩ

C

E

+5 V

B

100 kΩ

Vout

20 k kΩΩ
5 V

(b)

Cp

1 kΩ

C

E

+5 V

B

100 kΩ

Vout

20 

I

I
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Review Questions

17. Name the three pins on a transistor.

18. To turn ON an NPN transistor, a ___________ (positive/negative) volt-
age is applied to the base.

19. When a transistor is turned ON, its collector-to-emitter becomes a
___________ (short/open).

9 The TTL Integrated Circuit

Transistor–transistor logic (TTL) is one of the most widely used integrated-circuit
technologies. TTL integrated circuits use a combination of several transistors, diodes,
and resistors integrated together in a single package.

One basic function of a TTL integrated circuit is as a complementing switch, or
inverter. The inverter is used to take a digital level at its input and complement it to the
opposite state at its output (1 becomes 0, 0 becomes 1). Figure 35 shows how a
common-emitter-connected transistor switch can be used to perform the same function.

RB

+5 V

RC

Rload

Vout

Vin

Figure 35 Common-emitter transistor circuit operating as an inverter.

When Vin equals 1 the transistor is turned on (called saturation) and Vout
equals 0 (0 V). When Vin equals 0 (0 V), the transistor is turned off (called cutoff) and Vout
equals 1 (approximately 5 V), assuming that RL is much greater than RC (RL W RC).

(+5 V),

E X A M P L E  1 3

Let’s assume that and in Figure 35. Vout

will equal 4.55 V:

But if RL decreases to by adding more loads in parallel with it, Vout

will drop to 2.5 V:

5 V * 1 k�

1 k� + 1 k�
= 2.5 V

1 k�

5 V * 10 k�

1 k� + 10 k�
= 4.55 V

Vin = 0RL = 10 k�,RC = 1 k�,

We can see from Example 13 that the 1-level output of the inverter is very de-
pendent on the size of the load resistor (RL), which can typically vary by a factor of 10.
So right away you might say, “Let’s keep RC very small so that RL is always much
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greater than RC” . Well, that’s fine for the case when the transistor is cut off
but when the transistor is saturated the transistor collector cur-

rent will be excessive if RC is very small see Figure 36).(IC = 5 V>RC;
(Vout = 0),(Vout = 1),

(RL W RC)

)

5 V
IC =

( Vout =
5 V × RL 

IC = 0 A

RB

+5 V

RC

RL

Vout = 1

Vin = 0

IL

Transistor
cutoff

RB

+5 V

RC

RL

Vout = 0 (RL is shorted by
                 the transistor)

Vin = 1

Transistor
saturated

RC + RL

RC

Notice that Vout

is always the
inverse of Vin

in this circuit.

Figure 36 Common-emitter calculations.

Therefore, it seems that when the transistor is cut off we want RC to
be small to ensure that Vout is close to 5 V, but when the transistor is saturated, we want
RC to be large to avoid excessive collector current.

This idea of needing a variable RC resistance is accommodated by the TTL
integrated circuit (Figure 37). It uses another transistor (Q4) in place of RC to act like
a varying resistance. Q4 is cut off (acts like a high RC) when the output transistor (Q3)
is saturated, and then Q4 is saturated (acts like a low RC) when Q3 is cut off. (In other
words, when one transistor is ON, the other one is OFF.) This combination of Q3 and
Q4 is referred to as the totem-pole arrangement.

Transistor Q1 is the input transistor used to drive Q2, which is used to control Q3
and Q4. Diode D1 is used to protect Q1 from negative voltages that might inadvertently
be placed at the input. D2 is used to ensure that when Q3 is saturated, Q4 will be cut off
totally. VCC is the abbreviation used to signify the power supply to the integrated circuit.

TTL is a very popular family of integrated circuits. It is much more widely used
than RTL (resistor–transistor logic) or DTL (diode–transistor logic) circuits, which
were the forerunners of TTL. Note that Vout is not exactly 0 V and 5 V (it is more typ-
ically 0.2 V and 3.4 V).

A single TTL integrated-circuit (IC) package such as the 7404 has six complete
logic circuits fabricated into a single silicon chip, each logic circuit being the equiva-
lent of Figure 37. The 7404 has 14 metallic pins connected to the outside of a plastic
case containing the silicon chip. The 14 pins, arranged 7 on a side, are aligned on 14
holes of a printed-circuit board, where they are then soldered. The 7404 is called a 14-
pin DIP (dual-in-line package) and costs less than 24 cents. Figure 38 shows a sketch
of a 14-pin DIP IC. 

(Vout = 1),

Helpful 
Hint

If you understand the idea
that Vout varies depending
on the size of the connected
load, it will help you
understand why gate
outputs are not exactly 
0 V and 5 V.
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ICs are configured as DIPs to ensure that the mechanical stress exerted on the
pins when being inserted into a socket is equally distributed and that, although most of
these pins serve as conductors to either the gates’ inputs or outputs, some simply pro-
vide structural support and are simply anchored to the IC casing. These latter pins are
denoted by the letters NC, meaning that they are not physically or electrically
connected to an internal component.

The pin configuration of the 7404 is shown in Figure 39. The power supply con-
nections to the IC are made to pin 14 and pin 7 (ground), which supplies power
to all six logic circuits. In the case of the 7404, the logic circuits are called inverters. The
symbol for each inverter is a triangle with a circle at the output. The circle is used to in-
dicate the inversion function. Although never shown in the pin configuration top view
of digital ICs, each gate is electrically tied internally to both VCC and ground. The entire
circuit shown in Figure 37 is contained inside each of the six inverters.

(+5 V)

R2

R4

Vout

Vin

R3

R1

+VCC

Q4

D2

Q3

Q2Q1

D1

Figure 37 Schematic of a TTL inverter
circuit.

Pin 1

Pin 7

Pin 8

Figure 38 A 7404 TTL IC chip.

8

VCC

9

 10

11

 12

 13

14

7

6

5

4

3

2

1

GND

Figure 39 A 7404 hex inverter pin configuration.

Figure 40 shows three different ICs next to a pencil to give you an idea of their
size.

10 MultiSIM® Simulation of Switching Circuits

The MultiSIM® software is useful for designing and simulating digital logic before
building the actual circuits in the lab. Figure 41 shows four switching circuits that em-
ploy switches, transistors, inverter gates, and light-emitting diodes (LEDs). LEDs are
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Figure 40 Photograph of three commonly used ICs: the 74HC00, 74ACT244, and 74150.
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V1
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(c)
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LED3
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R3
330 Ω

5 V
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SPDT switch

5 V

25% 1

1 1

0

0
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R7
Key = A
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Potentiometer

LED4

R5
330 Ω
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U2B

7404N

7404N

U2C

7404N

5 V

LED5

R6
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0.000 V
+
− 5.000 V

+
−

3.749 V
+
−

Figure 41 MultiSIM® simulation of switching circuits.
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special diodes that illuminate when forward biased. They are often used in digital cir-
cuitry to indicate HIGH/LOW logic levels.

If you have already installed MultiSIM on your computer, you can load the cir-
cuit file named fig2_41 from the text website and run the simulation shown in Figure
41. In Figure 41(a), if the single-pole single-throw (SPST) switch is in the UP position,
no current can flow and the LED will not illuminate. With the switch thrown DOWN,
5 V are applied to the circuit, which forward biases the LED and makes it illuminate.
(You can simulate this action by repeatedly pressing the space bar on your computer to
make the switch go DOWN and UP. Notice that MultiSIM designates an ON LED by
making the LED arrows RED.)

Figure 41(b) uses a single-pole double-throw (SPDT) switch to input HIGH/
LOW levels into the circuit. With the switch in the UP position the current flows
through the lower circuit, illuminating LED2. With the switch DOWN, current is in-
stead allowed to flow down through LED1 via the 5-V supply and R1. Run the simula-
tion and watch the active LED as you throw the switch by pressing the space bar.

Figure 41(c) uses an NPN transistor to supply the current for the LED. In the pre-
vious circuits, all of the LED current was funneled through the switch. In this circuit the
switch is used to “turn ON” or “turn OFF” the transistor, which in turn provides
a path for the current to flow to ground through the collector to the emitter. (The tran-
sistor base current required to turn ON a transistor is typically 0.5 mA, whereas the
LED current is typically 10 mA.) This is important because the switches in Figure 41
(a) and (b) are replaced by digital logic ICs that may not be able to pass 10 mA as the
transistor can. Run the simulation and watch the active LED as you throw the switch
by pressing the space bar.

Figure 41(d) uses digital logic (inverters in this case) to turn ON the LEDs. One
advantage of using logic gates is that you do not need to provide 5-V and 0-V levels as
the input to the circuit as we did above. You need only to provide a voltage that looks
HIGH to the input of the gate to make the gate’s output go to 5 V. (It gets its 5-V
output voltage from the VCC supply connected to pin 14 of the 7404 IC shown in Figure
39.) In this illustration, the R7 potentiometer (variable resistor) is set to its top 25%
point, which drops the 5-V supply by 25%, equaling approximately 3.75 V. This is def-
initely a HIGH input (1) to the inverters, making them output a LOW (0), which pro-
vides a path for the current to turn ON LED4. The current actually flows through
LED4 into the output pin of U2A (pin 2 of the 7404 shown in Figure 39) and then down
into ground via the ground pin 7 shown in Figure 39. At the same time, inverter U2C
will output a HIGH (1) keeping LED5 OFF. The three voltmeters in the circuit show
the voltage levels at various stages.

Turn ON the MultiSIM® simulation and decrease the voltage into the gates by re-
peatedly pressing the A key on your keyboard. Notice that when the voltage drops below
half, the LEDs switch states. Increase the voltage back up by repeatedly pressing Shift-A.
Keep in mind that a HIGH into an inverter produces a LOW output and vice versa.

11 The CMOS Integrated Circuit

Another common IC technology used in digital logic is the CMOS (complementary
metal oxide semiconductor). CMOS uses a complementary pair of metal oxide semi-
conductor field-effect transistors (MOSFETs) instead of the bipolar transistors used in
TTL chips.

The major advantage of using CMOS is its low power consumption. Because of
that, it is commonly used in battery-powered devices such as handheld calculators and
digital thermometers. The disadvantage of using CMOS is that generally its switching
speed is slower than TTL and it is susceptible to burnout due to electrostatic charges if
not handled properly. Figure 42 shows the pin configuration for a 4049 CMOS
hex inverter.

DIGITAL ELECTRONIC SIGNALS AND SWITCHES
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VDD 161 NC

152

143

134

125

116

107

98

NC

VSS

Positive supply

Negative supply (or ground)

Figure 42 A 4049 CMOS hex inverter pin configuration.

(a) (b)

Figure 43 Typical surface-mount devices (SMDs) and their footprints: (a) small outline
(SO); (b) plastic leaded chip carrier (PLCC); (c) ball grid array (BGA); (d) photograph of
actual SMDs; (e) photograph of SMDs mounted on a printed-circuit board.

(c)

(d) (e)
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12 Surface-Mount Devices

The future of modern electronics depends on the ability to manufacture smaller, more
dense components and systems. Surface-mount devices (SMDs) have fulfilled this
need. They have reduced the size of DIP-style logic by as much as 70% and reduced their
weight by as much as 90%. To illustrate the size difference, a 7400 IC in the DIP style
measures 19.23 mm by 6.48 mm, whereas the equivalent 7400 SMD is only 8.75 mm by
6.20 mm.

SMDs have also significantly lowered the cost of manufacturing printed-circuit
boards. This reduction occurs because SMDs are soldered directly to a metalized foot-
print on the surface of a PC board, whereas holes must be drilled for each leg of a DIP.
Also, SMDs can use the faster pick-and-place machines instead of the autoinsertion
machines required for “through-hole” mounting of DIP ICs. (Removal of defective
SMDs from PC boards is more difficult, however. Special desoldering tools and tech-
niques are required because of the SMD’s small size.)

Complete system densities can increase using SMDs because they can be placed
closer together and can be mounted to both sides of a printed-circuit board. This also
tends to decrease the capacitive and inductive problems that occur in digital systems
operating at higher frequencies.

The most popular SMD package styles are the SO (small outline), the PLCC
(plastic leaded chip carrier), and the ball grid array (BGA) shown in Figure 43. The SO
is a dual-in-line plastic package with leads spaced 0.050 in. apart and bent down and out
in a gull-wing format. The PLCC is the most common SMD for ICs requiring a higher
pin count (those having more than 28 pins). The PLCC is square, with leads on all four
sides. They are bent down and under in a J-bend configuration. They, too, are soldered
directly to the metalized footprint on the surface of the circuit board. For even higher pin
counts, the BGA uses an array of round solder tabs on the underside of the package.
Another version of the grid array is the pin grid array (PGA), which has pins extending
from the bottom. It is soldered in holes in a circuit board or placed in a socket for easy
removal. Large-scale microprocessors like the Pentium are usually PGA ICs.

The SO package is available for the most popular lower-complexity TTL and CMOS
digital logic and analog IC devices. PLCCs, BGAs, and PGAs are available to implement
more complex logic, such as microprocessors, microcontrollers, and large memories.

Review Questions

20. In a common-emitter transistor circuit, when Vout is 0, RC should be
___________ (small/large), and when Vout is 1, RC should be ___________
(small/large).

21. Which transistor in the schematic of the TTL circuit in Figure 37
serves as a variable RC resistance?

Summary

In this chapter, we have learned that

1. The digital level for 1 is commonly represented by a voltage of 5 V in
digital systems. A voltage of 0 V is used for the 0 level.

2. An oscilloscope can be used to observe the rapidly changing voltage-
versus-time waveform in digital systems.

3. The frequency of a clock waveform is equal to the reciprocal of the
waveform’s period.
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4. The transmission of binary data in the serial format requires only a single
conductor with a ground reference. The parallel format requires several
conductors but is much faster than the serial format.

5. Electromechanical relays are capable of forming shorts and opens in
circuits requiring high current values but not high speed.

6. Diodes are used in digital circuitry whenever there is a requirement for
current to flow in one direction but not in the other.

7. The transistor is the basic building block of the modern digital IC. It can be
switched on or off by applying the appropriate voltage at its base connection.

8. TTL and CMOS ICs are formed by integrating thousands of transistors in
a single package. They are the most popular ICs used in digital circuitry today.

9. SMD-style ICs are gaining popularity over the through-hole style DIP
ICs because of their smaller size and reduced manufacturing costs.

Glossary

Bias: The voltage necessary to cause a semiconductor device to conduct or cut off
current flow. A device can be forward or reverse biased, depending on what
action is desired.

Chip: The term given to an integrated circuit. It comes from the fact that each inte-
grated circuit comes from a single chip of silicon crystal.

CMOS: Complementary metal oxide semiconductor. A family of integrated circuits
used to perform logic functions in digital circuits. The CMOS is noted for
its low power consumption but sometimes slow speed.

Cutoff: A term used in transistor switching signifying that the collector-to-emitter
junction is turned off or is not allowing current flow.

Diode: A semiconductor device used to allow current flow in one direction but not
the other. As an electronic switch, it acts like a short in the forward-biased
condition and like an open in the reverse-biased condition.

DIP: Dual-in-line packages. The most common pin layout for integrated circuits. The
pins are aligned in two straight lines, one on each side.

Energized Relay Coil: By applying a voltage to the relay coil, a magnetic force is in-
duced within it; this is used to attract the relay contacts away from their
resting positions.

Frequency: A measure of the number of cycles or pulses occurring each second. Its
unit is the hertz (Hz), and it is the reciprocal of the period.

Hex Inverter: An integrated circuit containing six inverters on a single DIP package.

Integrated Circuit: The fabrication of several semiconductor and electronic devices
(transistors, diodes, and resistors) onto a single piece of silicon crystal.
Integrated circuits are being used to perform the functions that once re-
quired several hundred discrete semiconductors.

Inverter: A logic circuit that changes its input into the opposite logic state at its out-
put (0 to 1 and 1 to 0).

Logic State: A 1 or 0 digital level.

Oscilloscope: An electronic measuring device used in design and troubleshooting to
display a waveform of voltage magnitude (y axis) versus time (x axis).
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Parallel: A digital signal representation that uses several lines or channels to transmit
binary information. The parallel lines allow for the transmission of an en-
tire multibit number with each clock pulse.

Period: The measurement of time from the beginning of one periodic cycle or clock
pulse to the beginning of the next. Its unit is the second(s), and it is the re-
ciprocal of frequency.

Relay: An electric device containing an electromagnetic coil and normally open or
normally closed contacts. It is useful because, by supplying a small trig-
gering current to its coil, the contacts will open or close, switching a higher
current on or off.

Saturation: A term used in transistor switching that signifies that the collector-to-
emitter junction is turned on, or conducting current heavily.

Serial: A digital signal representation that uses one line or channel to transmit binary
information. The binary logic states are transmitted 1 bit at a time, with the
LSB first.

Surface-Mounted Device: A newer style of integrated circuit, soldered directly to
the surface of a printed circuit board. They are much smaller and lighter
than the equivalent logic constructed in the DIP through-hole-style logic.

Timing Diagram: A diagram used to display the precise relationship between two or
more digital waveforms as they vary relative to time.

Totem Pole: The term used to describe the output stage of most TTL integrated circuits.
The totem-pole stage consists of one transistor in series with another, config-
ured in such a way that when one transistor is saturated, the other is cut off.

Transistor: A semiconductor device that can be used as an electronic switch in digi-
tal circuitry. By applying an appropriate voltage at the base, the collector-
to-emitter junction will act like an open or a shorted switch.

TTL: Transistor–transistor logic. The most common integrated circuit used in digital
electronics today. A large family of different TTL integrated circuits is used
to perform all the logic functions necessary in a complete digital system.

Problems

Sections 1 and 2
1. Determine the period of a clock waveform whose frequency is

(a) 2 MHz (b) 500 kHz (c) 4.27 MHz (d) 17 MHz

Determine the frequency of a clock waveform whose period is

(e) 2 ms (f) 100 ms (g) 0.75 ms (h) 1.5 ms

Sections 3 and 4
2. Sketch the serial and parallel representations (similar to Figure 10) of
the following numbers, and calculate how long they will take to transmit

(a) 9910 (b) 12410

3. (a) How long will it take to transmit the number 3310 in serial if the
clock frequency is 3.7 MHz? (Transmit the number as an 8-bit
binary number.)

(b) Is the serial line HIGH or LOW at 1.21 ms?

(clock frequency = 2 MHz).

DIGITAL ELECTRONIC SIGNALS AND SWITCHES
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4. (a) How long will it take to transmit the three ASCII-coded characters
$14 in 8-bit parallel if the clock frequency is 8 MHz?

(b) Repeat for $78.18 at 4.17 MHz.

Sections 5 and 6
5. Draw the timing diagram for Vout1, Vout2, and Vout3 in Figure P5.

DIGITAL ELECTRONIC SIGNALS AND SWITCHES

Cp

Clock
oscillator R1

Vout 1

10 kΩ

+8 V

R110 kΩ

Vout 2

10 kΩ

+8 V

10 kΩ

R1

Vout 3

10 kΩ

+8 V

10 kΩ

R1Cp

V out 1

Vout 2

Vout 3

Figure P5

C

Section 7
6. Determine if the diodes in Figure P6 are reverse or forward biased.

7. Determine V1, V2, V3, V4, V5, V6, and V7 in the circuits of Figure P6.

8. In Figure P6, if the cathode of any one of the diodes D8, D9, or D10 is
connected to 0 V instead of +5 V, what happens to V6?

9. In Figure P6, if the anode of any of the diodes D11, D12, or D13 is con-
nected to +5 V instead of 0 V, what happens to V7?

Section 8
10. Find Vout1 and Vout2 for the circuits of Figure P10.

11. Sketch the waveforms at Vout in the circuit of Figure 32 using

Section 9
12. To use a common-emitter transistor circuit as an inverter, the input sig-
nal is connected to the ___________ (base, collector, or emitter) and the
output signal is taken from the ___________ (base, collector, or emitter).

RC = 6 k�.

C

60



DIGITAL ELECTRONIC SIGNALS AND SWITCHES

13. Determine Vout for the common-emitter transistor inverter circuit of
Figure 35 using and 

14. If the load resistor (Rload) used in Problem 13 is changed to 470 �, de-
scribe what happens to Vout.

15. In the circuit of Figure 35 with Vout will be almost 5 V as
long as Rload is much greater than RC. Why not make RC very small to
ensure that the circuit will work for all values of Rload?

16. In Figure 35, if find the collector current when

17. Describe how the totem-pole output arrangement in a TTL circuit
overcomes the problems faced when using the older common-emitter tran-
sistor inverter circuit.

Vin = +5 V.
RC = 100 �,

Vin = 0 V,

= 1 M�.RloadVin = 0 V, RB = 1 M�, RC = 330 �,

100 kΩ
Vout 1

+5 V

10 kΩ

+5 V

(a)

100 kΩ

Vout 2

+5 V

10 kΩ

+5 V

(b)

Figure P10

V2

+5 V

5 kΩ

V4

10 kΩ

+5 V

10 kΩ10 kΩ

V1

D1 D2

(a)

V3

+5 V

10 kΩ

D3

(b)

D4

(c)

D5

V5

+5 V

10 kΩ

D6

(d)

D7
V6

+5 V

10 kΩ
D8

(e)

D9

D10

+5 V

+5 V

+5 V

V7

10 kΩ

D13

D12

D11

0 V

0 V

0 V

(f)

Figure P6

C

C

C

C

C
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18. Sketch the waveform at Cp and Vout for Figure P18.
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10 kΩ

5 V
0 V

Vout

+12 V

CP

8 kΩ

4 kΩ

Figure P18

S

S

S

S

S

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

19. Y1 in the 4096/4196 control card schematic sheet 1 is a crystal used to
generate a very specific frequency.

(a) What is its rated frequency?

(b) What time period does that create?

20. Repeat Problem 19 for the crystal X1 in the HC11D0 master board
schematic.

21. The circuit on the HC11D0 schematic is capable of parallel as well as
serial communication via connectors P3 and P2. Which is parallel, and
which is serial? (Hint: TX stands for transmit, RX stands for receive.)

22. Is diode D1 of the HC11D0 schematic forward or reverse biased?
(Hint:

23. The transistor Q1 in the HC11D0 schematic is turned ON and OFF by the
level of pin 2 on U3:A. At what level must pin 2 be to turn Q1 ON, and what
will happen to the level on the line labeled RESET B when that happens?

VCC = 5 V.)

MultiSIM® Exercises

E1. Load the circuit file for Section 3. Read the instructions in the
Description window.

(a) Determine the three ASCII characters that are transmitted in serial.

(b) Determine the number of serial bits transmitted.

E2. Load the circuit file for Section 4. Read the instructions in the
Description window.

(a) Determine the three ASCII characters that are transmitted in parallel.

(b) How many clock pulses did it take to complete the transmission?

E3. Load the circuit file for Section 6a. Read the instructions in the
Description window. The normally open relay contacts are used to create a
short across the lower 5-k� resistor when Cp goes HIGH.

62



DIGITAL ELECTRONIC SIGNALS AND SWITCHES

(a) Measure the voltage levels of Cp and Vout3 with the oscilloscope. Note
the relationship between the two waveforms.

(b) Change the upper resistor to 2 k� and the lower resistor to 8 k�. Predict
the new voltage levels, then measure them with the oscilloscope.

(c) If the normally closed relay contacts were used, what change would
you expect in the Vout3 waveform? Try it.

E4. Load the circuit file for Section 6b. Read the instructions in the
Description window. The normally closed relay contacts are used to create
an open between the two resistors when Cp goes HIGH.

(a) Measure the voltage levels of Cp and Vout4 with the oscilloscope. Note the
relationship between the two waveforms. (The top waveform is Vout4).

(b) Change the upper resistor to 2 k� and the lower resistor to 8 k�. Predict
the new voltage levels, then measure them with the oscilloscope.

(c) If the normally open relay contacts were used instead of the normally
closed contacts, what change would you expect in the Vout4 wave-
form? Try it.

E5. Load the circuit file for Section 7. Read the instructions in the
Description window. Before turning the power switch ON, predict the volt-
age V1, V2, V3, and V4.

(a) Turn the switch ON and check your answers.

(b) Reverse all six diodes, and predict what V1, V2, V3, and V4 will
become. Turn the power switch ON, and check your answers.

E6. Load the circuit file for Section 8. Read the instructions in the
Description window.

(a) Measure the voltage levels of Cp and Vout with the oscilloscope. Note
the relationship between the two waveforms.

(b) Change the upper resistor to 2 k� and the lower resistor to 8 k�. Predict
the new voltage levels, then measure them with the oscilloscope.

C

Answers to Review Questions

1. x axis, time; y axis, voltage

2. The clock frequency is the
reciprocal of the clock period.

3. 125 ns

4. 20 MHz

5. 5 MHz

6. 385 ps

7.
8. 58.5 kHz

9. It is faster.

10. Parallel

11. 4.80 ms

12. 600 ns

13. The relay coil is energized by
placing a voltage at its terminals.

Frequency = 357 ns

The contacts will either make a
connection (NO relay) or break
a connection (NC relay) when
the coil is energized.

14. An NO relay makes connec-
tion when energized. An NC
relay breaks connection when
energized.

15. Positive

16. Approximately 0.7 V

17. Emitter, base, collector

18. Positive

19. Short

20. Large, small

21. Q4
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Answers to Odd-Numbered Problems

1. (a) 0.5 ms (b) 2 ms (c) 0.234 ms
(d) 58.8 ns (e) 500 kHz (f) 10 kHz
(g) 1.33 kHz (h) 0.667 MHz

3. (a) 2.16 ms (b) LOW

5.

13.
15. Because, when the transistor is turned on

(saturated), the collector current will be
excessive 

17. The totem-pole output replaces RC with a
transistor that acts like a variable resistor.
The transistor prevents excessive collector
current when it is cut off and provides a
high-level output when turned on.

19. (a) 8.0 MHz (b) 125 ns

21. P3 parallel, P2 serial

23. A HIGH on pin 2 will turn Q1 on, making
RESET_B approximately zero.

E1. (a) Let (b) 24

E3. (a)
inverse of each other

(b)
(c) Cp and Vout3 are in phase.

E5. (a)
(b)

(Both diodes are reverse biased.)
V3 = 0 V, V4 = 5.0 VV2 = 4.3 V,

V1 = 0 V,V4 = 0.7 V
V1 = 4.3 V, V2 = 0 V, V3 = 4.3 V, 

Cp = 5 V>0 V, Vout3 = 0 V>8 V

Cp = 5 V>0 V, Vout3 = 0 V>5 V,

(IC = 5 V>RC)

Vout = 4.998 V

Cp

Vout1

Vout2

Vout3

4 V

0 V

4 V

0 V

8 V

4 V

7.

9. That diode will conduct raising V7 to 4.3 V
(“OR”).

11.

V4 = 0.7 V
V7 = 0 VV3 = 4.3 V
V6 = 5.0 VV2 = 4.3 V
V5 = 4.3 VV1 = 0 V

Cp

Vout
3.85 V

0 V

5 V

0 V
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Basic Logic Gates

OUTLINE

1 The AND Gate
2 The OR Gate
3 Timing Analysis
4 Enable and Disable Functions
5 Using IC Logic Gates
6 Introduction to Troubleshooting Techniques
7 The Inverter
8 The NAND Gate
9 The NOR Gate

10 Logic Gate Waveform Generation
11 Using IC Logic Gates
12 Summary of the Basic Logic Gates and IEEE/IEC Standard Logic Symbols

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Describe the operation and use of AND gates and OR gates.
• Construct truth tables for two-, three-, and four-input AND and OR gates.
• Draw timing diagrams for AND and OR gates.
• Describe the operation, using timing analysis, of an ENABLE function.
• Sketch the external connections to integrated-circuit chips to implement AND

and OR logic circuits.
• Explain how to use a logic pulser and a logic probe to troubleshoot digital

integrated circuits.
• Describe the operation and use of inverter, NAND, and NOR gates.
• Construct truth tables for two-, three-, and four-input NAND and NOR gates.
• Draw timing diagrams for inverter, NAND, and NOR gates.
• Use the outputs of a Johnson shift counter to generate specialized waveforms

utilizing various combinations of the five basic gates.
• Develop a comparison of the Boolean equations and truth tables for the five

basic gates.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 3 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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INTRODUCTION

Logic gates are the basic building blocks for forming digital electronic circuitry. A
logic gate has one output terminal and one or more input terminals. Its output will be
HIGH (1) or LOW (0) depending on the digital level(s) at the input terminal(s).
Through the use of logic gates, we can design digital systems that will evaluate digital
input levels and produce a specific output response based on that particular logic cir-
cuit design. The five basic logic gates are the AND, OR, NAND, NOR, and inverter.

1 The AND Gate

Let’s start by looking at the two-input AND gate whose schematic symbol is shown in
Figure 1. The operation of the AND gate is simple and is defined as follows: The out-
put, X, is HIGH if input A AND input B are both HIGH. In other words, if AND

then If either A or B or both are LOW, the output will be LOW.X = 1.B = 1,
A = 1

Input A

Input B
Output X

Figure 1 Two-input AND gate symbol.

The best way to illustrate how the output level of a gate responds to all the pos-
sible input-level combinations is with a truth table. Table 1 is a truth table for a two-
input AND gate. On the left side of the truth table, all possible input-level
combinations are listed, and on the right side, the resultant output is listed.

TABLE 1 Truth Table for a Two-Input AND
Gate

Inputs Output
A B

0 0 0
0 1 0
1 0 0
1 1 1

X � AB

From the truth table, we can see that the output at X is HIGH only when both A
AND B are HIGH. If this AND gate is a TTL integrated circuit, HIGH means 
and LOW means 0 V (i.e., 1 is defined as and 0 is defined as 0 V).

One example of how an AND gate might be used is in a bank burglar alarm system.
The output of the AND gate will go HIGH to turn on the alarm if the alarm activation key
is in the ON position AND the front door is opened. This setup is illustrated in Figure 2(a).
Figure 2(b) shows the result for every combination of Key (K) and Door (D).

+5 V
+5 V

Burglar
alarm

Alarm
activation
key – ON

Bank
door –

OPENED

D

K

A

(a)

A = 0
K = 0

D = 0

A = 0
K = 0

D = 1

A = 0
K = 1

D = 0

A = 1
K = 1

D = 1

(b)

Figure 2 AND gate: (a) Used to activate a burglar alarm; (b) all combinations of key ON (K)
and door OPEN (D).

BASIC LOGIC GATES
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Figure 3 Electrical analogy for an AND gate: (a) using manual switches; 
(b) using transistor switches.

is shown in Table 2. To determine the total number of different combinations to be
listed in the truth table, use the equation

(1)

Therefore, in the case of a four-input AND gate, the number of possible input combi-
nations is 

When building the truth table, be sure to list all 16 different combinations of in-
put levels. One easy way to ensure that you do not inadvertently overlook a combina-
tion of these variables or duplicate a combination is to list the inputs in the order of a
binary counter (0000, 0001, 0010, . . . , 1111). Also notice in Table 2 that the A column
lists eight 0s, then eight 1s; the B column lists four 0s, four 1s, four 0s, four 1s; the C
column lists two 0s, two 1s, two 0s, two 1s, and so on; and the D column lists one 0,
one 1, one 0, one 1, and so on.

24
= 16.

number of combinations = 2N, where N = number of inputs

Figure 4 Multiple-input AND gate symbols: (a) 4-input; (b) 3-input formed with two 
2-input gates; (c) 8-input.

BASIC LOGIC GATES

Another way to illustrate the operation of an AND gate is by use of a series elec-
tric circuit. In Figure 3, using manual and transistor switches, the output at X is HIGH
if both switches A AND B are HIGH (1).

Figure 3 also shows what is known as the Boolean equation for the AND func-
tion, and B, which can be thought of as X equals 1 if A AND B both equal 1.X = A

+5 V

01
A

(a)

01
B

X = A AND B

R

B

A

+5 V

X = A AND B

(b)

X = ABC

AB

C

A

B

(b)(a)

A
B
C
D

X = ABCD

(c)

A

B

C

H

X = ABCDEFGH
D

E

F

G

The Boolean equation for the AND function can more simply be written as 
or just (which is read as “X equals A AND B”). Boolean equations will be
used in this text to depict algebraically the operation of a logic gate or a combination
of logic gates.

AND gates can have more than two inputs. Figure 4 shows a four-input, a three-
input, and an eight-input AND gate. The truth table for an AND gate with four inputs

X = AB
X = A � B
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Figure 5 Two-input OR gate: (a) symbol; (b) all input combinations.

2 The OR Gate

The OR gate also has two or more inputs and a single output. The symbol for a two-
input OR gate is shown in Figure 5. The operation of the two-input OR gate is defined
as follows: The output at X will be HIGH whenever input A OR input B is HIGH or both
are HIGH. As a Boolean equation, this can be written (which is read as “X
equals A OR B”). Notice the use of the symbol to represent the OR function.+

X = A + B

BASIC LOGIC GATES

Common
Misconception

When you build a truth
table, you might mistakenly
omit certain input
combinations if you don’t
set the variables up as a
binary counter.

TABLE 2 Truth Table for a Four-Input AND Gate

A B C D X

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

The output at X is
HIGH only if all
inputs are HIGH.

➤

TABLE 3 Truth Table for a Two-Input 
OR Gate

Inputs Output
A B

0 0 0
0 1 1
1 0 1
1 1 1

X � A � B

The truth table for a two-input OR gate is shown in Table 3.

Input A

Input B
Output X

(a)

X = 0
A = 0

B = 0

X = 1
A = 0

B = 1

X = 1
A = 1

B = 0

X = 1
A = 1

B = 1

(b)
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From the truth table you can see that X is 1 whenever A OR B is 1 or if both A
and B are 1. Using manual or transistor switches in an electric circuit, as shown in
Figure 6, we can observe the electrical analogy to an OR gate. From the figure, we see
that the output at X will be 1 if A or B, or both, are HIGH (1).

BASIC LOGIC GATES

OR gates can also have more than two inputs. Figure 7 shows three-input OR
gates and Figure 8 shows an eight-input OR gate. The truth table for the three-
input OR gate will have eight entries , and the eight-input OR gate will have
256 entries (28

= 256).
(23

= 8)

Let’s build a truth table for the three-input OR gate.
The truth table of Table 4 is built by first using Equation 1 to determine that there

will be eight entries, then listing the eight combinations of inputs in the order of a bi-
nary counter (000 to 111), and then filling in the output column (X) by realizing that X
will always be HIGH as long as at least one of the inputs is HIGH. When you look at
the completed truth table, you can see that the only time the output is LOW is when all
the inputs are LOW.

(a)

01

X = A OR B

+5 V

01
A B

B

A

X = A OR B

(b)

+5 V

Figure 6 Electrical analogy for an OR gate: (a) using manual switches; (b) using transistor
switches.

Figure 7 Three-input OR gate: (a) symbol; (b) three inputs formed with two 2-input gates.

Figure 8 Eight-input OR gate symbol.

(b)

X = A + B + C

A + B

C

A

B

A

X = A + B + C + D + E + F + G + H

B
C
D
E
F
G
H

A
B
C

X = A + B + C

(a)
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U

X
0

1

0

0
V

Y
1

1

1

0 0
1
0

0
1
0

W

Z

Figure 9 Basic AND and OR gate operation.

Solution:

 Z = 0 (0 AND 1 AND 0 = 0)

 Y = 1 (1 AND 1 = 1)

 X = 0  (1 AND 0 = 0)

 W = 1  (0 OR 1 OR 0 = 1)

 V = 1  (0 OR 1 = 1)

 U = 0  (0 OR 0 = 0)

The output at X is
HIGH if any
input is HIGH.

➤

TABLE 4 Truth Table for a Three-Input 
OR Gate

A B C X

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

E X A M P L E  1

Determine the output at U, V, W, X, Y, and Z in Figure 9.

Review Questions

1. All inputs to an AND gate must be HIGH for it to output a HIGH. True
or false?

2. What is the purpose of a truth table?

3. What is the purpose of a Boolean equation?

4. What input conditions must be satisfied for the output of an OR gate to
be LOW?

3 Timing Analysis

Another useful means of analyzing the output response of a gate to varying input-
level changes is by means of a timing diagram. A timing diagram is used to illustrate
graphically how the output levels change in response to input-level changes.
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The timing diagram in Figure 10 shows the two input waveforms (A and B) that
are applied to a two-input AND gate and the X output that results from the AND oper-
ation. (For TTL and most CMOS logic gates, and As you can see,
timing analysis is very useful for visually illustrating the level at the output for varying
input-level changes.

Timing waveforms can be observed on an oscilloscope or a logic analyzer. A
dual-trace oscilloscope can display two voltage-versus-time waveforms on the same
x axis. That is ideal for comparing the relationship of one waveform relative to another.
The other timing analysis tool is the logic analyzer. Among other things, it can display
up to 16 voltage-versus-time waveforms on the same x axis (see Figure 10[b]). It can
also display the levels of multiple digital signals in a state table, which lists the binary
levels of all the waveforms, at predefined intervals, in binary, hexadecimal, or octal.
Timing analysis of 8 or 16 channels concurrently is very important when analyzing ad-
vanced digital and microprocessor systems in which the interrelationship of several
digital signals is critical for proper circuit operation. 

0 = 0 V.)1 = +5 V

BASIC LOGIC GATES

(b)

Figure 10 Timing analysis of an AND gate: (a) waveform sketch; (b) actual logic analyzer
display.

A

B
X

1
0

A

1
0

B

1
0

X

The output goes HIGH
when both inputs

are HIGH

(a)

A N D - GAT E  S I M U L AT I O N

The MultiSIM® analysis of the same two-input AND gate circuit is shown in Figure 11. The Four-
Channel Oscilloscope is chosen because we can observe both the A and B inputs and the X output
simultaneously. Different colors are chosen for the three signals so that they can be distinguished on
the oscilloscope display. Also, the Y position of the A input and X output are adjusted so that the
waveforms don’t overlay on each other. The Word Generator is set up as an up counter to create the
combination of waveforms required for A and B. (Choose Set..., then UP Counter, Display Hex.)

MultiSIM exercise: Use MultiSIM to open the file fig3_11 from the text website. Run the simula-
tion to create the waveforms shown in Figure 11. Make the following changes to the gate (U1) and
rerun the simulation:

(a) Change U1 to a two-input OR gate (OR2).

(b) Change U1 to a three-input AND gate (AND3) and add the third input waveform.

(c) Change U1 to a three-input OR gate (OR3) and add the third input waveform.

~
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4 Channel
oscilloscope

XSC1

U1

AND2

A
B

X

G

T

DCBA
Word
generator

0

A

B

C

D

E

F

G

A

B

C

D
A

B

X
E

F

G

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

31

16

TR
15

0

XWG1

O

O

O

X

X

X

Figure 11 Using the MultiSIM® Four-Channel Oscilloscope to monitor the in-
put and output waveforms of a two-input AND gate.

E X A M P L E  2

Sketch the output waveform at X and Y for the two-input OR gate and AND
gate shown in Figure 12(a), with the given A and B input waveforms in
Figure 12(b).

Solution: A

B

X

Y

Answers

(b)

Figure 12(b) Solution to Example 2.

(a)

A

B
X

A
Y

B

Figure 12(a)
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Figure 13

Figure 14 Solution to Example 3.

E X A M P L E  3

Sketch the output waveform at X for the three-input AND gate and OR gate
shown in Figure 13, with the given A, B, and C input waveforms in Figure
14.

Solution:

E X A M P L E  4

The input waveform at A and the output waveform at X are given for the
AND gate in Figure 15(a). Sketch the input waveform that is required at B
to produce the output at X in Figure 15(b). Repeat for the OR gate.

Figure 15(a)

Figure 15(b) Solution to Example 4.

Solution:

4 Enable and Disable Functions

AND and OR gates can be used to enable or disable a waveform from being transmit-
ted from one point to another. For example, let’s say that you wanted a 1-MHz clock
oscillator to transmit only four pulses to some receiving device. You would want to enable
four clock pulses to be transmitted and then disable the transmission from then on.

A
B X
C

A
B Y
C

A
X

B

C

D
Y

A

B

C

Answers

X

Y

A

X

B

C

Y

D

= Don’t care (B can be HIGH or LOW
                       to get the same output at X.)
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Receiving
device

Clock
oscillator

Enable
signal

X

1 2 3 4 5 6 7 8

1μs

Clock
oscillator

Enable
signal

1 2 3 4

4μs

Enabled Disabled

X

This LOW disables the
clock from reaching the
X-output.

Figure 16 Using an AND gate to enable/disable a clock oscillator.

An OR gate can also be used to disable a function. The difference is that the en-
able signal input is made HIGH to disable, and that the output of the OR gate goes
HIGH when it is disabled, as shown in Figure 17.

The clock frequency of 1 MHz converts to 1 ms (1/1 MHz) for each clock period.
Therefore, to transmit four clock pulses, we have to provide an enable signal for 4 ms.
Figure 16 shows the circuit and waveforms to enable four clock pulses. For the HIGH
clock pulses to get through the AND gate to point X, the second input to the AND gate
(enable signal input) must be HIGH; otherwise, the output of the AND gate will be
LOW. Therefore, when the enable signal is HIGH for 4 ms, four clock pulses pass
through the AND gate. When the enable signal goes LOW, the AND gate disables any
further clock pulses from reaching the receiving device.

Receiving
device

Clock
oscillator

Enable
signal

X

1 2 3 4 5 6 7 8
Clock

oscillator

Enable
signal

3 4

Enabled Disabled

X

Disabled

This HIGH forces
the X-output HIGH,
disabling the clock.

Figure 17 Using an OR gate to enable/disable a clock oscillator.
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Word Generator
0-scope

AND2

OR2

Clock 0sc (Cp)

Enable Signal (En) G

T
DCBA

X

Y

T
R

16
0

31
15

O O OX X X

Figure 18 A MultiSIM simulation of enable/disable functions.

Review Questions

5. Describe the purpose of a timing diagram.

6. Under what circumstances would diagonal “don’t care” hash marks be
used in a timing diagram?

7. A ___________ (HIGH/LOW) level is required at the input to an AND
gate to enable the signal at the other input to pass to the output.

E N A B L E  A N D  D I SA B L E  S I M U L AT I O N

Figure 18 shows a MultiSIM simulation of enabling and disabling func-
tions. The word generator is used to create the enable signal (En) and the
clock oscillator (Cp). Notice that whenever En is HIGH, the AND gate
passes Cp to the output at X. When En is LOW, the OR gate passes Cp to
the output at Y, otherwise Y is HIGH.

76



5 Using IC Logic Gates

AND and OR gates are available as ICs. The IC pin layout, logic gate type, and tech-
nical specifications are all contained in the logic data manual supplied by the manu-
facturer of the IC. For example, referring to a TTL or a CMOS logic data manual, we
can see that there are several AND and OR gate ICs. To list just a few:

1. The 7408 (74LS08, 74HC08) is a quad two-input AND gate.

2. The 7411 (74LS11, 74HC11) is a triple three-input AND gate.

3. The 7421 (74LS21, 74HC21) is a dual four-input AND gate.

4. The 7432 (74LS32, 74HC32) is a quad two-input OR gate.

In each case, the letters LS stand for the Low-Power Schottky TTL family and the let-
ters HC stand for the High-Speed CMOS family. For example, the basic part number
7408 refers to an AND gate IC with four (quad) internal AND gates each having two
inputs. The most common TTL version is the 74LS08, and the most common CMOS

Let’s look in more detail at one of these ICs, the 7408 (see Figure 19). The 7408
is a 14-pin DIP IC. The power supply connections are made to pins 7 and 14. This sup-
plies the operating voltage for all four AND gates on the IC. Pin 1 is identified by a
small indented circle next to it or by a notch cut out between pin 1 and 14 (see Figure
19). Let’s make the external connections to the IC to form a clock oscillator enable cir-
cuit similar to Figure 17.

In Figure 20, the first AND gate in the IC was used and the other three are
ignored. The IC is powered by connecting pin 14 to the positive power supply and pin 7
to ground. The other connections are made by following the original design from
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1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

Figure 19 The 7408 quad two-input AND gate IC pin configuration.

Helpful 
Hint

For example, the basic part
number 7408 would
become SN74LS08N if it
were manufactured by
Texas Instruments (SN) as
a Low-Power Schottky
family (LS) in a plastic
DIP (N) package.

Common
Misconception

Students often think that a
gate output receives its
HIGH or LOW voltage
level from its input pin.
You need to be reminded
that each gate has its own
totem-pole output
arrangement and receives
its voltage from VCC or
ground.

version is the 74HC08. They both have exactly the same pin layout and function. In
this text, the basic part number is usually given, and it depends on the particular appli-
cation as to which family is used to implement the design based on IC availability and
speed and power considerations.

Besides the family designation (LS, HC, etc.), most ICs will have a prefix that
specifies the manufacturer. Two examples of this are SN for Texas Instruments—
SN7400 and DM for Fairchild—DM7400. Also, a suffix is added to the end of the part
number to specify the package style. Two examples of this are N for Plastic Dual-In-Line
Package (P-DIP)—SN7400N and M for Small-Outline Integrated Circuit (SOIC)—
DM7400M.
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Figure 17. The clock oscillator signal passes on to the receiving device when the
switch is in the enable (1) position, and it stops when in the disable (0) position.

The pin configurations for some other logic gates are shown in Figure 21.

BASIC LOGIC GATES

6 Introduction to Troubleshooting Techniques

Like any other electronic device, ICs and digital electronic circuits can go bad.
Troubleshooting is the term given to the procedure used to find the fault, or trouble,
in the circuits.

To be a good troubleshooter, you must first understand the theory and operation
of the circuit, devices, and ICs that are suspected to be bad. If you understand how a
particular IC is supposed to operate, it is a simple task to put the IC through a test or to
exercise its functions to see if it operates as you expect.

7408

DC power
supply

Clock
oscillator

Receiving
device

X

GND

14

13

12

11

10

9

8

1

2

3

4

5

6

7

+

–

Enable

Disable

1

0

Switch

Figure 20 Using the 7408 TTL IC in the clock enable circuit of Figure 17.
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(a)

1

2

3

4

5

6

7

VCC

GND
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8

(b)

1
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3

4
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7

VCC

GND

14

13

12

11

10

9

8

(c)

Figure 21 Pin configurations for other popular TTL and CMOS AND and OR gate ICs: (a)
7411 (74HC11); (b) 7421 (74HC21); (c) 7432 (74HC32).
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There are two simple tools that we will start with to test the ICs and digital cir-
cuits. They are the logic pulser and logic probe (see Figure 22). The logic probe has a
metal tip that is placed on the IC pin, printed-circuit board trace, or device lead that you
want to test. It also has an indicator lamp that glows, telling you the digital level at that
point. If the level is HIGH (1), the lamp glows brightly. If the level is LOW (0), the
lamp goes out. If the level is floating (open circuit, neither HIGH nor LOW), the lamp
is dimly lit. Table 5 summarizes the states of the logic probe.

BASIC LOGIC GATES

Figure 22 Logic pulser and logic probe.

TABLE 5 Logic Probe States

Logic Level Indicator Lamp

HIGH (1) On
LOW (0) Off
Float Dim

The logic pulser is used to provide digital pulses to a circuit being tested. By
applying a pulse to a circuit and simultaneously observing a logic probe, you can tell
if the pulse signal is getting through the IC or device as you would expect. As you be-
come more and more experienced at troubleshooting, you will find that most IC and
device faults are due to an open or short at the input or output terminals.

Figure 23 shows four common problems that you will find on printed-circuit
boards that will cause opens or shorts. Figure 23(a) shows an IC that was inserted
into its socket carelessly, causing pin 14 to miss its hole and act like an open. In
Figure 23(b), the printed-circuit board is obviously cracked, which causes an open
circuit across each of the copper traces that used to cross over the crack. Poor sol-
dering results in the solder bridge evident in Figure 23(c). In the center of this photo,
you can see where too much solder was used, causing an electrical bridge between
two adjacent IC pins and making them a short. Experienced troubleshooters will also
visually inspect printed-circuit boards for components that may appear to 
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Figure 23 Four common printed-circuit faults: (a) misalignment of pin 14; (b) cracked
board; (c) solder bridge; (d) burned transistor.

(a) (b)

(c) (d)
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be darkened from excessive heat. Notice the four transistors in the middle of Figure
23(d). The one on the lower left looks charred and is probably burned out, thus act-
ing like an open.

The following troubleshooting examples will illustrate some basic troubleshoot-
ing techniques using the logic probe and pulser. 

BASIC LOGIC GATES

E X A M P L E  5

The IC AND gate in Figure 24 is suspected of having a fault and you want
to test it. What procedure should you follow?

Solution: First you apply power to VCC (pin 14) and GND (pin 7). Next
you want to check each AND gate with the pulser/probe. Because it takes a
HIGH (1) on both inputs to an AND gate to make the output go HIGH, if
we put a HIGH on one input and pulse the other, we would expect
to get pulses at the output of the gate. Figure 24 shows the connections to
test one of the gates of a quad AND IC. When the pulser is put on pin 12,
the light in the end of the probe flashes at the same speed as the pulser, in-
dicating that the AND gate is passing the pulses through the gate (similar
in operation to the clock enable circuit of Figure 16).

The next check is to reverse the connections to pins 12 and 13 and
check the probe. If the probe still flashes, that gate is okay. Proceed to the
other three gates and follow the same procedure. When one of the gate out-
puts does not flash, you have found the fault.

(+5 V)

Figure 24 Connections for troubleshooting one gate of a quad AND IC.

1 14 Power
supply

GND

+

–

5 V

2 13

3

4

5 10

6

7

1

Pulser

7408

Probe
(flashing light)

Keep unused input HIGH
to enable the AND gat e

VCC

(pulses)

9

8

As mentioned earlier, the key to troubleshooting an IC is understanding how the
IC works.

Helpful 
Hint

You should be aware that
these troubleshooting
examples assume that the
IC is removed from the
circuit board. In-circuit
testing will often give false
readings because of the
external circuitry
connected to the IC. In
that case, the circuit
schematic must be studied
to determine how the other
ICs may be affecting the
readings.
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E X A M P L E  6

Sketch the connections for troubleshooting the first gate of a 7432 quad OR
gate.

1 14

Power
supply

GND

+

–

5 V

5

13

6

12

4

10

9

7 8

0

Pulser

7432

Probe

VCC

11

Keep unused
input LOW to
enable OR gate.

Figure 25 Connections for troubleshooting one OR gate of a 7432 IC.

Solution: The connections are shown in Figure 25. The probe should be
flashing if the gate is good. Notice that the second input to the OR gate be-
ing checked is connected to a LOW (0) instead of a HIGH. The reason for
this is that the output would always be HIGH if one input were connected
HIGH. Because one input is connected LOW instead, the output will flash
together with the pulses from the logic pulser if the gate is good.
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1

0
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0

0

0

1

1

1

11

2

3

4

5
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2

3

4

5

6

7

1

4

2 3

VCC VCC

GND
GND

(a)

0

1

1

1

1

1

1

1

1

0

1

0

0
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13

12

11

10

9

8

14

13

12

11

10

9

8

(b)

1

2

3

E X A M P L E  7

Assume that you used a logic probe to record the levels shown in Figures
26 (a), (b), (c), and (d). Determine which gate is faulty in each IC.

Figure 26 Troubleshooting integrated circuit AND and OR gates.

Common
Misconception

You may mistakenly think
that if you want a pin to be
LOW (like pin 1), you can
just leave it unconnected
and it will assume a LOW
level. That is not true. All
inputs must be tied HIGH
or LOW to have
predictable results.
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Input
A

Output
X

Input
A

0
1

1
0

Output
X

Figure 27 Inverter symbol and truth table.

Answers: Figure 26(a) Gate 2
Figure 26(b) Gate 3
Figure 26(c) Gate 1
Figure 26(d) Gate 4

Review Questions

8. Which pins on the 7408 AND IC are used for power supply connec-
tions, and what voltage levels are placed on those pins?

9. How is a logic probe used to troubleshoot digital ICs?

10. How is a logic pulser used to troubleshoot digital ICs?

7 The Inverter

The inverter is used to complement, or invert, a digital signal. It has a single input and
a single output. If a HIGH level (1) comes in, it produces a LOW-level (0) output. If a
LOW level (0) comes in, it produces a HIGH-level (1) output. The symbol and truth
table for the inverter gate are shown in Figure 27. (Note: The circle is the part of the
symbol that indicates inversion. The inversion circle will be used on other gates in up-
coming sections.)
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0

0

0

0
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Figure 26 (Continued)
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A X = A

Input A

Output X

(a) (b)

Figure 28 Timing analysis of an inverter gate: (a) waveform sketch and 
(b) oscilloscope display.

Input A
Output X = AB

Input B

(a)

Figure 29 NAND gate: (a) symbol; (b) AND–INVERT equivalent of a NAND gate with
A = 1, B = 1.

The operation of the inverter is very simple and can be illustrated further by
studying the timing diagram of Figure 28. The timing diagram graphically shows us
the operation of the inverter. When the input is HIGH, the output is LOW, and when
the input is LOW, the output is HIGH. The output waveform is, therefore, the exact
complement of the input.

The Boolean equation for an inverter is written The bar
over the A is an inversion bar, used to signify the complement. The inverter is some-
times referred to as the NOT gate.

8 The NAND Gate

The operation of the NAND gate is the same as the AND gate except that its output is
inverted. You can think of a NAND gate as an AND gate with an inverter at its output.
The symbol for a NAND gate is made from an AND gate with the inversion circle
(bubble) at its output, as shown in Figure 29(a).

X = A(X = NOT A).

In digital circuit diagrams, you will find the small circle used whenever comple-
mentary action (inversion) is to be indicated. The circle at the output acts just like an
inverter, so a NAND gate can be drawn symbolically as an AND gate with an inverter
connected to its output, as shown in Figure 29(b).

The TTL form of a NAND is the 7400 IC (or the 74LS00 or 74HC00, etc.) Figure
30 shows the output results for all possible input combinations applied to a 7400 quad
NAND.

A
X = AB

B

01
1

1

(b)

84



BASIC LOGIC GATES

Figure 31 Symbols for three- and eight-input NAND gates.

The Boolean equation for the NAND gate is written . The inversion bar
is drawn over (A and B), meaning that the output of the NAND is the complement of
(A and B) [NOT (A and B)]. Because we are inverting the output, the truth table out-
puts in Table 6 will be the complement of the AND gate truth table outputs. The easy
way to construct the truth table is to think of how an AND gate would respond to the
inputs and then invert your answer. From Table 6, we can see that the output is LOW
when both inputs A and B are HIGH ( just the opposite of an AND gate). Also, the out-
put is HIGH whenever either input is LOW.

X = AB

1 14

GND

2 13

3

4

5 10

11 Z 

Y

W

X

12

6

7

0

0

0

1

0
7400

W = 1
X  = 1
Y  = 1
Z  = 0

VCC

9

8

1

1

1

1

0

Figure 30 Inputs and outputs of a 7400 quad NAND IC.

TABLE 6 Two-Input NAND Gate
Truth Table

A B

0 0 1
0 1 1
1 0 1
1 1 0

X � AB
Output is always
HIGH unless both
inputs are HIGH. 

➤

NAND gates can also have more than two inputs. Figure 31 shows three- and
eight-input NAND gate symbols. The truth table for a three-input NAND gate (see
Table 7) shows that the output is always HIGH unless all inputs go HIGH.

A
X = ABC

C
B X = ABCDEFGH

H

A
B
C
D
E
F
G

Helpful 
Hint

Some students find it easier
to analyze a NAND gate by
solving it as an AND gate
and then inverting the
result.
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TABLE 7 Truth Table for a Three-Input
NAND Gate

A B C X

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

E X A M P L E  8

Sketch the output waveform at X for the NAND gate shown in Figure 32,
with the given input waveforms in Figure 33.

Figure 32

X
A

B

A

X

The output goes
LOW when both
inputs are HIGH

B

Answer

Figure 33 Timing analysis of a NAND gate.

Solution:

Timing analysis can also be used to illustrate the operation of NAND gates. The
following examples will contribute to your understanding.

E X A M P L E  9

Sketch the output waveform at X for the NAND gate shown in Figure 34(a),
with the given input waveforms at A, B, and Control.

B
A

X

Control

(a)

Figure 34(a) Timing analysis of a NAND gate with a Control input: (a) logic sym-
bol; (b) waveforms.
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XAnswer

A

B

Control

LOW output
when all inputs

HIGH

(b)

A
X = A + B

B

10
0

0

A

B
X = A + B Analyze a NOR

by solving it as
an OR and then
invert the result.

Figure 35 NOR gate symbol and its OR–INVERT equivalent with A = 0, B = 0.

Figure 36 Inputs and outputs of a 7402 quad NOR IC.

9 The NOR Gate

The operation of the NOR gate is the same as that of the OR gate except that its output is
inverted. You can think of a NOR gate as an OR gate with an inverter at its output. The
symbol for a NOR gate and its equivalent OR–INVERT symbol are shown in Figure 35.

The TTL form of a NOR is the 7402 IC (or the 74LS02 or 74HC02, etc.) Figure 36
shows the output results for all possible input combinations applied to a 7402 quad NOR.

GND

Z 

Y

W

X

0

0

1

0

0
7402

W = 1
X  = 0
Y  = 0
Z  = 0

VCC 1

1

0

1

1

1

2

3

4

5

6

7

14

13

10

11

12

9

8

Figure 34(b)

Solution: In Figure 34(b), the Control input waveform is used to
enable/disable the NAND gate. When it is LOW, the output is stuck HIGH.
When it goes HIGH, the output will respond LOW when A and B go HIGH.
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The Boolean equation for the NOR function is . The equation is
stated “X equals not (A or B).” In other words, X is LOW if A or B is HIGH. The truth
table for a NOR gate is given in Table 8. Notice that the output column is the comple-
ment of the OR gate truth table output column.

X = A + B

BASIC LOGIC GATES

Now let’s study some timing analysis examples to get a better grasp of NOR gate
operation.

TABLE 8 Truth Table for a 
NOR Gate

A B

0 0 1
0 1 0
1 0 0
1 1 0

X � A � B

Output is always
LOW unless both
inputs are LOW. 

➤

X = A + B
A

B

Figure 37

A

B

X

X goes HIGH
when both inputs

are LOW

Answer

Figure 38 NOR gate timing analysis.

Solution:

E X A M P L E  1 0

Sketch the output waveform at X for the NOR gate shown in Figure 37,
with the given input waveforms in Figure 38.

X = A + B + C

A

C

B

E X A M P L E  1 1

Sketch the output waveform at X for the NOR gate shown in Figure 39,
with the given input waveforms in Figure 40.

Helpful 
Hint

To solve a timing analysis
problem, it is useful to look
at the gate’s truth table to
see what the unique
occurrence is for that gate.
In the case of the NOR,
the odd occurrence is when
the output goes HIGH
due to all LOW inputs.

Figure 39
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A

Answer

B

C

X

Figure 40 Three-input NOR gate timing analysis.

Solution:

Figure 41

Figure 42 Input waveform requirement to produce a specific output.

E X A M P L E  1 2

Sketch the waveform at the B input of the gate shown in Figure 41 that will
produce the output waveform shown in Figure 42 for X. Repeat for the
NAND gate.

Review Questions

11. What is the purpose of an inverter in a digital circuit?

12. How does a NAND gate differ from an AND gate?

13. The output of a NAND gate is always HIGH unless all inputs are made
___________ (HIGH/LOW).

14. Write the Boolean equation for a three-input NOR gate.

X = A + B
A

B
Y = CD

D

C

A

X

= Don’t care (B could be HIGH or LOW
and get the same output at X.)

D

C

Y

B

Solution:
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15. The output of a two-input NAND gate is ___________ (HIGH/LOW) if

16. The output of a two-input NOR gate is ___________ (HIGH/LOW) if

10 Logic Gate Waveform Generation

Using the basic gates, a clock oscillator, and a repetitive waveform generator circuit,
we can create specialized waveforms to be used in digital control and sequencing cir-
cuits. A popular general-purpose repetitive waveform generator is the Johnson shift
counter. For now, all we need are the output waveforms from it so that we may use
them to create our own specialized waveforms.

The Johnson shift counter that we will use outputs eight separate repetitive wave-
forms: A, B, C, D; and their complements, . The input to the Johnson shift
counter is a clock oscillator (Cp). Figure 43 shows a Johnson shift counter with its in-
put and output waveforms.

A, B, C, D

A = 0, B = 1.

A = 1, B = 0.

BASIC LOGIC GATES

The clock oscillator produces the Cp waveform, which is input to the Johnson
shift counter. The shift counter uses Cp and internal circuitry to generate the eight
repetitive output waveforms shown.

Cp

A DA B B C C D

Johnson
shift counter

1-kHz
Clock

oscillator

Cp #1 #2 #3 #4 #5 #6 #7 #8

43210 5 6 7 8Time
reference

(ms)

A

A

B

B

C

C

D

D

(a) (b)

Figure 43 Johnson shift counter waveform generation: (a) waveform sketch; (b) logic
analyzer display.
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Now, if one of those waveforms is exactly what you want, you are all set. But let’s
say we need a waveform that is HIGH for 3 ms, from 2 until 5 on the millisecond time
reference scale. Looking at Figure 43, we can see that this waveform is not available.

Using some logic gates, however, will enable us to get any waveform that we de-
sire. In this case, if we feed the A and B waveforms into an AND gate, we will get our
HIGH level from 2 to 5, as shown in Figure 44.
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B

A

A
X

1 5

B
2 6

X
2 5

The A and B
waveforms are
both HIGH for 3 ms
starting at the 2-ms
mark.

Figure 44 Generating a 3-ms HIGH pulse using an AND gate and a Johnson shift counter.

J O H N S O N  S H I F T  C O U N T E R  S I M U L AT I O N

A MultiSIM® simulation of the Johnson shift counter is shown in Figure 45. The waveforms are pro-
duced by the Word Generator by listing the correct sequence of binary digits in the display area 

Johnson
shift

counter

Logic
analyzer

XWG1
A

U1

1
Cp

A
A'
B
B'
C
C'
D

F

D'

XLA1

B
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A
A'
B
B'
C
C'
D
D'

X

X

C Q T

X

AND2

15 31

0 16

TR

0

A

B

C

D

E

F

G

A

B

C

D

E

F

G

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

O

O

O

X

X

X

Figure 45 Using MultiSIM® to simulate the Johnson shift counter waveforms.

Helpful 
Hint

For now, you need to know
only that it is used to
provide a combination of
sequential waveforms that
we will use to create
specialized waveforms and
improve our understanding
of the basic gates. It is
helpful if you have a
photocopy of Figure 43(a) to
work on for aligning the
waveforms to solve the
problems.
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Working through the following examples will help you to understand logic gate
operation and waveform generation.

BASIC LOGIC GATES

D

A
4 5

Figure 46 Solution to Example 13.

D

Cp #2 #3 #4 #5 #6 #7 #8

C
3

4

X #4

X

Cp

D

C
Answers

Note: C and D are used to enable just
the #4 pulse of the Cp line to get through.

Figure 47 Solution to Example 14.

required to cycle through the correct succession of HIGH/LOW states. The Logic Analyzer shows
the levels of the Johnson waveforms and the output waveform that would occur if A and B were con-
nected to a two-input AND gate.

MultiSIM exercise: Use MultiSIM to open the file fig3_45 from the text website. Run the simula-
tion to create the waveforms shown in Figure 45. Make the following changes to the gate (U1) and
rerun the simulation as follows:

(a) Change U1 to a two-input OR gate (OR2).

(b) Change U1 to a three-input AND gate (AND3) and add the Cp pulses as the third input waveform.

(c) Change the inputs to the AND3 gate so that only the first two Cp pulses are output at X.

E X A M P L E  1 3

Which Johnson counter outputs will you connect to an AND gate to get a
1-ms HIGH-level output from 4 to 5 ms?

Solution: Referring to Figure 43, we see that the two waveforms that are
both HIGH from 4 to 5 ms are A and D; therefore, the circuit of Figure 46
will give us the required output. 

E X A M P L E  1 4

Which Johnson counter outputs must be connected to a three-input AND gate to enable just the Cp#4
pulse to be output?

Solution: Referring to Figure 43, we see that the C and waveforms are both HIGH only during the
Cp 4 period. To get just the Cp#4 pulse, you must provide Cp as the third input. Now, when you look at
all three input waveforms, you see that they are all HIGH only during the Cp#4 pulse (see Figure 47).

D

Team
Discussion

Could we obtain a LOW
pulse from 4 to 5 instead of
a HIGH by using the
complemented signals of A
and D?

92



BASIC LOGIC GATES

E X A M P L E  1 5

Sketch the output waveform that will result from inputting A, , and into
the three-input OR gate shown in Figure 48(a).

CB

X

C

B

A

(a)

Figure 48(a)

5

Answer

6

(b)

Figure 48(b) Solution to Example 15.

E X A M P L E  1 6

Sketch the output waveform that will result from inputting Cp, , and C
into the NAND gate shown in Figure 49.

B

Solution: The output of an OR gate is always HIGH unless all inputs are
LOW. Therefore, the output is always HIGH except between 5 and 6, as
shown in Figure 48(b).

X

Cp

C

B

Figure 49

Answer#7

Figure 50 Solution to Example 16.

Solution: From reviewing the truth table of a NAND gate, we determine
that the output is always HIGH unless all inputs are HIGH. Therefore, 
the output will always be HIGH except during pulse 7, as shown in
Figure 50.

E X A M P L E  1 7

Sketch the output waveforms that will result from inputting A, B, and D
into the NOR gate shown in Figure 51.

X

A

D

B

Figure 51

Team
Discussion

Which of the three inputs
could we ground and still
get the same answer?
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6

Answer

7

(a)

Answer
8

(b)

0 HIGH

7

Answer

8

(c)

Answer#5

(d)

Figure 54 Solution to Example 18.

E X A M P L E  1 8

Sketch the output waveforms for the gates shown in Figure 53. The inputs
are connected to the Johnson shift counter of Figure 43.

Answer
0 1

Figure 52 Solution to Example 17.

Solution: Reviewing the truth table for a NOR gate, we determine that
the output is always LOW except when all inputs are LOW. Therefore, the
output will always be LOW except from 0 to 1, as shown in Figure 52.

C

B

A

(a)

D

B

A

(b)

D

C

A

(c)

D

A

(d)

Cp

Figure 53

Solution: The output waveforms are shown in Figure 54.
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E X A M P L E  2 0

By using combinations of gates, we can obtain more specialized wave-
forms. Sketch the output waveforms for the circuit shown in Figure 56.

E X A M P L E  1 9

Determine which shift counter waveforms from Figure 43 will produce the
output waveforms shown in Figure 55.

8

6 8

1

2

3

4

310

8#30 #4

0

8
#2 #3 #4

0

1 = A, C, D 2 = Cp, B, D 3 = A, B, DAnswers: 4 = Cp, A, D

Figure 55 Solution to Example 19.

X

Y

Z

A

Cp

B

C

C

Figure 56

Solution: The output waveforms are shown in Figure 57. (Note: the X and
Y waveforms must be aligned carefully to get the correct output at Z.)

#4 #5 #6Y

#4 #5Z

3 5
X

Answers

Figure 57 Solution to Example 20.
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E X A M P L E  2 1

Sketch the output waveforms for the circuit shown in Figure 58.

11 Using IC Logic Gates

All the logic gates are available in various configurations in the TTL and CMOS fam-
ilies. To list just a few: The 7404 TTL and the 4049 CMOS are hex (six) inverter ICs,
the 7400 TTL and the 4011 CMOS are quad (four) two-input NAND ICs, and the
7402 TTL and the 4001 CMOS are quad two-input NOR ICs. Other popular NAND
and NORs are available in three-, four-, and eight-input configurations. Consult a TTL
or CMOS data manual for the availability and pin configuration of these ICs. The pin
configurations for the hex inverter, the quad NOR, and the quad NAND are given in
Figures 60 and 61. (High-speed CMOS 74HC04, 74HC00, and 74HC02 have the same
pin configuration as the TTL ICs.)

Solution: The output waveforms are shown in Figure 59.

Cp

A

D

W

Z

Cp

C

D

X

YB

D

Figure 58

#1 #4

6

Z

8

6

Y

8
#4X

#1W

Answers

Figure 59 Solution to Example 21.
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3 14

1 16

GND

1

3

5

2

4

6

7

11

9

12

10

8

14

13

7404

2

4

6

5

7

8

12

10

13

11

9

15

4049
VSS

VDD

VCC

NC

NC

NC = No connection

Figure 60 7404 TTL and 4049 CMOS inverter pin configurations.

GND
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9
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10

8

14

13

VCC 1

3

5

2

4

6

7

11

9

12

10

8

14

13

VDD

VSS

GND

1

3

5

2

4

6

7

11

9

12

10

8

14

13

VCC 1

3

5

2

4

6

7

11

9

12

10

8

14

13

VDD

VSS

7402 4001

7400 4011

(a)

(b)

Figure 61 (a) 7402 TTL NOR and 4001 CMOS NOR pin configurations; (b) 7400 TTL
NAND and 4011 CMOS NAND pin configurations.
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X

A

B

C

D

Figure 62

B

5 V

−

+ Power
supply

1

3

5

2

4

6

7

11

9

12

10

8

14

13

4011

XC

D

A

VSS

VDD

4011

Figure 63

E X A M P L E  2 2

Draw the external connections to a 4011 CMOS IC to form the circuit
shown in Figure 62.

12 Summary of the Basic Logic Gates and 
IEEE/IEC Standard Logic Symbols

By now you should have a thorough understanding of the basic logic gates: inverter,
AND, OR, NAND, and NOR. Because the basic logic gates are the building blocks for
larger-scale ICs and digital systems, it is very important that the operation of these
gates be second nature to you.

A summary of the basic logic gates is given in Figure 64. You should memorize
these logic symbols, Boolean equations, and truth tables. Also, a table of the most
common IC gates in the TTL and CMOS families is given in Table 9. You will need to
refer to a TTL or CMOS data book for the pin layout and specifications.

Solution: Referring to Figure 63, notice that VDD is connected to the 
supply and VSS to ground. According to the CMOS data manual, VDD can
be any positive voltage from to with respect to VSS (usually
ground).

+15 V+3

+5@V
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A

0
1

1
0

X
X = AA

Inverter:

A X1

A

B

B

0
1
0
1

0
0
0
1

X
A

AND:

XX = AB
B

A

0
0
1
1

&

A
X = A + B

B

OR:

A

B
X

B

0
1
0
1

0
1
1
1

XA

0
0
1
1

≥ 1

A

NAND:

X = AB
B

A

B
X

B

0
1
0
1

1
1
1
0

XA

0
0
1
1

&

A
X = A + B

B

NOR:

A

B
X

B

0
1
0
1

1
0
0
0

XA

0
0
1
1

(a) (b) (c)

≥ 1

Figure 64 Summary of logic gates: (a) traditional logic symbols with Boolean equation; (b)
truth tables; (c) IEEE/IEC standard logic symbols.

TABLE 9 Common IC Gates in the TTL and CMOS Families

Gate
Name

Number of 
Inputs 

per Gate

Number 
of Gates 
per Chip

Part Number

Basic 
TTL

LS 
TTL

HC 
CMOS

4000 
CMOS

Inverter 1 6 7404 74LS04 74HC04 4069
AND 2 4 7408 74LS08 74HC08 4081

3 3 7411 74LS11 74HC11 4073
4 2 7421 74LS21 — 4082

OR 2 4 7432 74LS32 74HC32 4071
3 3 — — 74HC4075 4075
4 2 — — — 4072

NAND 2 4 7400 74LS00 74HC00 4011
3 3 7410 74LS10 74HC10 4013
4 2 7420 74LS20 74HC20 4012
8 1 7430 74LS30 — 4068

12 1 74134 74LS134 — —
13 1 74133 74LS133 — —

NOR 2 4 7402 74LS02 74HC02 4001
3 3 7427 74LS27 74HC27 4025
4 2 7425 74LS25 74HC4002 4002
5 2 74260 74LS260 — —
8 1 — — — 4078
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Also, in Figure 64(c), we introduce the IEEE/IEC standard logic symbols. This
alternate standard for logic symbols was developed in 1984. It uses a method of deter-
mining the complete logical operation of a device just by interpreting the notations on
the symbol for the device. This includes the basic gates as well as the more complex
digital logic functions. Unfortunately, this standard has not achieved widespread use,
but you will see it used in some newer designs. Most digital IC data books will show
both the traditional and the new standard logic symbols, although most circuit
schematics still use the traditional logic symbols. For this reason, the summary in
Figure 64 shows both logic symbols, but in this text we will use the traditional logic
symbols.

Review Questions

17. What is the function of the Johnson shift counter in this chapter?

18. What are the part numbers of a TTL inverter IC and a CMOS NOR IC?

19. What type of logic gate is contained within the 7410 IC? the 74HC27
IC?

Summary

In this chapter, we have learned that

1. The AND gate requires that all inputs are HIGH to get a HIGH output.

2. The OR gate outputs a HIGH if any of its inputs are HIGH.

3. An effective way to measure the precise timing relationships of digital
waveforms is with an oscilloscope or a logic analyzer.

4. Besides providing the basic logic functions, AND and OR gates can
also be used to enable or disable a signal to pass from one point to another.

5. Several ICs are available in both TTL and CMOS that provide the basic
logic functions.

6. Two important troubleshooting tools are the logic pulser and the logic
probe. The pulser is used to inject pulses into a circuit under test. The probe
reads the level at a point in a circuit to determine if it is HIGH, LOW, or
floating.

7. An inverter provides an output that is the complement of its input.

8. A NAND gate outputs a LOW when all of its inputs are HIGH.

9. A NOR gate outputs a HIGH when all of its inputs are LOW.

10. Specialized waveforms can be created by using a repetitive waveform
generator and the basic gates.

11. Manufacturers’ data manuals are used by the technician to find the pin
configuration and operating characteristics for the ICs used in modern
circuitry.

Glossary

Boolean Equation: A logic expression that illustrates the functional operation of a
logic gate or combination of logic gates.

Complement: A change to the opposite digital state. A 1 becomes a 0, and a 0 be-
comes a 1.
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Disable: To disallow or deactivate a function or circuit.

Enable: To allow or activate a function or circuit.

Fault: The problem in a nonfunctioning electrical circuit. It is usually due to an open
circuit, short circuit, or defective component.

Float: A logic level in a digital circuit that is neither HIGH nor LOW. It acts like an
open circuit to anything connected to it.

Gate: The basic building block of digital electronics. The basic logic gate has one or
more inputs and one output and is used to perform one of the following
logic functions: AND, OR, NOR, NAND, INVERT, exclusive-OR, or
exclusive-NOR.

Hex: When dealing with integrated circuits, a term specifying six gates on a single IC
package.

Inversion Bar: A line over variables in a Boolean equation signifying that the digital
state of the variables is to be complemented. For example, the output of a
two-input NAND gate is written .

Johnson Shift Counter: A digital circuit that produces several repetitive digital
waveforms useful for specialized waveform generation.

Logic Probe: An electronic tool used in the troubleshooting procedure to indicate a
HIGH, LOW, or float level at a particular point in a circuit.

Logic Pulser: An electronic tool used in the troubleshooting procedure to inject a
pulse or pulses into a particular point in a circuit.

NOT: When reading a Boolean equation, the word used to signify an inversion bar.
For example, the equation is read “X equals NOT AB.”

Quad: When dealing with integrated circuits, the term specifying four gates on a
single IC package.

Repetitive Waveform: A waveform that repeats itself after each cycle.

Troubleshooting: The work that is done to find the problem in a faulty electrical
circuit.

Truth Table: A tabular listing that is used to illustrate all the possible combinations
of digital input levels to a gate and the output that will result.

Waveform Generator: A circuit used to produce specialized digital waveforms.

Problems

Section 1
1. Build the truth table for:

(a) a three-input AND gate.

(b) a four-input AND gate.

2. If we were to build a truth table for an eight-input AND gate, how
many different combinations of inputs would we have?

3. Describe in words the operation of:

(a) an AND gate.

(b) an OR gate.

X = AB

X = AB
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X
0

0

0

1

1
1
1

1
0
0

Y

Z 

Figure P6

A

B
X

A

B

X

(a)

A

B
X

A

B

X

(b)

Figure P7

Section 2
4. Determine the logic level at W, X, Y and Z in Figure P4.

BASIC LOGIC GATES

W

X
1

1

0

1

0
0
1

0
0
0

Y

Z 

Figure P4

5. Write the Boolean equation for

(a) A three-input AND gate

(b) A four-input AND gate

(c) A three-input OR gate

6. Determine the logic level at W, X, Y and Z in Figure P6.

Section 3
7. Sketch the output waveform at X for the two-input AND gates shown
in Figure P7.
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X

A

B

X
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Figure P8

A
B
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B
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(a)

A
B X  X
C

A

B

C

X X
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Figure P9

BASIC LOGIC GATES

A

B

A

B

X

(a)

A
X  X

B

A

B

X

(b)

Figure P10

9. Sketch the output waveform at X for the three-input AND gates
shown in Figure P9.

8. Sketch the output waveform at X for the two-input OR gates shown in
Figure P8.

10. The input waveform at A is given for the two-input AND gates shown
in Figure P10. Sketch the input waveform at B that will produce the output
at X.

C

103



BASIC LOGIC GATES

11. Repeat Problem 10 for the two-input OR gates shown in Figure P11.

*The letter T designates a problem that involves Troubleshooting.

A

B
X

A

B

X

(a)

A

B
X

(b)

A

B

X

Figure P11

Receiving
device

Clock
oscillator

Enable
signal

1 2 3 4 5 6 7 8
Clock

oscillator

Enable
signal

Figure P12

Section 4
12. Using Figure P12, sketch the waveform for the enable signal that will
allow pulses 2, 3 and 6, 7 to get through to the receiving device.

13. Repeat Problem 12, but this time sketch the waveform that will allow
only the even pulses (2, 4, 6, 8) to get through.

Section 5
14. How many separate OR gates are contained within the 7432 TTL IC?

15. Sketch the actual pin connections to a 7432 quad two-input OR TTL
IC to implement the circuit of Figure 18.

16. How many inputs are there on each AND gate of a 7421 TTL IC?

17. The 7421 IC is a 14-pin DIP. How many of the pins are not used for
anything?

Section 6
18. *What are the three logic levels that can be indicated by a logic probe?

19. What is the function of the logic pulser?

C

T*

T
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Probe on Pin Indicator Lamp

1 Flashing
2 On
3 Off
7 Off

14 On

Probe on Pin Indicator Lamp

1 Flashing
2 Off
3 Off
7 Off

14 On

Probe on Pin Indicator Lamp

1 Flashing
2 On
3 Off
7 Dim

14 On

7408

DC power
supply

Clock
oscillator

Receiving
device

GND

14

13

13

11

10

9

8

1

2

3

4

5

6

7

+

–

(Enable)

(Disable)

1

0

Switch

5 V
VCC

Figure P22

20. When troubleshooting an OR gate such as the 7432, when the pulser is
applied to one input, should the other input be connected HIGH or LOW?
Why?

21. When troubleshooting an AND gate such as the 7408, when the pulser
is connected to one input, should the other input be connected HIGH or
LOW? Why?

22. The clock enable circuit shown in Figure P22 is not working. The en-
able switch is up in the enable position. A logic probe is placed on the fol-
lowing pins and gets the following results. Find the cause of the problem. 

23. Repeat Problem 22 for the following troubleshooting results. 

24. Repeat Problem 22 for the following troubleshooting results. 

T

T

TC

TC

TC
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Figure P29

Section 7
25. For Figure P25, write the Boolean equation at X. If , what is X?A = 1

BASIC LOGIC GATES

X
A  Z

Figure P26

A

X

Z

Figure P27

Figure P25

A X

26. For Figure P26, write the Boolean equation at X and Z. If , what
is X? What is Z?

A = 0

27. Using Figure P26, sketch the output waveform at X and Z if the timing
waveform shown in Figure P27 is input at A.

Section 8
28. For Figure P28, write the Boolean equation at X and Y and build a truth
table for each.

29. Determine the logic levels at W, X, Y and Z in Figure P29.

30. Using Figure P28, sketch the output waveforms for X and Y, given the
input waveforms shown in Figure P30.  (X = AB, Y = CD)
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Figure P31
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(Down) Y

(Up) Y

A

B

(Down) X

(Up) X

1

0

B

A

X

C

D

1

0

D

C

Y

Figure P32

E

D

Y

F

B

A

X

C

Figure P34

Section 9
31. Determine the logic level at W, X, Y and Z in Figure P31.

32. Using Figure P32, sketch the waveforms at X and Y with the switches
in the down (0) position. Repeat with the switches in the up (1) position.

33. In words, what effect does the switch have on each circuit in Figure
P32?

34. For Figure P34, write the Boolean equation at X and Y and build a truth
table for each.
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A

Cp

D

ZA

Figure P37

35. Referring to Figure P34, sketch the output at X and Y, given the input
waveforms in Figure P35. (X = A + B + C, Y = D + E + F)
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A

B

C

X

D

E

F

Y

Figure P35

Cp

Cp
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YB
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C

C

X
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A
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V

A

C

A
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Figure P36

Section 10
36. The Johnson shift counter outputs shown in Figure 43 are connected to
the inputs of the logic gates shown in Figure P36. Sketch and label the out-
put waveform at U, V, W, X, Y, and Z.

37. Repeat Problem 36 for the gates shown in Figure P37.

38. Using the Johnson shift counter outputs from Figure 43, label the in-
puts to the logic gates shown in Figure P38 so that they will produce the in-
dicated output.
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39. Determine which lines from the Johnson shift counter are required at
the inputs of the circuits shown in Figure P39 to produce the waveforms at
U, V, W, and X.

#1 #7 #8

(d)
0 1

(e)

#3 #4 #5

(f)

87

80

(c)

1 3

(b)

4 7

(a)

1 3

Figure P38

#5 #6 #7X

#3 #4 #5U

4 7

V

3 6

W

Z

Y

U

V

Y

W

X

Z

Figure P39

40. The waveforms at U, V, W, and X are given in Figure P39. Sketch the
waveforms at Y and Z.

Section 11
41. Make the external connections to a 7404 inverter IC and a 7402 NOR
IC to implement the function X = A + B.

C

C
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42. When troubleshooting a NOR gate like the 7402, with the logic pulser
applied to one input, should the other input be held HIGH or LOW? Why?

43. When troubleshooting a NAND gate like the 7400, with the logic pulser
applied to one input, should the other input be held HIGH or LOW? Why?

44. The following data table was built by putting a logic probe on every pin
of the hex inverter shown in Figure P44. Are there any problems with the
chip? If so, which gate(s) are bad?

GND

VCC
1

3

5

2

4

6

7

11

9

12

10

8

14

13

7404

5 V −
+ Power

supply
Pin Logic Level

1
2
3
4
5
6
7
8
9

10
11
12
13
14

HIGH
LOW
LOW
LOW
LOW
HIGH
LOW
HIGH
LOW
LOW
LOW
LOW
HIGH
HIGH

Figure P44

45. The logic probe in Figure P45 is always OFF (0) whether the switch is
in the up or down position. Is the problem with the inverter or the NOR, or
is there no problem?

GNDGND

1
VCC

1

3

5

2

4

6

7

11

9

12

10

8

14

13

7404

5 V −
+ Power

supply
Switch1

0 Logic
probe

3

5

2

4

6

7

11

9

12

10

8

14

13

VCC

7402

Figure P45

T

T

T

TC
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46. Another circuit constructed the same way as Figure P45 causes the
logic probe to come on when the switch is in the down (0) position. Further
testing with the probe shows that pins 2 and 3 of the NOR IC are both
LOW. Is anything wrong? If so, where is the fault?

47. Your company has purchased several of the 7430 eight-input NANDs
shown in Figure P47. List the steps that you would follow to determine if
they are all good ICs.

1 14 VCC

2 13

3 12

4 11

5 10

6 9

7 8GND

Figure P47

48. The data table above was built by putting a logic probe on every pin of
the 7427 NOR IC shown in Figure P48 while it was connected in a digital
circuit. Which gates, if any, are bad, and why?

1

3

5

2

4

6

7

11

9

12

10

8

14

13

VCC

GND

Pin Logic Level

1
2
3
4
5
6
7
8
9

10
11
12
13
14

LOW
LOW
LOW
LOW
LOW
HIGH
LOW
Flashing
HIGH
LOW
Flashing
HIGH
HIGH
HIGH

Figure P48

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

49. What are the component name and grid location of the two-input AND
gate and the two-input OR gate in the Watchdog Timer schematic?

50. A logic probe is used to check the operation of the two-input AND and
OR gates in the Watchdog Timer circuit. If the probe indicator is ON for
pin 2 of both gates and flashing on pin 1, what will pin 3 be for (a) the AND
gate and (b) the OR gate?

T

T

S

S

TC
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51. If you wanted to check the power supply connections for the 8031 IC
(U8) on the 4096/4196 circuit, which pins would you check, and what level
should they be?

52. On the 4096/4196 sheet 1 schematic, there are several gates labeled
U1. Why are they all labeled the same?

53. Describe a method that you could use to check the operation of the in-
verter labeled U4:A of the Watchdog Timer. Assume that you have a dual-
trace oscilloscope available for troubleshooting.

54. Locate the line labeled RAM_SL at location D8 of the HC11D0
schematic. To get a HIGH level on that line, what level must the inputs to
U8 be?

55. Locate the output pins labeled E and on U1 of the HC11D0
schematic. During certain operations, line E goes HIGH and line is
then used to signify a READ operation if it is HIGH or a WRITE operation
if it is LOW. For a READ operation, which line goes LOW: WE_B or OE_B?

MultiSIM® Exercises

E1. Load the circuit file for Section 2. Read the instructions in the
Description window. The switches are used to input a 1 (up) or a 0 (down)
to each gate input. Each switch can be moved by pressing the appropriate
letter. The lamp connected to each gate output comes ON if the output
is HIGH.

(a) What is the level at X and Y if all switches are up? Try it.

(b) What is the level at X and Y if all switches are down? Try it.

(c) Experimentally complete a truth table for each gate.

E2. Load the circuit file for Section 3. The Logic Analyzer shows the in-
put waveforms A and B, and the output waveforms X and Y. Gate 1 and
Gate 2 are hidden from your view; each is either an AND or an OR. Use the
Logic Analyzer display to determine:

(a) What Gate 1 is, and

(b) What Gate 2 is.

E3. Load the circuit file for Section 4. This circuit is used to enable or dis-
able the clock signal (Cp) from reaching the Logic Analyzer similar to
Figures 16 and 17.

(a) Switch A must be in the ___________ (up/down) position for the
clock to be enabled.

(b) Switch B must be in the ___________ (up/down) position for the
clock to be enabled. Try both conditions.

E4. Load the circuit file for Section 5. All of the parts to build the clock
enable circuit of Figure 20 are given. Make all of the necessary connections
to make the circuit work and test its operation. What position must the En-
able Switch be in to allow the receiving device to receive the clock pulses
from Cp?

E5. Load the circuit file for Section 6a. This circuit is used to trou-
bleshoot the number-4 gate of a 7408 Quad AND IC similar to Figure 24.
Because this 7408 is working properly, the Logic Probe will flash 

R>W
R>W

S

S

S

S
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T

C
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when power is turned on. To troubleshoot the number-1 gate of the 7432
Quad NOR IC, what should be connected to the following pins?

(a) Pin 1?

(b) Pin 2?

(c) Pin 3?

(d) Pin 7?

(e) Pin 14? Test your answers by moving the connections from the 7408
over to the 7402.

E6. Load the circuit file for Section 6b. There are one or more gates in
each of the ICs shown that are bad. Use a Logic Pulser and Probe to find
which gate or gates are bad (similar to Example 5).

(a) Which gate(s) are bad in the 7408?

(b) Which gate(s) are bad in the 7411?

(c) Which gate(s) are bad in the 7432?

E7. Load the circuit file for Section 9a. Read the instructions in the
Description window. The switches are used to input a 1 (up) or a 0 (down) to
each gate input. Each switch can be moved by pressing the appropriate letter.
The lamp connected to each gate output comes ON if the output is HIGH.

(a) What is the level at X and Y if all switches are up? Try it.

(b) What is the level at X and Y if all switches are down? Try it.

(c) Experimentally complete a truth table for each gate.

E8. Load the circuit file for Section 9b. The Logic Analyzer shows the in-
put waveforms A and B, and the output waveforms X and Y. Gate 1 and
Gate 2 are hidden from your view, but each is either a NAND or a NOR.
Use the Logic Analyzer display to determine:

(a) What Gate 1 is, and

(b) What Gate 2 is.

E9. Load the circuit file for Section 10a. This is the Johnson shift counter
waveform generator from Figure 43. It is illustrated with A and B input to
an AND gate.

(a) Is the output waveform correct?

(b) Write the Boolean equation at X.

(c) What is the time width of the X-waveform pulse?

E10. Load the circuit file for Section 10b. Change the inputs to the AND
gate to A and C.

(a) What is the time at the rising edge, falling edge, and total pulse width
of the X-output?

(b) Add Cp as a third input to the AND gate. How many positive pulses
are output at X?

(c) What is the width of each positive pulse?

E11. Load the circuit file for Section 10c. The object here is to determine
what gate is inside of the subcircuits labeled gate 1 and gate 2. The output
of gate 1 is displayed on the bottom trace. The next trace up is the output of
gate 2.

(a) What is gate 1?

(b) What is gate 2?

T
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E12. Load the circuit file for Section 10d. The object here is to determine
what gate is inside of the subcircuits labeled gate 3 and gate 4. The output
of gate 4 is displayed on the bottom trace. The next trace up is the output of
gate 3.

(a) What is gate 3?

(b) What is gate 4?

E13. Load the circuit file for Section 10e. Connect a logic gate to the
Johnson outputs so that it will provide the following to the Logic Analyzer:

(a) The first three Cp pulses.

(b) A HIGH level from the 4 mS level to the 8 mS level.

MultiSIM® Troubleshooting Exercises

E14. The following circuit files have faults in them. Study the logic oper-
ation and truth table of the AND gate in Section 1 before attempting to find
the faults.

(a) AND_t-shoot_a

(b) AND_t-shoot_b

(1) Connect the A and B switches to the inputs and the logic probe indica-
tor to the output of the first gate. Complete a truth table by observing the
state of the logic probe indicator as you apply HIGH and LOW levels to the
inputs by pressing the letters A or B on your keyboard.

(2) Repeat for each gate.

(3) Which truth tables indicate that the gate is not operating properly?

(4) Delete the bad AND gate, replace it, and validate the circuit operation.

E15. The following circuit files have faults in them. Study the logic oper-
ation and truth table of the OR gate in Section 2 before attempting to find
the faults.

(a) OR_t-shoot_a

(b) OR_t-shoot_b

(1) Connect the A and B switches to inputs and the logic probe indicator to
the output of the first gate. Complete a truth table by observing the state of
the logic probe indicator as you apply HIGH and LOW levels to the inputs
by pressing the letters A or B on your keyboard.

(2) Repeat for each gate.

(3) Which truth tables indicate that the gate is not operating properly?

(4) Delete the bad OR gate, replace it, and validate the circuit operation.

E16. The following circuit files have faults in them. Study the logic oper-
ation and truth table of the NAND gate in Section 8 before attempting to
find the fault.

(a) NAND_t-shoot_a

(b) NAND_t-shoot_b

(1) Connect the A and B switches to the inputs and the logic probe indica-
tor to the output of the first gate. Complete a truth table by observing the
state of the logic probe indicator as you apply HIGH and LOW levels to the
inputs by pressing the letters A or B on your keyboard.

(2) Repeat for each gate.

T

T

T
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(3) Which truth tables indicate that the gate is not operating properly?

(4) Delete the bad NAND gate, replace it, and validate the circuit operation.

E17. The following circuit files have faults in them. Study the logic oper-
ation and truth table to the NOR gate in Section 9 before attempting to find
the faults.

(a) NOR_t-shoot_a

(b) NOR_t-shoot_b

(1) Connect the A and B swtiches to the inputs and the logic probe indica-
tor to the output of the first gate. Complete a truth table by observing the
state of the logic probe indicator as you apply HIGH and LOW levels to the
inputs by pressing the letters A and B on your keyboard.

(2) Repeat for each gate.

(3) Which truth tables indicate that the gate is not operating properly?

(4) Delete the bad NOR gate, replace it, and validate the circuit operation.

BASIC LOGIC GATES
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Answers to Review Questions

1. True

2. To illustrate how the output
level of a gate responds to all
possible input-level combina-
tions

3. To depict algebraically the
operation of a logic gate

4. All inputs must be LOW.

5. To illustrate graphically how
the output levels change in
response to input-level changes

6. When the level of an input
signal will have no effect on
the output

7. HIGH

8. Positive power supply of 5 V to
pin 14, ground at 0 V to pin 7

9. It uses an indicator lamp to tell
you the digital level whenever
it is placed in a circuit.

10. It provides digital pulses to the
circuit being tested, which can
be observed using a logic
probe.

11. An inverter is used to comple-
ment or invert a digital signal.

12. A NAND gate is an AND gate
with an inverter on its output.

13. HIGH

14.
15. HIGH

16. LOW

17. It is used as a repetitive wave-
form generator.

18. 7404; 4001

19. Triple, three-input NAND
gates; triple, three-input NOR
gates

X = A + B + C
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Answers to Odd-Numbered Problems

1. (a)

3. (a) The output is HIGH when all inputs
are HIGH; otherwise, the output is
LOW.

(b) The output is HIGH whenever any in-
put is HIGH; otherwise, the output is
LOW.

5. (a) (b)
(c) X = A + B + C

X = ABCDX = ABC

A B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

A B C D X

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

(b)

A

B

X

A

B

X

A

B

C

X

A

B

C

X

A

X

B

A

X

B

Clock 1 2 3 4 5 6 7 8

Enable

9.

11.

13.

7.

1 14

7432

VCC

7 8GND

Clock
OSC

Enable
signal

Receive
device

Power
supply

+
–

15.
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17. Two

19. To provide pulses to a digital circuit for
troubleshooting purposes

21. HIGH, to enable the output to change with
pulser (if gate is good)

23. Pin 2 should be ON; the Enable switch is
bad, or bad Enable connection.

25.
27.

X = A, X = 0

37.

29.

31.

33. It enables or disables the other inputs.

35.

 Z = 0
 Y = 0
 X = 0
 W = 1

 Z = 0
 Y = 1
 X = 1
 W = 1

A
X

Z

A

B

C

X

D

E

F

Y

#6 #7 #8

U

#1 #8

1

4 6

V

W
X

Y

Z

HIGH

LOW

7

A

11 14

7404

14

7402

P.
S.

+
–

X

B

GND

VCC

GND

VCC

39.

41.
X = Cp, C, DV = C, D

W = B, CU = Cp , A, B

43. HIGH; to see inverted output pulses
(otherwise, output would always be HIGH).

45. There is no problem.

47. With all inputs HIGH, pin 8 should be
LOW. Next try making each of the 8 inputs
LOW, one at a time, while checking for a
HIGH at pin 8.

49. AND-74HC08; U3:A location C2,
U3:B location D2 OR-74HC32;
location B7

51. Pin 20 LOW (GND), pin 40 HIGH ( +5)

53. Place probe-A on the input of the inverter
(WATCHDOG_CLK). Using the same
scope settings, place probe-B on the output
of U4:A. Probe-B should display the
complement of probe-A.

55. OE_B

E1. (a)
(b)
(c)

X = 0, Y = 0
X = 1, Y = 1

=

=

=

A B X A B Y

0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

E3. (a) Up (b) Down

E5. (a) Vcc (b) Logic pulser (c) Logic probe
(d) Ground (e) Vcc

E7. (a)
(b)

E9. (a) Yes (b) (c) 6mS

E11. (a) NAND (b) NOR

E13. (a) (b)
E15. (a) U1b, U1c, U1d are bad.

(b) U2a, U2c are bad.

E17. (a) U1b, U1c are bad.
(b) U2a, U2d are bad.

Y = BD¿X = C¿, D¿, Cp

X = AB

X = 1, Y = 1
X = 0, Y = 0
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Programmable Logic Devices:
CPLDs and FPGAs with 
VHDL Design

OUTLINE

1 PLD Design Flow
2 PLD Architecture
3 Using PLDs to Solve Basic Logic Designs
4 Tutorial for Using Altera’s Quartus® II Design and Simulation Software
5 FPGA Applications

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Explain the benefits of using PLDs.
• Describe the PLD design flow.
• Understand the differences between a PAL, PLA, SPLD, CPLD, FPGA and an

ASIC.
• Explain how a graphic editor and a VHDL text editor are used to define logic to

a PLD.
• Interpret the output of a simulation file to describe logic operations.
• Interpret VHDL code for the basic logic gates.

INTRODUCTION

As you can imagine, stockpiling hundreds of different logic ICs to meet all the possi-
ble requirements of complex digital circuitry became very difficult. Besides having all
of the possible logic on hand, another problem was the excessive amount of area on a
printed-circuit board that was consumed by requiring a different IC for each different
logic function. In many cases, only one or two gates on a quad or hex chip were used.

Then came “programmable logic”—the idea that implementing all logic designs
using 7400- or 4000-series ICs is no longer needed. Instead, a company will purchase
several user-configurable ICs that will be customized (i.e., programmed) to perform
the specific logic operation that is required. These ICs are called programmable logic
devices (PLDs).

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 4 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 PLD Design Flow

Samples of two PLDs are shown in Figure 1. They contain thousands of the basic logic
gates plus advanced sequential logic functions inside a single package. This internal
digital logic, however, is not yet configured to perform any particular function. One
way to configure it is for the designer to first use PLD computer software to draw the
logic that he or she needs implemented. This is called CAD (computer-aided design).
The PLD software then performs a process called schematic capture, which reads the
graphic drawing of the logic and converts (compiles) it to a binary file that accurately
describes the logic to be implemented. This binary file is then used as an input to a pro-
gramming process that electronically alters the internal PLD connections (synthesizes)
to make it function specifically as required. Hundreds, or even thousands, of digital
logic ICs will be replaced by a single PLD.

Another way to define the logic to be programmed into the PLD is to use a high-
level language called Hardware Description Language (HDL). A specific form of HDL
used by several manufacturers is called VHDL, which stands for VHSIC Hardware
Description Language (where VHSIC stands for Very High-Speed Integrated Circuit).
In this case, the inputs, outputs, and logic processes are defined using statements based
on the C programming language. This method is somewhat more difficult to learn, but
depending on the logic, it can be a more powerful—and simpler—tool with which to
define complex or repetitive logic.

Figure 2 illustrates the design flow. First we need to define the digital logic prob-
lem that we want to solve. Once we have a good understanding of the problem, we can
develop the equations to use in solving the logic operation that we want the circuit to
perform.

(a)

Figure 1 Sample PLDs: (a) Altera MAX CPLD; (b) Altera Cyclone FPGA.

Define the problem.
Develop the equations
to solve the required
logic operations.

Enter the design into
the PC by drawing a
schematic or by using
a VHDL text editor.

Simulate the
input/output
conditions via timing
waveform analysis.

Program the internal
circuitry of the PLD
to implement the
logic operations.

Test the final
programmed PLD via
actual input and
output signals.

Figure 2 PLD product design flow.

(b)

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN
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B + C

X

A

B

C

AB

(a)

Figure 3 Implementing the equation using 7400-series logic ICs: (a) logic diagram; 
(b) connections to IC chips.

X = AB + B + C

After we have completed that work on paper, we will enter the design into a per-
sonal computer (PC) by drawing a schematic diagram using the CAD tools provided
with the PLD software. In some cases, the design will instead be entered using the
VHDL text editor provided. After the PC has analyzed the design, it will allow us to
perform a simulation of the actual circuit to be implemented. To do this, we specify the
input levels to our circuit, and we observe the resultant output waveforms on the PC
screen using the waveform analysis tool provided.

If the computer simulation shows that our circuit works correctly, we can pro-
gram the logic into a PLD chip that is connected by a cable to the back of our PC. The
final step would be to connect actual inputs and outputs to the chip to check its per-
formance in a real circuit.

To illustrate the power of a PLD, let’s consider the logic circuit required to im-
plement Figure 3 shows the circuitry required to implement the
logic using 7400-series ICs. As shown, we would need four different ICs to solve this
equation. Wires are shown connecting one gate of each IC to one gate of the next IC
until the logic requirements are met.

To solve this same logic using a PLD, we would draw the schematic or use
VHDL to define the logic, then program that into a PLD. One possible PLD that could
be used to implement this logic is the Altera EPM7128S (see Figure 4). After com-
pleting the steps listed in Figure 2, the internal circuitry of the PLD is configured (in
this case) to input A, B, and C at pins 29, 30, and 31 and output to X at pin 73. The PLD
software selected which pins to use, and as you can see, only a small portion of the
PLD is actually used for this circuit.

This particular PLD is an 84-pin IC in a plastic leaded chip carrier (PLCC)
package having 21 pins on a side. The notch signifies the upper left corner of the IC.
Pin 1 is located in the middle of the upper row adjacent to a small indented circle;

X = AB + B + C.

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN
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3

A

B X

C

4

5

6

7GND GND

14 VCC VCC VCC
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8 GND
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1
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4

5

6

7

14
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9

8

VCC

GND

7432

1

2

3

4

5

6

7

14

13

12

11
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9

8

(b)
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Altera
MAX

EPM7128SA (pin 29)

Notch
in chip

Pin 1 Pin 84

X (pin 73)

B (pin 30)
C (pin 31)

Figure 4 Implementing the equation using a PLD.X = AB + B + C

subsequent pin numbers are counted off counterclockwise from there. (A photo-
graph of this particular chip is shown in Figure 1[a].)

As you may suspect, the price of a PLD is higher than a single 7400-series IC,
but we’ve only used a small fraction of the PLD’s capacity. We could enter and program
hundreds of additional logic equations into the same PLD. The only practical limita-
tion is the number of input and output pins that are available. Many PLDs are erasable
and reprogrammable, allowing us to test many versions of our designs without ever
changing ICs or the physical wiring of the gates.

We will learn design entry and waveform simulation in this chapter, and we will
continue to explore PLD examples and problems throughout the remainder of this text.

One of the leading manufacturers of PLDs is Altera Corporation. Altera offers a full
line of CPLDs, FPGAs, and ASICs (all explained in Section 2). This manufacturer of pro-
grammable logic was chosen for this text because they are an industry leader and offer a
high level of support to colleges and universities. They also provide a free download ver-
sion of their design and development software called Quartus II: Web Edition, which we
will use throughout the text to design and simulate FPGA-based logic circuits.

PLD development boards that attach directly to the USB port of a PC are avail-
able so that you can experience programming and debugging actual PLD ICs. These
development boards allow you to program and reprogram repeatedly, so they are a
great option for all of your digital experimentation. Typically, a PLD development
board will contain a CPLD or an FPGA, a USB port to connect to your PC, and several
I/O switches and LEDs to test your design. The board that we use in this text is the
Altera DE2 Development and Education board. This, and several other development
boards, are available through the Altera University Program. Figure 5 shows the DE2
development board.

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN

PS/2 Keyboard/Mouse Port

VGA 10-bit DAC

Ethernet 10/100M Controller

Expansion Header 2 (JP2)

Expansion Header 1 (JP1)

Altera Cyclone II FPGA

SD Card Slot

8 Green LEDs

IrDA Transceiver

SMA External Clock

4 Debounced Pushbutton Switches

RS-232 Port

Ethernet
10/100M

Port
VGA Video

Port
Video

In
Line
Out

Line
In

Mic
In

USB
Host
Port

USB
Device

Port

USB
Blaster

Port

4-MB Flash Memory512-KB SRAM8-MB SDRAM50-MHz Oscillator

9V DC Power
Supply Connector

27-MHz Oscillator

24-bit Audio Codec

Power ON/OFF Switch

USB Host/Slave Controller

TV Decoder (NTSC/PAL)

Altera USB Blaster Controller Chipset

Altera EPCS16 Configuration Device

RUN/PROG Switch for JTAG/AS Modes

16×2 LCD Module

7-Segment Displays

18 Red LEDs

18 Toggle Switches

Figure 5 The Altera DE2 Development and Education board. (Courtesy of Altera
Corporation.)
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2 PLD Architecture

Basically, there are four types of PLDs: simple programmable logic devices (SPLDs),
complex programmable logic devices (CPLDs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs).

The SPLD
The SPLD is the most basic and least expensive form of programmable logic. It con-
tains several configurable logic gates, programmable interconnection points, and may
also have memory flip-flops. To keep logic diagrams easy to read, a one-line conven-
tion has been adopted, as shown in Figure 6, which is just a small part of an SPLD,
showing two inputs and four outputs. (A typical SPLD like the PAL in Figure 9 has 16
inputs plus their complements and 8 outputs.) As you can see in Figure 6, the A input
is split into two different lines: A, and its complement (The triangle symbol is a spe-
cial type of inverter having two outputs: a true and a complement.) The same goes for
the B input and any others that are on the SPLD. The W, X, Y, and Z AND gates are pro-
grammable to have any of those four lines as inputs.

The internal SPLD interconnect points are either made or not made by the PLD
programming software. In Figure 6, the inputs to the W AND gate are connected to A
and B. (The connections are shown by a dot.) The inputs to the X AND gate are con-
nected to A and and so on. The outputs of these AND gates are called the product
terms, because W is the Boolean product of A and B and X is the Boolean product of
A and 

The product terms in Figure 6 are not very useful by themselves. The circuit is
made more effective by adding an OR gate to the structure, as shown in Figure 7. This
new configuration is the foundation for a programmable array logic (PAL)–type
SPLD. As Figure 7 shows, by OR-ing the four product terms together, we now have the
Boolean sum of the four product terms, simply called the Sum-of-Products (SOP). The
SOP is the most common form of Boolean equation used to represent digital logic.

The programmable logic array (PLA) goes one step further by providing
programmable OR gates for combining the product terms. Figure 8 shows a small
portion of a PLA. In this illustration, the PLA provides two SOP equations. The
inputs to the first OR gate are programmed to connect to all four product terms

The inputs to the second OR gate are programmed to
connect to only the first and third product terms (Y = AB + AB).
(X = AB + AB + AB + A B).

B.

B,

(A, A, B, B)

A.
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A

Inputs

W X Y Z

W = AB

X = AB

Y = AB

Z = AB

B

Product terms

A

B

B

A

Figure 6 One-line convention for PLDs.
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A

Inputs

X = AB + AB + AB + AB

B

Programmable ANDs 

Fixed OR

Figure 7 PAL architecture of an SPLD.

A

Inputs

B

Y = AB + AB

X = AB + AB + AB + AB

Programmable ANDs

Programmable ORs

Figure 8 PLA architecture of an SPLD.

Some SPLDs also contain a flip-flop memory section and data-steering circuitry.
Flip-flop memory circuitry is used in a type of digital circuitry called sequential logic.
This type of logic is a form of digital memory that changes states based on previous
logic conditions and specific logic control inputs. The data-steering circuitry takes care
of input and control signal interconnections and logic output destinations.

PAL16L8
A sample of a typical PAL device is the PAL16L8 shown in Figure 9. The number 16
in the part number signifies that it has 16 inputs. The 8 signifies 8 outputs and the let-
ter L means that the outputs are active-LOW. An active-LOW output is one that goes
LOW instead of HIGH when activated. Ten of the inputs in the figure are labeled with
the letter I. Each of these can provide the true and the complement of the level placed
on the pin. The other 6 inputs are labeled I/O. This means that they can be used as an
input or an output. To come up with a total of 8 outputs, the other 2 dedicated outputs
labeled O are provided on pins 12 and 19.

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN
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Figure 9 The PAL16L8 SPLD logic diagram. (Courtesy of Texas Instruments)

124



The CPLD
The CPLD is made by combining several PAL-type SPLDs into a single IC package,
as shown in Figure 10. Each PAL-type structure is called a macrocell. Each macrocell
has several I/O connection points, which go to the chips’ external leads. The macro-
cells are all connected to control signals and to each other via the programmable inter-
connect matrix shown in the center of the structure.

The Altera MAX 7000S series is an example of a CPLD family. These CPLDs
perform the functions of thousands of individual logic gates. They also feature a
nonvolatile characteristic, meaning that when power is removed from the chip, they
will remember their programmed logic and interconnections. (This type of memory is
called EEPROM or Flash memory.) These ICs can be repeatedly programmed to im-
plement new designs or correct faulty ones, thus eliminating the need to rewire cir-
cuitry or buy new logic.
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Figure 10 Internal structure of a CPLD.

The FPGA
As the name implies, a Field-Programmable Gate Array (FPGA) is an array of gates
interconnected in a row-column matrix that can be programmed in the field by a com-
puter via a USB connection. The FPGA differs from the CPLD in that, instead of solv-
ing the logic design by interconnecting logic gates, it uses a look-up table (LUT)
method to resolve the particular logic requirement. This allows PLD manufacturers to
form a more streamlined design, creating a much denser and faster PLD. Besides hav-
ing thousands of internal logic elements, FPGAs have hundreds of I/O pins with pro-
grammable internal interconnects and storage registers. The Altera Cyclone© series is
an example of an FPGA family.

To see how a look-up table works, refer to Figures 11(a) and (b). In Figure 11(a),
the conventional logic for the equation is imple-
mented using 7400-series ICs. In this case, X is HIGH for three different combinations
of the four inputs (X is HIGH when or 1010 or 0000).

Figure 11(b) shows the same logic implemented in an FPGA LUT. An LUT op-
erates similar to a truth table in that it provides for all possible input combinations and
produces a HIGH when the desired combinations of 1s and 0s are provided at the in-
puts. In Figure 11(b), the routing of the logic levels is controlled by the 15 cascaded
data selectors (trapezoid symbols). They are actually multiplexers, which are 

ABCD = 1111

X = ABCD + ABCD + A B C D
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(a)

7404’s 7421’s

7432

X
ABCD

ABCD

A

ABCD

B

C

D

Figure 11 (a) implemented using 7400-series ICs; 
(b) implemented within a LUT of an FPGA (showing the flow for ABCD).

X = ABCD + ABCD + A B C D:

covered separately, but for now all we need to understand is that when the control in-
put A, B, C, or D is HIGH, the logic level on the TRUE input is passed through from
left to right. When it is LOW, the logic level on the complement input is passed
through. The external A control input actually controls eight data selectors: B controls
four, C controls two, and D controls one.

This illustration of a LUT shows the flow of logic when the inputs are set at
and In this case, since then all logic levels con-

nected to the eight TRUE As are passed through. Therefore, by just looking at the high-
lighted data path, a 1 is passed through to the B data selector. Now, since the B data
selector control input is 0, then the data passes through the to the C data selector, and
so on. The end result of this path is that a 1 passes through to X when 
To confirm that you understand this logic, follow the logic for and then
for to see that these conditions are also met.

As you can see, the result at X is dependent on the logic levels programmed into
the SRAM (static random-access memory) memory cells. These memory cells are
volatile and will need to be reinitialized along with the internal interconnections and
registers each time the FPGA is powered on. Although CPLDs have the advantage of
being non-volatile, FPGAs are much denser and faster so are used more often in mid-
dle to high-end applications.

The FPGA that is on the Altera DE-2 Development board shown in Figure 5 is
the Cyclone EP2C35F672C6N. It contains 33,216 look-up tables and has 475 pins
dedicated for input/output to external circuitry. According to the ordering Information
at the Altera Cyclone Web site, the 672 in the part number indicates the number of pins

ABCD = 0000
ABCD = 1111

ABCD = 1010.
B

A = 1,D = 0.A = 1, B = 0, C = 1
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and the letter F denotes that it is a FineLine Ball Grid Array (BGA). In order to pro-
vide for 672 pins, the BGA pins are on the bottom of the IC setup as 26 rows by 26
columns. (The four outside corner pins are left off.)

The ASIC
Once a logic design has been created and tested on an FPGA, and if there is a large
quantity demand, the design can be transferred to an application-specific integrated
circuit (ASIC). ASICs are available that are pin compatible and functionally equivalent
to their corresponding FPGA product. An important feature of ASICs is that the logic
function is hard-coded into the IC, making them non-volatile, so the user does not have
to reconfigure the IC at each power-on.
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Figure 11 Continued
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*3 Using PLDs to Solve Basic Logic Designs

So, the next obvious question is “How do I design logic with a PLD?” We will use the
Quartus® II software to design and simulate solutions modeled after Altera FPGAs.
Then, if your laboratory has the PLD programmer boards like the DE-2 shown in
Figure 5, you can test the actual operation of the FPGA with switches and lights. Even
without the boards, however, the design and simulation software is a great learning tool
for digital logic.

Figure 12 shows the flow of operations required to design, simulate, and program
an FPGA. Several methods are actually available to perform the design entry, but we
will address the two most common: graphic, and VHDL. The block (schematic) edi-
tor enables you to connect predefined logic symbols (AND, NAND, OR, etc.) to-
gether with inputs and outputs to define the logic operation that you need to implement.
The VHDL editor is a text editor that helps you to define the logic in a programming
language environment. In a text form, you specify the inputs, outputs, and logic operations
that you need to implement.

The next step performed by the software is to compile and synthesize the design.
A compiler is a language and symbol translation program that interprets VHDL state-
ments and logic symbols, then translates them into a binary file that can be used to syn-
thesize, then simulate and program the design into the FPGA IC. The compiler uses
several symbol and VHDL library files to obtain the information needed to define the
logic entered during the design entry stage. Report files are then generated that de-
scribe such things as I/O pin assignments, internal FPGA signal routing, and error
messages. Synthesizing the design is the process the software completes to develop a
model of the PLD’s internal electrical connections, which will produce the actual logic
functions that will later be simulated, then programmed into the PLD.
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*Note: The color bar on the edge of a page indicates that the material in that area covers the implementation of digital logic using
PLD hardware and software. This method of logic implementation can be omitted without compromising the thorough coverage
of digital electronics presented in this text.
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The waveform simulator provides a means to check the logic operation of your
design. To use it, draw the input waveforms using the CAD tool provided, and the pro-
gram will show the output response as if these inputs were applied to an actual FPGA.
Finally, if you have an FPGA programmer board and the waveform simulation was ac-
curate, you can program the FPGA and test it with actual inputs and outputs.

Quartus® II Software
Figures 13(a), (b), and (c) are the actual computer screens that you will see when run-
ning the Quartus® II software to implement a simple 2-input AND gate following 
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(a)

Figure 13 Computer screen displays generated by Quartus® II software for the design of a 2-input AND gate: 
(a) block editor file; (b) alternative method using the VHDL text editor file; (c) simulation waveform file.

(b)
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Declare which VHDL
library to use

Define the logic
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(c)

X is HIGH if A and B are both high
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the design flow outlined in Figure 12. A tutorial on how to run the software appears in
Section 4.

Figure 13(a) is produced by the block (schematic) editor. This method of design
allows us to define the inputs, outputs, and circuit logic simply by drawing the logic di-
agram. This screen shows a 2-input AND gate with two input pins, A and B, and one
output pin, X. This circuit was drawn by choosing each circuit component from a li-
brary of available symbols and then making each interconnection.

Figure 13(b) shows an alternate method of defining the same AND gate design
using the VHDL text editor. The VHDL program is divided into three sections: library
declaration, entity declaration, and architecture body. As with most computer lan-
guages, the first statements of the program are used to declare the library source for re-
solving and translating the language within the body of the program. In VHDL this is
called the library declaration. The IEEE standard library (ieee.std_ logic_1164.ALL)
is used most often by the VHDL compiler to translate references to the inputs, outputs,
and logic statements used in the program.

The entity declaration defines the input (a, b) and output (x) ports to the CPLD.
Note that the entity name (fig4_13) must match the file name (fig4_13.vhd) and it
appears identically in three locations in the program listing. Also note the use of the
underscore in the name because hyphens are not allowed.

The architecture body defines the internal logic operations 
that will be performed on those ports. (The symbol means that output x receives
the value of input a ANDed with input b.) The architecture name is arbitrary and it ap-
pears twice. The one used here is arc. As with the entity name, it cannot contain hy-
phens and it must start with a letter.

To make the reading of VHDL programs easier, a formatting convention has
been established. Basically, all capitalized words are VHDL-reserved keywords, and
all lower-case words and letters are variables. Even though VHDL is not case sensitive,
it is good practice for you to follow the convention presented in Figure 13(b). For ex-
ample, writing the equation as would make no dif-
ference to VHDL, but it is harder to distinguish the keyword AND from the variables
A, B.

You have probably guessed that for defining the action of a simple AND gate,
VHDL design is more time-consuming than graphic entry, but we will see later that it is
a much easier way to define logic when the circuits become more complex.

Figure 13(c) shows the simulation of the circuit produced by the waveform sim-
ulation editor. To produce that screen, the waveforms were first drawn for all possible
combinations of A and B (like building a truth table). Then as the simulation is run, the
software determines the logic state that would result at X for each combination of inputs
and shows the result as the X waveform.

X 6 =  A AND Bx 6 =  a AND b

6 =
(x 6 =  a AND b)
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Helpful 
Hint

To make programs easier to
read, all VHDL-reserved
keywords should be capital-
ized and all variables
should be lower-case.

E X A M P L E  1

Figure 14 shows five computer screens generated by the Quartus® II soft-
ware. Each screen produces, or is the result of, a different logic circuit.
Determine the Boolean equation that is being implemented in each case.

Solutions:

(a)
(b)
(c)
(d)
(e)

Y = AB + B + C

X = A + (BC)

X = AB + BC

X = AB

X = ABC

X = A + B
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Figure 14 Computer screens generated by the Quartus® II software for Example 1.

(a)

(b)

(c)
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(d)

(e)

Figure 14 Continued

*4 Tutorial for Using Altera’s Quartus® II Design and
Simulation Software

To get started, you first need to download the free Quartus® II Web Edition Software.
There are several versions available for download. The most appropriate version (and
the one used throughout this text) is version 9.1 sp2. The reason for using this version
is that when Altera migrated from version 9.1 sp2 to version 10, it needed to drop the
capability to create vector waveform files (vwf files). These files are used to produce
waveform simulations from within the Quartus® II design environment. The main reason
a designer would use version 10 (and beyond) is if they have a need to use the highest-
end CPLDs and FPGAs that weren’t supported by earlier versions of the software. If
you need that high level of development, the most current software version will be

*This section is also available as a series of podcast lectures on the text companion website.
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required. In that case however, to perform waveform simulations, Altera recommends
the use of another program called ModelSim® which runs external to the Quartus® II
environment. QSIM®, another waveform simulator, runs external to Quartus® II in ver-
sion 10 but should be internal in later versions. It will look and act just like the vector
waveform editor described in this text.

For the best overall learning experience, it is recommended that you download
and install the Quartus® II Web Edition version 9.1 sp2. This very popular version will
continue to be available to download for many years to come from the Altera archives
download site. (https://www.altera.com/download/archives)

In this tutorial we will implement a simple Boolean equation to
illustrate the steps involved to design, simulate, and program an FPGA using Altera’s
Quartus® II software.

1. Start the Altera Quartus® II software. The main screen is shown in Figure 15.

(X = AB + CD)
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Figure 15 Quartus® II main screen. (Courtesy of Altera Corporation.)

Create a New Project
All of our designs will be contained within a “Project.” Within the project we will
create our design using the Block Design Editor to draw a schematic or the Text Editor
to enter a VHDL program. We will also create a simulation file for the project to test
the operation of our circuit before it is programmed into an FPGA.

2. To create a new project:

Press Create a New Project then press Next
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Figure 16 The New Project Wizard screen (1 of 5).

Figure 17 The New Project Wizard screen (1 of 5 [Continued ]).
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The New Project Wizard screen is shown in Figure 16. The first page of the
New Project Wizard asks for the Directory, Name, and Top-Level Entity of
the project. A good place to keep all of your projects is in your
MyDocuments folder (or a removable flash drive). This figure shows a new
sub-directory named alterafiles and a working directory named boolean1.
All future FPGA work should be placed in the alterafiles subdirectory, and a
new working directory (boolean1 in this case) should be made for each new
project.

3. Next you need to fill in a meaningful name and top-level entity for your
project. I chose boolean1 as shown in Figure 17. Notice: the name
boolean1 appears on all three lines. Press Next and Yes to create the new
subdirectory.

4. The second wizard screen is shown in Figure 18. We have no additional de-
sign files to add, so press Next.
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Figure 18 The New Project Wizard screen (2 of 5).

5. The third wizard screen is shown in Figure 19. This screen will allow us to
specify the actual FPGA that we will target for our design. In the drop-down
box for the Family, select Cyclone II. Place a check in the box for Specific
device. Highlight the EP2C35F672C6 and press Next.

6. The fourth wizard screen is shown in Figure 20. We have no additional EDA
tools to use so press Next to proceed to the fifth screen.
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Figure 19 The New Project Wizard screen (3 of 5).

Figure 20 The New Project Wizard screen (4 of 5).
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7. The fifth wizard screen is shown in Figure 21. This shows a summary of all
of the choices that we have made. Press Finish to complete the New Project
Wizard.
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Figure 21 The New Project Wizard screen (5 of 5).

Create a Block Design File (bdf )
8. To draw the logic circuit for our Boolean equation, we will use the block ed-

itor to create a Block Design File by drawing the schematic for the Boolean
equation

Choose File New (see Figure 22).

9. Highlight Block Diagram/Schematic File and press OK. A blank work-
space appears. We will draw our digital logic circuit in this workspace.

10. Before drawing the logic circuit we need to name this bdf file and save it as
part of our project.

Choose File Save As and enter the File name as boolean1. Place a check
mark in the space labeled Add file to current project and press Save (see
Figure 23).

+

+

X = AB + CD.
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Draw the Digital Logic for the Boolean Equation
11. Right-click the mouse in the empty workspace.

Choose Insert Symbol and type and2 in the Name field and press OK
(see Figure 24).

+
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Figure 22 The screen used to select a new Block Diagram File.

Figure 23 Display used to save a new Block Diagram File.
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12. Drop the and2 gate in the bdf file workspace by moving your mouse to a suit-
able location and pressing the left mouse button.

13. To implement the equation we will need a total of two AND
gates and one OR gate. Repeat steps 11 and 12 for another 2-input AND gate
(and2) and a 2–input OR gate (or2).

We also have to provide four input pins for A, B, C, and D and one output pin
for X. Repeat steps 11 and 12 for four input pins (named input) and one
output pin (named output).

The bdf workspace should now look like Figure 25.

X = AB + CD
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Figure 24 Adding a 2-input AND gate to the bdf file.

Figure 25 Gates and input/output pins inserted into the bdf file.
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Make the Circuit Connections
14. Before making all of the circuit connections, pin names should be assigned

to the four inputs and one output. Double-click on the word pin_name inside
the first input pin. Enter the lowercase letter a for pin name and press OK.
This assigns the name a to that pin. Repeat for b, c, d, and x.

(Note: We use lowercase letters for input and output names to be consistent
with the convention used by the VHDL language. We will redesign this logic
using VHDL near the end of this tutorial.)

15. We will now make the circuit connections. As you move the mouse pointer
close to the end point of any symbol input or output, the pointer automati-
cally becomes a cross-hair. This is called the Smart Drawing Tool. Press and
hold the left mouse button as you drag a connection line from the a-input
symbol to the input of the first AND gate. Repeat for all of the connections
so that the bdf file looks like that shown in Figure 26.

Figure 26 The wired bdf file.
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16. To save the updated bdf file:

Choose File Save. (Notice the asterisk is removed from the file name.)

Compiling the Project
17. Now we will compile the project. In this step Quartus® II performs an

analysis and synthesis of the bdf file to make sure that there are no errors
in our logic. It then fits the design to a template of an EP2C35F672C6
FPGA. Finally, it runs an assembler and timing analyzer. To run the
compiler:

Choose Processing Start Compilation.

The compilation takes several seconds. When it is complete it should give a
message that indicates “Full compilation was successful”. (The warnings
will be resolved later when we define pin numbers for the input/output) (see
Figure 27). Press OK.

+

+
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Create a Vector Waveform File (vwf ) to Simulate the Design*
18. The Vector Waveform File (vwf ) provides a way for us to draw waveforms

that step through all possible combinations of inputs for a, b, c, and d and
produce the resulting output at x. To create a Vector Waveform File:

Choose File New Verification/Debugging Files Vector Waveform
File OK (see Figure 28).+

+++
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Figure 27 Compilation results.

*All vwf files in this text were created with Quartus version 9.1 sp2. Another alternative to vector waveform simulation is to use
ModelSim® software. This would require the creation of a VHDL testbench file that could be written after you have a firm
understanding of the VHDL language.

Figure 28 The screen used to create a new vwf file.
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Figure 29 The screen display used to save a new Vector Waveform File.

Figure 30 Screen used to set the waveform’s end time.

Figure 31 Screen used to set the waveform’s grid size.

19. Before drawing the simulation waveforms we need to name this vwf file and
save it as part of our project.

Choose File Save As and enter a file name of boolean1. Place a check
mark in the space labeled Add file to current project and press Save (see
Figure 29).

+

20. To build this simulation file we first need to specify an end time of 16 ms and
a grid size of 1 ms for our waveform display:

Choose Edit End time 16 us OK. Then:

Choose Edit Grid Size Period 1 us OK (see Figures 30
and 31).

777++

777+
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Figure 32 The vwf screen showing a 16 ms end time and a 1 ms grid size.

Figure 33 Using the Node Finder utility to list inputs and outputs for the vwf file.

21. To see the entire 16 ms display:

Choose View Fit In Window.

Your vwf screen should look like Figure 32.

+

Add the Inputs and Outputs to the Waveform (vwf ) Display
22. We now need to add the inputs and outputs that we want to simulate on the

waveform display. The Quartus® II software provides a helpful utility to do
this called the “Node Finder.”

Choose View Utility Windows Node Finder (see Figure 33).++

23. In the Node Finder pop-up window that appears:

Choose Filter: Design Entry (All Names).

Press List (the display should look like Figure 34).
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24. Next we will use the computer mouse to drag the input and output names
from the Node Finder screen to the boolean1.vwf screen. You can do this by
using the mouse to drag each individual input/output with the left mouse
button, or you can highlight all five names by holding the CTRL key while
you left-click on each of the five input/output names, then drag them all at
once (see Figure 35).

Figure 35 Dragging the input/output names from the Node Finder screen to the 
vwf screen.
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Figure 34 The Node Finder screen listing all inputs and outputs of the project.

Create Timing Waveforms for the Inputs
25. In order to test all of the possible combinations for our four inputs we need

to create a series of timing waveforms that step through all 16 possible
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Figure 36 The a-waveform drawn as a clock with a period of 2 ms.

Figure 37 Waveforms showing a binary count on the a, b, c, and d inputs of the vwf file.

combinations of input logic levels. The easiest way to do this is to form a
binary counter that counts from 0000 up to 1111 just like we do with truth 
tables.

In the vwf screen, left-click on the first input, a, to highlight it.

Choose Edit Value Clock.

Enter a period of 2 us.

Press OK.

The a-waveform is shown in Figure 36.

++
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26. To draw the b-waveform as a clock with a period of 4 ms, highlight the b
input, then:

Choose Edit Value Clock.

Enter a period of 4 us.

Press OK.

27. Repeat for the c-waveform (8 us) and the d-waveform (16 us). When com-
pleted, the vwf screen with all four clock waveforms should look like
Figure 37.

++

28. Save the vwf file:

Choose File Save. (Notice the asterisk is removed from the file name.)+
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Perform a Functional Simulation of the x-Output
29. Now that we have the input stimulus defined, the Quartus® II software can

use those inputs to determine the level at x for each combination of inputs. A
functional simulation shows the output waveforms without taking into con-
sideration propagation delays of the internal circuitry. This gives us a simple
view of the predicted output so we can check design results.

Choose Assignments Settings.

Then on the left side of the window shown in Figure 38 highlight Simulator
Settings, and for Simulation Mode choose Functional OK. Now to
create a netlist file to enable the simulation:

Choose Processing Generate Functional Simulation Netlist OK.++

+

+
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Figure 38 The Settings window for specifying the Functional Simulation mode.

30. To process the simulation:

Choose Processing Start Simulation.

After a few moments a message stating “Simulation was successful” should
appear.

Press OK.

The simulation waveforms are shown in Figure 39. (Note: You may have to
expand the size of the Simulation Waveforms to suit your needs and choose
View Fit in Window to see the entire 16 ms waveform.) According to
the Boolean equation X should be HIGH if A AND B are
both HIGH OR if C AND D are both HIGH. Study the waveforms to prove
to yourself that the simulation shows a valid result.

X = AB + CD,
+

+
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Programming the FPGA Using the Altera Development 
and Education Board*
The next step in our development process is to program our logic function into an
actual FPGA and test its operation using input switches and an output LED. The de-
velopment board chosen to perform this task is the Altera DE2. This board has an
Altera EPC2C35F672C6 FPGA along with several other I/O devices and memory
circuits.

Assigning pins:
31. Previously, when the compiler determined the logic necessary to implement

our Boolean equation, it assigned arbitrary pins to our a, b, c, and d inputs
and our x output. However, the DE2 board has several switches, pushbuttons,
and LEDs hard-wired to specific pins on the FPGA. Therefore, to exercise
our FPGA, we need to assign those specific pin numbers to our inputs and
output. Table 1 shows a partial list of the pin connections on the FPGA that
are hard-wired directly to the I/O on the DE2 board. (A complete list is pro-
vided in the DE2 users manual as an Excel .csv file.)
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Figure 39 Results of the simulation for the Boolean equation X = AB + CD.

*The DE2 board is demonstrated in this chapter, but any development board built around an Altera FPGA or CPLD will work.

TABLE 1 EPC2C35F672C6 FPGA Pin Assignments to the DE2 Board (Partial List)

Input Switches Output LEDs

Switch Name FPGA Pin Number LED Number FPGA Pin Number

SW0 A N25 LEDR0 X AE23
SW1 B N26 LEDR1 AF23
SW2 C P25 LEDR2 AB21
SW3 D AE14 LEDR3 AC22
SW4 AF14 LEDR4 AD22
SW5 AD13 LEDR5 AD23
SW6 AC13 LEDR6 AD21
SW7 C13 LEDR7 AC21
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The pin numbering scheme used in Table 1 may seem a little unusual at
first, but if you look at the data sheet for our FPGA you see that the IC
package is a BGA (Ball Grid Array) set up as 26 rows by 26 columns.
The columns are labeled sequentially from 1 to 26, but the rows use the
letters A through Y (skipping I, O, Q, and X) then AA, AB, AC, AD, AE,
and AF.

Figure 40 shows a close-up photograph of the switches and LEDs we will be
using. [Inputs a and b are shown LOW; inputs c and d are shown HIGH. The
red LED used for output x (LEDR0) is just above switch SW0.]

A

X

BCD

Figure 40 DE2 board switches and LED used for testing our Boolean logic.
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Pin assignments are made by using the Assignment Editor.

Choose Assignments Pins.

The pin assignment window is shown in Figure 41.

In the Location column, enter the pin numbers from Table 1 for a, b, c, d,
and x. (Shortcut: Just type N25, N26, etc. in each location.) The completed
table is shown in the bottom section of Figure 42. The top section of Figure
42 shows that the pin assignments were made automatically to the schematic
bdf file.

Re-compile the project:
32. Now that we have defined specific pin assignments, we need to re-compile

the project so that Quartus® will map our logic in the optimum FPGA loca-
tion and connect the internal input/output to the correct external pins.

Choose Processing Start Compilation.

After a successful compilation, we are ready to program the FPGA.

+

+
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Figure 41 The pin assignments window.

Program the FPGA on the DE2 board:
33. The final step is to program the FPGA that is on our DE2 board. If this is the

first time that this host computer has been used with this software, you will
need to follow the instructions in the DE2 user’s manual for installing the

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN

Pin
assignments
show in
bdf file

Enter pin numbers here.

Figure 42 The completed pin assignments (bottom) and bdf file (top) showing assigned pins.
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Figure 43 The programmer window for downloading our Boolean.sof file to the FPGA via
the USB-Blaster cable using the JTAG programming mode.

USB driver for the DE2 board. This driver facilitates communications with
the JTAG interface that is provided on the board. The acronym JTAG stands
for Joint Test Action Group. This is an IEEE standard that defines a method
for testing and transferring data into digital circuitry.

Connect the USB cable from your board to the host computer and apply
power to the DE2.

Choose Tools Programmer.

The programmer window is shown in Figure 43. If this is the first time using
this host computer for programming FPGAs, you may have to choose
Hardware Setup to specify that you are using the USB-Blaster. Also be
sure to select Mode: JTAG.

+

Choose Start in the programmer window to begin the programming process.

When the Progress window shows 100%, the device programming is com-
plete, and it is time to test our logic.

Test the logic on the DE2 board:
34. Think back to the Boolean equation that we are implementing: 

This means that if A and B are both HIGH or C and D are both HIGH, the
LED at X will come on. Test the logic in the FPGA by sliding the appropri-
ate switches. You should see the LED only comes on for a HIGH A and B or
a HIGH C and D.

VHDL Design Entry
In this section, we will create the design for boolean1 using the VHDL
text editor instead of the block design (schematic) editor. After we define the inputs, out-
puts, and Boolean equation using the VHDL text editor, we will then recompile the
project and check the simulation to be sure that the same output results are implemented.

(Note: The following steps assume that you are still working in the boolean1 project
created in steps 1–34. If not, reopen the project by choosing:

File Recent Projects c: \ ... \ booleanl.77

(X = AB + CD)

X = AB + CD.
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[If this is a new project to be implemented using VHDL, go back to steps 1–7 to create
a new project first.])

35. To get a blank VHDL Text Editor screen:

Choose File New VHDL File OK (see Figure 44).+++

PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS WITH VHDL DESIGN

Figure 44 Window used to get a blank VHDL text editor screen.

36. Type in the VHDL program for as shown in Figure 45.X = AB + CD

Figure 45 The VHDL program listing.

37. To save the VHDL program as part of the current project:

Choose File Save As File name: booleanl.

Add a check mark next to: Add file to current project then press Save (see
Figure 46).

++
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38. Now we want to compile the program to check for errors. However, since we
have already compiled a design for this project using the Block Design File
booleanl.bdf we need to remove it from the current project or else there will
be a conflict error because the project won’t know which design to use. To
remove the bdf file from the project:

Choose Assignments Settings.

Highlight the Category Files.

Highlight the File name boolean1.bdf then press Remove OK (see
Figure 47).

(Note: This does not delete the bdf file from your computer; it only keeps it
from being compiled with the vhd file and eliminates the conflict that would
occur. Later you could use the Assignments Settings to Add the bdf file
back and remove the vhd file.)

+

+
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Figure 46 Saving the VHDL program as part of the current project.

Figure 47 Removing the bdf file from the current project.
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39. To compile the project:

Choose Processing Start Compilation.

After a successful compilation press OK.

40. Now you can follow the steps previously outlined to perform a simulation
and then program the FPGA IC.

(Note: The pin assignments previously made for this project will apply to the
design created using VHDL. Also, you don’t need to re-create the Vector
Waveform File boolean1.vwf.) To open the previously created one:

Choose File Open File Name: boolean1.vwf Open. (Note: Files
of type: All files must be Highlighted to see the vwf files as a choice.) Then
follow the steps outlined previously for performing a simulation.)

5 FPGA Applications

The logic design problems in this section will be solved using the tools provided in the
Quartus® II software program. If you haven’t already done so, you must work step by
step through the tutorial instructions presented in Section 4. In each of the examples
that follow, your goal is to design the logic circuit, perform a simulation of your cir-
cuit, and then, if you have a programmer board, you should download your results and
test it on an actual FPGA with switches and LEDs.

+++

+

E X A M P L E  2

Use Altera Quartus® II software to design the FPGA logic to implement the
Boolean equation 

(a) Design the logic using the block editor to create a Block Design File
(bdf) called ex4_2.bdf.

(b) Test the operation of the CPLD logic by using the waveform editor to
create a Vector Waveform File (vwf) called ex4_2.vwf. The simulation
should show all possible combinations of inputs.

Solution: The results of the design are shown in Figures 48(a) and (b).
(The project files for all examples can be found on the text companion 
website.)

X = AB + AB.

(a)

Figure 48 Solution to the equation (a) Block Design File; (b)

Vector Waveform File.

X = AB + AB:
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(b)

Figure 48 Continued

E X A M P L E  3

Use Altera Quartus® II software to design the FPGA logic to implement the
Boolean equation 

(a) Design the logic using the block editor to create a Block Design File
(bdf) called ex4_3.bdf.

(b) Test the operation of the FPGA logic by using the waveform editor to
create a Vector Waveform File (vwf) called ex4_3.vwf. The simulation
should show all possible combinations of inputs.

Solution: The results of the design are shown in Figures 49(a) and (b).
(The bdf and vwf files can also be found on the text companion website.)

X = ABC.

(a)

Figure 49 Solution to the equation (a) Block Design File; 

(b) Vector Waveform File.

X = ABC:
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Figure 49 Continued

E X A M P L E  4

Use Altera Quartus® II software to design the FPGA logic to implement the
Boolean equation 

(a) Design the logic using the block editor to create a VHDL File (vhd)
called ex4_4.vhd.

(b) Test the operation of the FPGA logic by using the waveform editor to
create a Vector Waveform File (vwf) called ex4_4.vwf. The simulation
should show all possible combinations of inputs.

Solution: The results of the design are shown in Figures 50(a) and (b).
(The vhd and vwf files can also be found on the text companion website.)

X = ABC + ABC.

(a)

Figure 50 Solution to the eqution (a) VHDL program; (b)

Vector Waveform File.

X = ABC + ABC:

(b)
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Summary

In this chapter, we have learned that

1. PLDs can be used to replace 7400- and 4000-series ICs. They contain
the equivalent of thousands of logic gates. CAD tools are used to configure
them to implement the desired logic.

2. The two most common methods of PLD design entry are (graphic)
entry and VHDL entry. To use graphic entry, the designer uses CAD
tools to draw the logic to be implemented. To use VHDL entry, the designer
uses a text editor to write program descriptions defining the logic to be
implemented.

3. PLD design software usually includes a logic simulator. This feature
allows the user to simulate levels to be input to the PLD, and it shows the
output simulation to those input conditions.

4. Most PLDs are erasable and reprogrammable. This allows users to test
many versions of their logic design without ever changing ICs.

5. Basically, there are four types of PLDs: SPLDs, CPLDs, FPGAs, and
ASICs. SPLDs use the PAL or PLA architecture. They consist of several
multiinput AND gates whose outputs feed the inputs to OR gates and memory
flip-flops. CPLDs consist of several interconnected SPLDs. FPGAs are the
most dense form of PLD, solving logic using a look-up table to determine
the desired output. ASICs are functionally equivalent to FPGAs but their
logic is permanently hard-coded into the IC.

Glossary

Architecture Body: The section in a VHDL program defining the logic functions to
be implemented.

ASIC (application-specific integrated circuit): ASICs are functionally equiva-
lent and pin compatible with their sister FPGA. Used for large quantity

(b)

Figure 50 Continued
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applications, their logic is hard-coded, making them a non-volatile ver-
sion of an FPGA.

Block Editor: A software tool provided as part of the PLD development package. It
provides a way to enter designs by drawing a schematic to create a Block
Design File.

CAD: Computer-Aided Design. This type of design uses a computer to aid in the
drawing and logic development of a logic circuit. It eliminates many of the
manual, time-consuming tasks once associated with logic design.

CPLD: Complex Programmable Logic Device. A PLD consisting of more than 100
interconnected SPLDs. A single chip can be programmed to implement
hundreds of logic equations and operations.

Compiler: A language translation software module used by CPLD development sys-
tems to convert a schematic or VHDL code into a binary file to represent
the digital logic to be implemented.

Entity Declaration: The section of a VHDL program defining the input and output
ports.

FPGA: Field-Programmable Gate Array: The most dense form of PLD. It uses
a look-up table to resolve its logic operations. Its main disadvantage is
that most FPGAs are volatile, losing their memory when power is
removed.

Library Declaration: The section of a VHDL program declaring the software li-
braries to be included in the program. These libraries are used by the com-
piler to resolve references to the various program commands.

Look-Up Table: Used by FPGA logic to determine the output level of a circuit based
on the combinations of logic levels at its inputs. It is constructed as a truth
table except that its outputs are only HIGH for specific combinations of in-
puts solving the given logic product terms.

Nonvolatile: Internal memory is maintained even when power is removed from
the IC.

PAL: Programmable Array Logic: Its basic structure contains multiple inputs to
several AND gates, the outputs of which are connected to a series of
fixed ORs.

PLA: Programmable Logic Array: Its basic structure contains multiple inputs to
several AND gates, the outputs of which are connected to a series of pro-
grammable ORs.

PLD: Programmable Logic Device: An IC containing thousands of undefined logic
functions. A software development tool is used to specify (i.e., program)
the specific logic to be implemented by the IC. PLD is the general term
used to represent PLAs, PALs, SPLDs, CPLDs, and FPGAs.

Product Terms: Input variables that are ANDed together (e.g., ABC,

Schematic Capture: A method used by PLD software to input a design that is defined
by a schematic.

SPLD: Simple Programmable Logic Devices: A programmable, digital logic IC
containing several PAL or PLA structures with internal interconnections
and memory registers.

ABC).
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Sum-of-Products (SOP): Two or more product terms that are ORed together (e.g.,

Synthesize: The creation of a model of the PLD’s internal electrical connections that
will produce the actual logic functions defined by the user.

VHDL: VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
A programming language used by PLD software to define a logic design by
specifying a series of I/O definitions and logic equations.

VHDL Editor: A software program facilitating entry of text-based instructions com-
prising the VHDL program.

Waveform Simulator: The part of a PLD software development tool that allows users
to simulate the input of several signals to a logic circuit and observe its re-
sponse in a Vector Waveform File.

Problems

Section 1
1. How does programmable logic differ from discrete digital logic like
the 7400 series?

2. What are two common ways to configure or define logic to PLD pro-
gramming software?

3. What does HDL stand for in the acronym VHDL?

4. List the six steps in the PLD design flow.

5. How many different ICs would it take to implement the following
equations?

(a)
(b)

6. How is pin 1 identified in the PLCC package style used for the PLD
in Figure 4?

7. What is the purpose of the PLD programmer boards shown in
Figure 5?

Section 2
8. How many product terms are in the following equations?

(a)
(b)
(c)

9. How does a PLA differ from a PAL?

10. Redraw the PLA circuitry of Figure 8 to implement the following SOP
equations:

(a)
(b)

11. Why is it advantageous to use a CPLD or ASIC that is nonvolatile?

Y = AB + AB

X = AB + A B + AB

Z = ABC + ACD + BCD

Y = ABC + BC

X = AC + BC + AC

Y = AB + BC + C + D

X = AB + BC

ABC + ACD + BCD).
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12. Refer to the data sheets on the manufacturer’s Web site to determine
the number of usable gates and macrocells in each of the following 
CPLDs:

(a) Altera MAX EPM7128S

(b) Xilinx XC95108

13. Instead of interconnecting logic gates, the FPGA solves its logic re-
quirements by using what method?

14. Draw a 2-input look-up table (LUT) similar to Figure 11(b) for the
equation 

15. Because most FPGAs are volatile, what must be done each time they
are powered up?

Section 3
16. What are the two most common methods of design entry for FPGA de-
velopment software?

17. What is the function of the compiler in FPGA development software?

18. What is the purpose of the three pin stubs in the bdf file shown in
Figure 13(a)?

19. VHDL allows the user to enter the logic design via a ___________ ed-
itor.

20. Define the purpose of the following three VHDL program segments:

(a) Library

(b) Entity

(c) Architecture

21. Write the VHDL entity declare for a three-input AND gate.

22. Write the VHDL architecture for a three-input AND gate.

23. Draw the logic circuit to be implemented by the following VHDL ar-
chitecture body:

ARCHITECTURE arc OF p4_23 IS

BEGIN

END arc;

FPGA Problems

The following problems will be solved using the Altera Quartus® II software. You will
be asked to solve the design using the block design entry method or the VHDL design
entry method. In either case you will demonstrate the circuit operation by producing a
Vector Waveform File (vwf) that exercises all possible inputs to your circuit. The final
step, if you have a programmer board like the DE-2, is to download your design to an
FPGA and demonstrate its operation to your instructor.

z 6 =  NOT (b AND c) OR NOT (a OR c);

y 6 =  (a OR NOT b) AND NOT (b AND c);

x 6 =  (a AND (b OR c));

X = A B + AB.

V
H

D
L
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Section 4
C1. Use an FPGA to implement the following Boolean equation: 

(a) Create a Block Design File called prob_c4_1.bdf to define the logic
circuit.

(b) Create a Vector Waveform File called prob_c4_1.vwf to test the
operation of your design by showing the output waveform for all possible
input conditions.

(c) Build a truth table for the Boolean equation.

(d) Download the design to the FPGA on your programmer board
and demonstrate its operation by monitoring the output LED as you
step through all switch combinations shown in your truth table from
part (c).

C2. Use an FPGA to implement the following Boolean equation:

(a) Create a Block Design File called prob_c4_2.bdf to define the logic
circuit.

(b) Create a Vector Waveform File called prob_c4_2.vwf to test the
operation of your design by showing the output waveform for all possible
input conditions.

(c) Build a truth table for the Boolean equation.

(d) Download the design to the FPGA on your programmer board
and demonstrate its operation by monitoring the output LED as you
step through all switch combinations shown in your truth table from
part (c).

C3. Use an FPGA to implement the following Boolean equation:

(a) Create a Block Design File called prob_c4_3.bdf to define the logic
circuit.

(b) Create a Vector Waveform File called prob_c4_3.vwf to test the
operation of your design by showing the output waveform for all possible
input conditions.

(c) Build a truth table for the Boolean equation.

(d) Download the design to the FPGA on your programmer board
and demonstrate its operation by monitoring the output LED as you
step through all switch combinations shown in your truth table from
part (c).

C4. Use an FPGA to implement the following Boolean equation:

(a) Create a VHDL File called prob_c4_4.vhd to define the logic circuit.

(b) Create a Vector Waveform File called prob_c4_4.vwf to test the
operation of your design by showing the output waveform for all possible
input conditions.

(c) Build a truth table for the Boolean equation.

(d) Download the design to the FPGA on your programmer board
and demonstrate its operation by monitoring the output LED as you
step through all switch combinations shown in your truth table from
part (c).

X = ABC + A BC.

X = ABC.

X = AB + A B.

X = AB.

160



C5. Use an FPGA to implement the following Boolean equation:

(a) Create a VHDL File called prob_c4_5.vhd to define the logic circuit.

(b) Create a Vector Waveform File called prob_c4_5.vwf to test the
operation of your design by showing the output waveform for all possible
input conditions.

(c) Build a truth table for the Boolean equation.

(d) Download the design to the FPGA on your programmer board
and demonstrate its operation by monitoring the output LED as you
step through all switch combinations shown in your truth table from
part (c).

X = AB + C D.
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Answers to Odd-Numbered Problems

1. The 7400-series uses hard-wired logic. The
designer must use a different IC for each
logic function. Programmable logic
contains thousands of logic gates that can
be custom configured by the designer to
perform any logic desired.

3. Hardware Description Language

5. (a) 3 (b) 5

7. They receive programming information
from a PC and program the on-board
FPGA, which can then be tested with
actual I/O signals.

9. The PLA provides programmable OR gates
for combining the product terms.

11. So it will not lose its programmed logic
design when power is removed

13. The look-up table method

15. They must be reprogrammed.

17. It translates the information from the
design entry stage into a binary file that is
later used to program the CPLD.

19. Text

21. ENTITY and3 IS
PORT(

A, B, C:IN bit;
X :OUT bit);

END and3;

23.

(a) A

B
C

X

(b)
A

B

C

Y

(c)
B

C

A

Z
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Boolean Algebra and 
Reduction Techniques

OUTLINE

1 Combinational Logic
2 Boolean Algebra Laws and Rules
3 Simplification of Combinational Logic Circuits Using Boolean Algebra
4 Using Quartus® II to Determine Simplified Equations
5 De Morgan’s Theorem
6 Entering a Truth Table in VHDL Using a Vector Signal
7 The Universal Capability of NAND and NOR Gates
8 AND–OR–INVERT Gates for Implementing Sum-of-Products Expressions
9 Karnaugh Mapping

10 System Design Applications

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Write Boolean equations for combinational logic applications.
• Utilize Boolean algebra laws and rules for simplifying combinational logic

circuits.
• Apply De Morgan’s theorem to complex Boolean equations to arrive at simpli-

fied equivalent equations.
• Design single-gate logic circuits by utilizing the universal capability of NAND

and NOR gates.
• Troubleshoot combinational logic circuits.
• Implement sum-of-products expressions utilizing AND–OR–INVERT gates.
• Utilize the Karnaugh mapping procedure to systematically reduce complex

Boolean equations to their simplest form.
• Describe the steps involved in solving a complete system design application.

The companion website for this text is www.pearsonhighered.com/kleit

From Chapter 5 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.

z
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INTRODUCTION

Generally, you will find that the simple gate functions AND, OR, NAND, NOR, and
INVERT are not enough by themselves to implement the complex requirements of
digital systems. The basic gates will be used as the building blocks for the more com-
plex logic that is implemented by using combinations of gates called combinational
logic.

1 Combinational Logic

Combinational logic employs the use of two or more of the basic logic gates to form
a more useful, complex function. For example, let’s design the logic for an automobile
warning buzzer using combinational logic. The criterion for the activation of the warn-
ing buzzer is as follows: The buzzer activates if the headlights are on and the driver’s
door is opened or if the key is in the ignition and the door is opened.

The logic function for the automobile warning buzzer is illustrated symbolically
in Figure 1. The figure illustrates a combination of logic functions that can be written
as a Boolean equation in the form

which is also written as

This equation can be stated as “B is HIGH if K and D are HIGH or if H and D are
HIGH.”

B = KD + HD

B = K and D  or   H and D

K

D

B = KD + HD

Key in ignition

Door opened

B Warning
buzzer

H

D

Headlights on

Door opened

Figure 1 Combinational logic requirements for an automobile warning buzzer.

When you think about the operation of the warning buzzer, you may realize that
it is activated whenever the door is opened and either the key is in the ignition or the
headlights are on. If you can realize that, you have just performed your first Boolean
reduction using Boolean algebra. (The systematic reduction of logic circuits is per-
formed using Boolean algebra, named after the nineteenth-century mathematician
George Boole.)

The new Boolean equation becomes and (K or H), also written as
(Notice the use of parentheses. Without them, the equation would

imply that the buzzer activates if the door is opened with the key in the ignition or any
time the headlights are on, which is invalid. Parentheses are always re-
quired when an OR gate is input to an AND gate.) The new equation represents the
same logic operation, but is a simplified implementation, because it requires only two
logic gates, as shown in Figure 2.

B Z DK + H.

B = D(K + H).
B = D

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES
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B = D(K + H)

Door opened B Warning
buzzer

K

H

Key in ignition

Headlights on

D

An OR gate input
to an AND gate
requires parentheses.

Figure 2 Reduced logic circuit for the automobile buzzer.

(a)

Figure 3 Design for comparing the two forms of the automobile buzzer circuit:
(a) VHDL program; (b) Symbol file; (c) Vector waveform file.

VHDL Proof of the Automobile Buzzer Circuit Reduction
An easy way to prove to yourself that the reduced circuit of Figure 2 is equivalent to
the original circuit in Figure 1 is to describe each equation in a VHDL program and
then run a simulation of all possible input conditions. The VHDL program is listed in
Figure 3(a). The original circuit is described using the variable name “b_original” and
the variable name for the reduced circuit is “b_reduced.” VHDL is not case-sensitive,
but it is common practice to use a formatting scheme that capitalizes keywords like
BEGIN, AND, OR, and NOT and uses lowercase for variables like k, d, and h. Also,
since VHDL equations have no order of precedence, it is mandatory to use parentheses
to maintain proper grouping. The double hyphen (--) in the program is used to begin a
comment. Comments are used for program documentation and are ignored by the
VHDL compiler.

Helpful 
Hint

Use parentheses in VHDL
equations to maintain
order of operations.V

H
D

L

After you compile a .bdf or .vhd design you can create a block symbol file (.bsf).
A .bsf file shows the inputs and outputs in a symbolic block diagram form. To create a
block symbol file:
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Figure 3 Continued

(b)

{

The output waveforms are identical (c)

Choose File Create/Update Create Symbol files.

The block symbol file in Figure 3(b) shows the inputs (k, d, and h) and outputs
(b_original and b_reduced).

The simulation file is shown in Figure 3(c). Notice in the simulation that the
waveform for b_reduced is identical to b_original, proving equality.

++

E X A M P L E  1

Write the Boolean logic equation, and draw the logic circuit and truth table
that represents the following function: A bank burglar alarm (A) is to acti-
vate if it is after banking hours (H) and the front door (F) is opened or if it
is after banking hours (H) and the vault door is opened (V).

Solution: The logic circuit and truth table are shown in
Figure 4.

A = HF + HV.

Team
Discussion

What other applications of
Boolean logic can you think
of in the home, automobile,
industry, and so on?
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E X A M P L E  2

Using common reasoning, reduce the logic function described in Example
1 to a simpler form.

Solution: The alarm is activated if it is after banking hours and if either the
front door is opened or the vault door is opened (see Figure 5). The simpli-
fied equation is written as

(Notice the use of parentheses.) A = H (F + V)

A
B

X

C
D

E

Figure 6 Combinational logic circuit for Example 3.

After hours A Burglar
alarm

F

V

Front door open

Vault door open

H

Figure 5 Solution to Example 2.

E X A M P L E  3

Write the Boolean equation for the logic circuit shown in Figure 6.

H 
0 
0 
0 
0 
1 
1 
1 
1

F 
0 
0 
1 
1 
0 
0 
1 
1

V 
0 
1 
0 
1 
0 
1 
0 
1

A 
0 
0 
0 
0 
0 
1 
1 
1

F

After hours

Front door open

A Burglar
alarm

H

V

After hours

Vault door open

H

Figure 4 Solution to Example 1.

Solution: X = (AB + CD)E

Team
Discussion

How would this answer
change if the parentheses
were dropped?
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Full level (F )Water Reclamation Tank

Mid level (M)

Process Monitoring Station

Red (R)

Pressure (P)

Opacity (C)

PH level (H)

Green (G)

Blue (B)

G BR

E X A M P L E  4

Figure 7 shows a gray water reclamation tank having five inputs and three
outputs. The inputs are used to monitor HIGH/LOW levels on the quanti-
ties shown, and the outputs are used to illuminate the color lights in the
Process Monitoring Station. The system is designed to capture gray water
before it goes into a septic system. Gray water is the water drained in the
bathroom sink or shower and water drained in a washing machine. This re-
cycled water can then be used in the toilet or for landscape irrigation. In
this example, logic gates are connected to the figure to turn on the blue
light (B) if the water is at the mid level (M) and there is a HIGH pressure
(P) or if the water is at the mid level (M) and there is a HIGH opacity (c).
(Opacity is a measure of water clarity.)

(a) Reduce that Boolean equation to a simpler form.

(b) Write the Boolean equation for the new logic that would turn on the red
light (R) if the PH level (H) or the Opacity (C) or the Pressure (P) are
HIGH while the water is at the mid level (M). (The word while indicates
an AND function).

(c) Write the Boolean equation for the new logic that would turn on the
green light (G) if the PH level (H) or the Pressure (P) are HIGH while
the water is at the mid level (M) or the full level (F).

(d) Write the Boolean equation for the new logic that would turn on the
blue light (B) if the Opacity (C) and the pressure (P) are HIGH while
the water is at the mid level (M) or the full level (F).

Figure 7 Gray water reclamation tank with input sensors and a process monitoring sta-
tion.
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2 Boolean Algebra Laws and Rules

Boolean algebra uses many of the same laws as those of ordinary algebra. The OR
function is Boolean addition, and the AND function is
Boolean multiplication. The following three laws are the same for Boolean algebra as
they are for ordinary algebra:

1. Commutative law of addition: and multiplication:
These laws mean that the order of ORing or ANDing does not matter.

2. Associative law of addition: and multipli-
cation: These laws mean that the grouping of several vari-
ables ORed or ANDed together does not matter.

3. Distributive law: and
These laws show methods for expanding an equa-

tion containing ORs and ANDs.
AC + AD + BC + BD.

(A + B)(C + D) =A(B + C) = AB + AC,

A(BC) = (AB)C.
A + (B + C) = (A + B) + C,

AB = BA.A + B = B + A,

(X = AB)(X = A + B)

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Solutions:

(a) (c)
(b) (d) B = CP(M + F)R = (H + C + P)M

G = (H + P)(M + F)B = M(P + C)

AC + AD + BC + BD

(A + B)(C + D) =

I

F
O

L

A

B
X = A + B

Is
equivalent

to:

B

A
X = B + A

Figure 8 Using the commutative law of addition to rearrange an OR gate.

A

B

C

X = ABC
Is

equivalent
to:

B

C

A

X = BCA

Figure 9 Using the commutative law of multiplication to rearrange an AND gate.

A
B

C
X = (A + B) + C

A

B
C

X = A + (B + C)Is
equivalent

to:

Figure 10 Using the associative law of addition to rearrange the grouping of OR gates.

A
B

C
X = (AB)C

A

B
C

X = A(BC)Is
equivalent

to:

Figure 11 Using the associative law of multiplication to rearrange the grouping of AND gates.

These three laws hold true for any number of variables. For example, the com-
mutative law can be applied to to form the equivalent equation

You may wonder when you will need to use one of the laws. Later in this chap-
ter, you will see that by using these laws to rearrange Boolean equations, you will be
able to change some combinational logic circuits to simpler equivalent circuits using
fewer gates. You can gain a better understanding of the application of these laws by
studying Figures 8 to 13.910111213

X = BC + A + D.
X = A + BC + D

Helpful 
Hint

The distributive law shown
for four variables is
sometimes called the FOIL
method (first, outside,
inside, last).
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After hours B = AD Burglar
alarmDoor open

A

D

B = A · 0 = 0 Burglar
alarm

A

0

(a) (b)

Figure 14 (a) Logic circuit for a simple burglar alarm: (b) disabling the burglar
alarm by making D = 0.

In addition to the three basic laws, several rules concern Boolean algebra. The
rules of Boolean algebra allow us to combine or eliminate certain variables in the equa-
tion to form simpler equivalent circuits.

The following example illustrates the use of the first Boolean rule, which states
that anything ANDed with a 0 will always output a 0.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

E X A M P L E  5

A bank burglar alarm (B) will activate if it is after banking hours (A) and
someone opens the front door (D). The logic level of the variable A is 1
after banking hours and 0 during banking hours. Also, the logic level of the
variable D is 1 if the door sensing switch is opened and 0 if the door sens-
ing switch is closed. The Boolean equation is, therefore, The
logic circuit to implement this function is shown in Figure 14(a). 

B = AD.

A
C

X = AC + AD + BC + BD

B
D

B
C

A
D

X = (A + B)(C + D)

C
D

Is
equivalent

to:

A
B

Figure 13 Using the distributive law to form an equivalent circiut (FOIL method).

X = A(B + C)
A

B
C

AB

X = AB + AC
AC

A
B

C

Is
equivalent

to:

Figure 12 Using the distributive law to form an equivalent circiut.

Later, a burglar comes along and puts tape on the door sensing switch,
holding it closed so that it always puts out a 0 logic level. Now the Boolean
equation becomes because the door sensing switch is
always 0. The alarm will never sound in this condition because one input to
the AND gate is always 0. The burglar must have studied the Boolean rules
and realized that anything ANDed with a 0 will output a 0, as shown in
Figure 14(b). 

B = A � 0(B = AD)

Example 5 helped illustrate the reasoning for Boolean Rule 1. The other nine
rules can be derived using common sense and knowing basic gate operation.

Rule 1: Anything ANDed with a 0 is equal to 0 (A � 0 = 0).
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Rule 2: Anything ANDed with a 1 is equal to itself From Figure 15, we
can see that, with one input tied to a 1, if the A input is 0, the X output is 0; if A is l, X
is 1. Therefore, X is equal to whatever the logic level of A is (X = A).

(A � 1 = A).

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

1
1
1

0
1

X
A

X = A · 1 = A
1

A
0
1

X equals A

Figure 15 Logic circuit and truth table illustrating Rule 2.

0
0
0

0
1

X
A

X = A + 0 = A
0

A
0
1

X equals A

Figure 16 Logic circuit and truth table illustrating Rule 3.

1
1
1

1
1

X
A

X = A + 1 = 1
1

A
0
1

X equals 1

Figure 17 Logic circuit and truth table illustrating Rule 4.

A
0
1

0
1

X
A

X = A · A = A
A

A
0
1

X equals A

Figure 18 Logic circuit and truth table illustrating Rule 5.

A
0
1

0
1

X
A

X = A + A = A
A

A
0
1

X equals A

Figure 19 Logic circuit and truth table illustrating Rule 6.

Rule 3: Anything ORed with a 0 is equal to itself In Figure 16, be-
cause one input is always 0, if and if Therefore, X is
equal to whatever the logic level of A is (X = A).

A = 0, X = 0.A = 1, X = 1,
(A + 0 = A).

Rule 4: Anything ORed with a 1 is equal to 1 In Figure 17, because
one input to the OR gate is always 1, the output is always 1, no matter what A is
(X = 1).

(A + 1 = 1).

Rule 5: Anything ANDed with itself is equal to itself In Figure 18, be-
cause both inputs to the AND gate are A, if and 1 equals 1, and if 
and 0 equals 0. Therefore, X is equal to whatever the logic level of A is (X = A).

A = 0, 0A = 1, 1
(A � A = A).

Rule 6: Anything ORed with itself is equal to itself In Figure 19, be-
cause both inputs to the OR gate are A, if or 1 equals 1, and if or 0
equals 0. Therefore, X is equal to whatever the logic level of A is (X = A).

A = 0, 0A = 1, 1
(A + A = A).

Rule 7: Anything ANDed with its own complement equals 0. In Figure 20, because
the inputs are complements of each other, one of them is always 0. With a zero at the
input, the output is always 0 (X = 0).

Helpful 
Hint

You should make sense of
these 10 rules—not simply
memorize them.
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A
1
0

0
0

X
A

X = A · A = 0
A

A
0
1

X equals 0

Figure 20 Logic circuit and truth table illustrating Rule 7.

A
1
0

1
1

X
A

X = A + A = 1
A

A
0
1

X equals 1

Figure 21 Logic circuit and truth table illustrating Rule 8.

A
0
1

0
1

X

X = A = AA

A
1
0

X equals A

A
0
1

A

Figure 22 Logic circuit and truth table illustrating Rule 9.

TABLE 1 Using Truth Tables to Prove the Equations in Rule 10

A B A B

0 0 0 0 0 0 1 1
0 1 1 1 0 1 1 1
1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1

Equivalent outputs Equivalent outputs
cccc

A � BA � ABA � BA � AB

Rule 8: Anything ORed with its own complement equals 1. In Figure 21, because the
inputs are complements of each other, one of them is always 1. With a 1 at the input,
the output is always 1 (X = 1).

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Rule 9: A variable that is complemented twice will return to its original logic level.
As shown in Figure 22, when a variable is complemented once, it changes to the
opposite logic level. When it is complemented a second time, it changes back to its
original logic level (A = A).

Rule 10: and This rule differs from the others
because it involves two variables. It is useful because, when an equation is in this form,
one or more variables in the second term can be eliminated. The validity of these two
equations is proven in Table 1. In each case, equivalence is demonstrated by showing
that the truth table derived from the expression on the left side of the equation matches
that on the right side.

A + AB = A + B.A + AB = A + B

Table 2 summarizes the laws and rules that relate to Boolean algebra. By us-
ing them, we can reduce complicated combinational logic circuits to their simplest
form, as shown in the next sections. The letters used in Table 2 are variables and
were chosen arbitrarily. For example, is also a valid use of Rule
10(a).

C + CD = C + D
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Review Questions

1. How many gates are required to implement the following Boolean equa-
tions?

(a)
(b)
(c)

2. Which Boolean law is used to transform each of the following
equations?

(a)
(b)
(c)

3. The output of an AND gate with one of its inputs connected to 1 will
always output a level equal to the level at the other input. True or false?

4. The output of an OR gate with one of its inputs connected to 1 will
always output a level equal to the level at the other input. True or false?

5. If one input to an OR gate is connected to 0, the output will always be 0
regardless of the level on the other input. True or false?

6. Use one of the forms of Rule 10 to transform each of the following
equations:

(a)
(b) B + BC = ?

B + AB = ?

(B + C)(A + D) = BA + BD + CA + CD

CAB = BCA

B + (D + E) = (B + D) + E

Z = (ABC + CD)E

Y = AC + BC

X = (A + B)C

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

TABLE 2 Boolean Laws and Rules for the
Reduction of Combinational
Logic Circuits

Laws
1

2

3

Rules
1
2
3
4
5
6
7
8
9

10 (a)
(b) A + AB = A + B

A + AB = A + B
A = A
A + A = 1
A � A = 0
A + A = A
A � A = A
A + 1 = 1
A + 0 = A
A � 1 = A
A � 0 = 0

(A + B) (C + D) = AC + AD + BC + BD
A(B + C) = AB + AC
A(BC) = (AB) C
A + (B + C) = (A + B) + C
AB = BA
A + B = B + A
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B(A + C)

B

X

C

A
C

(A + C)

B

Warning
buzzer

Figure 23 Logic circuit for Example 6.

3 Simplification of Combinational Logic Circuits
Using Boolean Algebra

Often in the design and development of digital systems, a designer will start with sim-
ple logic gate requirements but add more and more complex gating, making the final
design a complex combination of several gates, with some having the same inputs. At
that point, the designer must step back and review the combinational logic circuit that
has been developed and see if there are ways of reducing the number of gates without
changing the function of the circuit. If an equivalent circuit can be formed with fewer
gates or fewer inputs, the cost of the circuit is reduced and its reliability is improved.
This process is called the reduction or simplification of combinational logic circuits
and is performed by using the laws and rules of Boolean algebra presented in the pre-
ceding section.

The following examples illustrate the use of Boolean algebra and present some
techniques for the simplification of logic circuits. 

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

E X A M P L E  6

The logic circuit shown in Figure 23 is used to turn on a warning buzzer at
X based on the input conditions at A, B, and C. A simplified equivalent cir-
cuit that will perform the same function can be formed by using Boolean
algebra. Write the equation of the circuit in Figure 23, simplify the equa-
tion, and draw the logic circuit of the simplified equation.

Solution: The Boolean equation for X is

To simplify, first apply Law 3 :

Next, factor a C from terms 2 and 3:

Apply Rule 4 :

Apply Rule 2 :

Apply Law 1 :

X = AB + C d  simplified equation

(BA = AB)

X = BA + C

(C � 1 = C)

X = BA + C � 1

(B + 1 = 1)

X = BA + C(B + 1)

X = BA + BC + C

[B(A + C) = BA + BC]

X = B(A + C) + C

Helpful 
Hint

As a beginner, you should
write the Boolean terms at
each input to each gate, as
shown here.

Helpful 
Hint

For extra help with Boolean
algebra visit the text 
companion website for
podcast lectures and
multiple-choice questions.
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X = BC + A
A

B

C

Figure 26 Simplified logic circuit for Example 7.

E X A M P L E  7

Repeat Example 6 for the logic circuit shown in Figure 25.

A

B

X = AB + C

Warning
buzzerC

Figure 24 Simplified logic circuit for Example 6.

X

(A + B)BC

A
B

A + B

C

BC

Figure 25 Logic circuit for Example 7.

The logic circuit of the simplified equation is shown in Figure 24.

Common
Misconception

Without the parentheses in
the first equation, the logic
is invalid.

Solution: The Boolean equation for X is

To simplify, first apply Law 3 :

Apply Rule 5 :

Factor a BC from terms 1 and 2:

Apply Rule 4 :

Apply Rule 2 :

The logic circuit for the simplified equation is shown in Figure 26.

X = BC + A d simplified equation

(BC � 1 = BC)

X = BC � 1 + A

(A + 1 = 1)

X = BC (A + 1) + A

X = ABC + BC + A

(B � B = B)

X = ABC + BBC + A

[(A + B)BC = ABC + BBC]

X = (A + B)BC + A
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Repeat Example 6 for the logic circuit shown in Figure 27(a).

Solution: The Boolean equation for X is

To simplify, first apply Law 3 :

Apply Rule 7 :

Apply Rule 3 :

Factor a from terms 1 and 2:

Apply Rule 4 :

Apply Rule 2 :

Apply Rule 10(b) :

The logic circuit of the simplified equation is shown in Figure 27(b).

X = B + C d simplified equation

(B + BC = B + C)

X = B + BC

(B � 1 = B)

X = B � 1 + BC

(A + 1 = 1)

X = B(A + 1) + BC

B

X = AB + B + BC

(AB + 0 = AB)

X = AB + 0 + B + BC

(BB = 0)

X = AB + BB + B + BC

[(A + B)B = AB + BB]

X = (A + B)B + B + BC

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

X

BC

A A + B

B

C

B

(a)

Figure 27 Logic circuit for Example 8: (a) Original circuit and (b) Simplified
circuit.

B

C
X = B + C

A Not used

The logic level at A
has no effect on the
output.

(b)
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X

A A + 

(a)

B

B

C
(A + B)(B + C)

B + C

B

Figure 28 Logic circuit for Example 9: (a) Original circuit and (b) Simplified
circuit.

E X A M P L E  9

Repeat Example 6 for the logic circuit shown in Figure 28(a).

Solution: The Boolean equation for X is

To simplify, first apply Law 3:

The term can be eliminated using Rule 7 and then Rule 3:

Apply Law 3 again:

Apply Law 1:

Apply Rules 5 and 7:

Apply Rule 1:

Factor an AB from both terms:

Apply Rule 4 and then Rule 2:

The logic circuit of the simplified equation is shown in Figure 28(b). 

X = AB d simplified equation

X = AB (1 + C)

X = AB + ABC

X = AB + ABC + 0 � C

X = ABB + ABC + BBC

X = ABB + ACB + BCB

X = (AB + AC + BC) B

BB

X = (AB + AC + BB + BC)B

X = [(A + B)(B + C)]B

B

A
X = AB

C Not used

(b)
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L O G I C  S I M P L I F I C AT I O N

The MultiSIM® Logic Converter is used in Figure 29 to simplify the circuit
of Figure 28(a). The simplified equation that it determines for X is AB as
shown in the lower box of the Logic Converter.

MultiSIM exercise:

(a) Use MultiSIM to open the file fig5_29 from the text companion web-
site. Double-click on the Logic Converter symbol (XLC1) to expand
its size. To have MultiSIM simplify the circuit, press the first button
under Conversions to create a truth table. Press the second button to 

A B C X

NOT

A

B

C

OR2

OR2 X

XLC1

AND2

AND2

AB

Figure 29 Using MultiSIM® to simplify the combinational logic circuit of
Example 9.
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4 Using Quartus® II to Determine 
Simplified Equations

Part of the compilation process performed by the Quartus® II software is to determine
the simplest form of the circuit before it synthesizes its logic. This eliminates unnec-
essary inputs and minimizes the number of gates used in the FPGA. If we redo
Example 9 using Quartus® II, the software will warn us of unused inputs and will also
give us the final simplified equation. The VHDL program, ex5_9.vhd, is given in
Figure 30(a). The original Boolean equation is entered in
VHDL as x ((a OR NOT b) AND (b OR c)) AND b;. The Waveform Editor was
used to create the vector waveform file (ex5_9.vwf) shown in Figure 30(b). If you study
the results carefully you will see that x only goes HIGH when a and b are both HIGH,
regardless of c.

When the ex5_9.vhd program was compiled, the Compilation Report produced
the warning message shown in Figure 31. As you can see, it tells us that after simpli-
fying the equation, there is no output that is dependent on pin c. This is the same result
that we got in the reduction performed in Example 9.

Note: To view the Compilation Report of Figure 31:

Choose Processing Compilation Report.

Then to view the Analysis & Synthesis Messages:

In the left column of the report, expand the Analysis & Synthesis folder by clicking
on its “+” sign, then choose Messages.

+

6 =
X = [(A + B)(B + C)]B

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

write the logic equation for that truth table, and then press the third
button to write the simplified equation. Notice that the simplified
equation shown in the lower box is AB just like we got for Example
9. (Note: For help on using the Logic Converter, highlight the symbol
by left-clicking once on it and pressing the F1 key to display its Help
Screen.)

(b) Build the logic circuit from Example 7 to see if MultiSIM comes up
with the same simplified equation as the text did. The circuit is
drawn by first selecting File New, then right-clicking in the
empty workspace and selecting Place Component. Type the name
of the gate (AND2, OR2, etc.) and left-click where you want to place it.
Next, hook up the Logic Converter as shown to supply the inputs A,
B, and C and monitor the resulting output at X. Double-click on the
Logic Converter and sequentially press the three Conversions but-
tons [as we did in part (a)] and see if the simplified equation is

(c) Repeat for Example 8.

(d) An alternate method of simplifying Boolean equations is to enter the
equation to be simplified in the lower box of the Logic Converter in-
stead of drawing the logic circuit. Next you will press the fourth
Conversions button to form a truth table from the equation and then
press the third Conversions button to convert that truth table to the sim-
plified equation.

Test this method by simplifying the equation presented in Example 6
should reduce to X = AB + C].[X = B(A + C) + C

BC + A.

+

V
H

D
L
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Figure 30 Quartus® II solution to Example 9: (a) VHDL listing; (b) simulation file.

The Quartus® II software also provides us with the simplified equation that it will use
to synthesize the circuit. To view the equation:

Choose: Tools Chip Planner Edit Find Find What:
Find Next Cancel.

In the Fan-In column click [ GoTo].*

+

+x++++

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

X=[(A+B)(B+C)]B
_

(a)

(b)

X is HIGH for a AND b,
regardless of c.
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The simplified equation appears in the equations box shown in Figure 32. (If
there is no Equations box, be sure that the Equations selection under the View menu
has a check mark.) The equation is listed as: A1L5(x~0) (b&a). This states that
the x-output is mapped into FPGA location A1L5 and its value is b&a. This can be
interpreted as which matches the reduction we performed using algebra in
Example 9. The arithmetic operators used by Quartus® II for Boolean equations are
as follows:

& AND operator

! NOT operator

# OR operator

$ Exclusive-OR operator

x = ab,

=

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Figure 31 The warning message produced by the Compilation Report describes the 
c-input as not necessary.

}x = ab

Figure 32 The Equations window in the Chip Planner shows the reduced equation x = ab.

A more visual method to see the reduced equation is to use the Netlist Viewer:

Choose Tools Netlist Viewers Technology Map Viewer Post Mapping.

Double-click on the block diagram and the reduced circuit will appear with the inputs
and outputs as shown in Figure 33. The logic diagram shows with c being a
“don’t care”

x = ab

�++
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c = "don't care"

x = ab

Figure 33 The Netlist Viewer showing the reduced logic circuit for x = ab.

E X A M P L E  1 0

Use the Quartus® II software to determine the simplified equation for

Solution: In this example we’ll use the Block Editor method of design in-
stead of VHDL. The logic circuit is drawn to produce the ex5_10.bdf file
shown in Figure 34. When the project is compiled, the compiler creates the
warning message shown in Figure 35. The message states that the output of
the logic circuit does not depend on input-a (this makes a an unused input).
The Chip Planner is then used to see the final simplified equation deter-
mined by the Fitter, as shown in Figure 36. The simplified equation is

which is the same as Prove to yourself that this is
correct by reducing the original equation using Boolean algebra. The
Netlist Viewer in Figure 37 shows the reduced circuit for with a �
“don’t care.”

x = bc

x = bc.x = (!c & b),

X = (ABC + B)BC.

Figure 34 The bdf file for X = (ABC + B)BC.
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Figure 36 The equations window in the Chip Planner shows the simplified equation x = bc.

Figure 35 The compilation warning stating that input-a is unused.

x = bc 

Figure 37 Using the Netlist Viewer to see the reduced circuit for with a � “don’t care.”x = bc
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A
X = A · B

B

A
X = A + B

B

B

0
1
0
1

1
1
1
0

X = ABA

0
0
1
1

B

0
1
0
1

1
1
1
0

X = A + BA

0
0
1
1

Equivalent
result

Figure 38 De Morgan’s theorem applied to NAND gate produces two identical truth tables.

5 De Morgan’s Theorem

You may have noticed that we did not use NANDs or NORs in any of the logic circuits
in Section 3. To simplify circuits containing NANDs and NORs, we need to use a the-
orem developed by the mathematician Augustus De Morgan. This theorem allows us
to convert an expression having an inversion bar over two or more variables into an ex-
pression having inversion bars over single variables only. This allows us to use the
rules presented in the preceding section for the simplification of the equation.

In the form of an equation, De Morgan’s theorem is stated as follows:

Also, for three or more variables,

Basically, to use the theorem, you break the bar over the variables and either change
the AND to an OR or change the OR to an AND.

To prove to ourselves that this works, let’s apply the theorem to a NAND gate
and then compare the truth table of the equivalent circuit to that of the original NAND
gate. As you can see in Figure 38, to use De Morgan’s theorem on a NAND gate, first
break the bar over the A · B, then change the AND symbol to an OR. The new equation
becomes Notice that inversion bubbles are used on the OR gate instead
of inverters. By observing the truth tables of the two equations, we can see that the re-
sult in the X column is the same for both, which proves that they provide an equivalent
output result.

X = A + B.

A + B + C = A � B � C

A � B � C = A + B + C

A + B = A � B

A � B = A + B

Also, by looking at the two circuits, we can say that an AND gate with its output
inverted is equivalent to an OR gate with its inputs inverted. Therefore, the OR gate
with inverted inputs is sometimes used as an alternative symbol for a NAND gate.

By applying De Morgan’s theorem to a NOR gate, we will also produce two
identical truth tables, as shown in Figure 39(a). Therefore, we can also think of an OR
gate with its output inverted as being equivalent to an AND gate with its inputs in-
verted. The inverted input AND gate symbol is also sometimes used as an alternative
to the NOR gate symbol.
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When you write the equation for an AND gate with its inputs inverted, be care-
ful to keep the inversion bar over each individual variable (not both) because is
not equal to (Prove that to yourself by building a truth table for both.) Also,

is not equal to 
The question always arises: Why would a designer ever use an inverted-input OR

gate symbol instead of a NAND? Or why use an inverted-input AND gate symbol in-
stead of a NOR? In complex logic diagrams, you will see both the inverted-input and
the inverted-output symbols being used. The designer will use whichever symbol makes
more sense for the particular application.

For example, referring to Figure 38, let’s say you need a HIGH output level
whenever either A or B is LOW. It makes sense to think of that function as an OR
gate with inverted A and B inputs, but you could save two inverters by just using a
NAND gate.

A + B.A + B
A � B.

A � B
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A
X = A + B

B

A
X = A · B

B

B

0
1
0
1

1
0
0
0

X = A + BA

0
0
1
1

B

0
1
0
1

1
0
0
0

X = A · BA

0
0
1
1

Equivalent
result

(a)

Figure 39 (a) De Morgan’s theorem applied to NOR gate produces two identical truth tables; (b) using the alternative
NOR symbol eases circuit simplification; (c) summary of alternative gate symbols.

A

B

C

D

X X

A

B

C

D

X = ABCD

A

B

C

D

≡

Final equivalent circuit

≡

Original circuit

NOR
equivalent

Inversion
bubbles
cancel

(b)

Inverter
≡

NAND

NOR

≡

≡

(c)
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Figure 40 The bdf file of circuits used to prove De Morgan’s theorem.

E X A M P L E  1 1

Use Quartus® II to prove the validity of the De Morgan’s theorem circuits
of Figures 38 and 39. Draw the circuits using the Block Editor and prove
equivalence by performing a simulation with all possible input conditions.

Solution: The NAND and NOR circuits of Figures 38 and 39 are
duplicated in the bdf file shown in Figure 40. W is the output of a NAND
while X is the output of an inverted-input OR gate that is supposed to be
equivalent. Y is the output of a NOR while Z is the output of an inverted-
input AND gate that is supposed to be equivalent.

Also, referring to Figure 39(a), let’s say you need a HIGH output whenever both
A and B are LOW. You would probably use the inverted-input AND gate for your logic
diagram because it makes sense logically, but you would use a NOR gate to actually
implement the circuit because you could eliminate the inverters.

The alternative methods of drawing NANDs and NORs are also useful for the
simplification of logic circuits. Take, for example, the circuit of Figure 39(b). By
changing the NOR gate to an inverted-input AND gate, the inversion bubbles cancel,
and the equation becomes simply Figure 39(c) summarizes the alternative
representations for the inverter, NAND, and NOR gates.

The following examples illustrate the application of De Morgan’s theorem for
the simplification of logic circuits.

X = ABCD.

The vector waveform file in Figure 41 shows every combination of input
for A, B and C, D. By studying the resultant waveforms you can see that the
output at W is identical to X and the output at Y is identical to Z, proving De
Morgan’s theorem.

V
H

D
L
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{

{

*

*

*Equivalent outputs

Figure 41 The waveform simulation demonstrating equivalent outputs.

E X A M P L E  1 2

Write the Boolean equation for the circuit shown in Figure 42. Use De
Morgan’s theorem and then Boolean algebra rules to simplify the equation.
Draw the simplified circuit.

X

A

B

Figure 42

Solution: The Boolean equation at X is

Applying De Morgan’s theorem produces

(Notice the use of parentheses to maintain proper grouping. Rule: Whenever
you break the bar over a NAND you must use parentheses.) Using Boolean
algebra rules produces

The simplified circuit is shown in Figure 43.

 = AB d simplified equation

 = AB + 0

 X = AB + BB

X = (A + B) � B

X = AB � B

Helpful 
Hint

You must use parentheses
to maintain proper
grouping whenever you
break the bar over a
NAND or if an OR gate is
input to an AND gate.
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E X A M P L E  1 3

Repeat Example 12 for the circuit shown in Figure 44.

X

C

A

B

Figure 44

B

X = BC

A Not used

C

Figure 45 Simplified logic circuit for Example 13.

Also remember from Figure 39(a) that an AND gate with inverted inputs
is equivalent to a NOR gate. Therefore, an equivalent solution to Example
13 would be a NOR gate with B and C as inputs, as shown in Figure 46.

A

B

A
X = AB

BX = AB
OR

Bubble = inverter.

Figure 43 Simplified logic circuit for Example 12.

Solution: The Boolean equation at X is

Applying De Morgan’s theorem produces

(Notice the use of parentheses to maintain proper grouping.) Using
Boolean algebra rules produces

The simplified circuit is shown in Figure 45.

 = B C d simplified equation

 = B C(A + 1)

 = A B C + B C

 X = A B C + B B C

X = (A + B) � B C

X = AB � B + C
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E X A M P L E  1 4

Repeat Example 12 for the circuit shown in Figure 47.

X

A

B

C

D
C + D

AB

Figure 47

X

B

A

C

D

Figure 48 Simplified logic circuit for Example 14.

Solution:

The simplified circuit is shown in Figure 48.

 = A + B + C + D d simplified equation

 = A + B + C + D + A + B

 = AB + C + D + AB
 = AB � C + D + AB

 X = (AB � C + D) AB

B
X = B · C

C

B
X = B + C = B · C

C

Is
equivalent

to:

Perform De Morgan's
theorem backward to
convert to a NOR.

Figure 46 Equivalent solution to Example 13.

E X A M P L E  1 5

Use De Morgan’s theorem and Boolean algebra on the circuit shown in
Figure 49 to develop an equivalent circuit that has inversion bars covering
only single variables.
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X

C

A

B

Figure 49

X

A AB

B

C

AC

BC

Figure 50 Logic circuit equivalent for Example 15.

Notice that the final equation actually produces a circuit that is more complicated
than the original. In fact, if a technician were to build a circuit, he or she would choose
the original because it is simpler and has fewer gates. However, the final equation is in
a form called the sum-of-products (SOP) form. This form of the equation was
achieved by using Boolean algebra and is very useful for building truth tables and
Karnaugh maps, which are covered in Section 8.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

E X A M P L E  1 6

Using De Morgan’s theorem and Boolean algebra, prove that the two cir-
cuits shown in Figure 51 are equivalent.

Solution: The Boolean equation at X is

Applying De Morgan’s theorem produces

(Notice the use of parentheses to maintain proper grouping.) Using Boolean
algebra rules produces

The equivalent circuit is shown in Figure 50.

 = AB + AC + BC d final equation (sum@of@products form)

 X = AB + AC + BB + BC

X = (A + B) � (B + C)

X = AB � (B + C)

X1

B

A

X2

B

A

Figure 51

Team
Discussion

The final circuit in this
example is actually more
complicated than the
original. As you will see
later, it is in the form for
implementation using
AND–OR–INVERT gates
and programmable logic
devices. Besides, it is much
easier to fill in a truth
table from a sum of
products (SOP). Build a
truth table from the
original equation and then
from the final SOP to
prove the point.
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E X A M P L E  1 7

Use Quartus® II to simplify the equations:

Solution: The logic for X and Y can be entered using the Block Editor or
the VHDL Text Editor. VHDL entry was used in this example. Figure 52
shows the VHDL program with the equations for X and Y appearing in the
Architecture block.

 Y = AB + B + C

 X = AB + (B + C)

Solution: They can be proved to be equivalent if their simplified equations
match.

= AB + A B 

 = AB + A B= AB + A + B 

X2 = AB + A + BX1 = AB � (A + B)

{

Note: Parentheses are
used to ensure correct
order of operations.

Figure 52 VHDL program for Example 17.

Equivalent

After performing a save and compile, the simplified equation was
determined by using the Netlist Viewer technique that was presented 
in Figure 33. The logic circuit shown in Figure 53 for x is:

which can be De Morganized to: The logic
circuit shown for y is: which can be reverse De Morganized to:
y = ab.

y = a + b
x = abc.x = a + b + c

V
H

D
L
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E X A M P L E  1 8

Draw the logic circuit for the following equation, simplify the equation,
and construct a truth table for the simplified equation

Solution: To draw the circuit, we have to reverse our thinking from the
previous examples. When we study the equation, we see that we need two
NANDs feeding into an OR gate, as shown in Figure 54. Then we have to
provide the inputs to the NAND gates, as shown in Figure 55.

X = A � B + A � (A + C)

y = 0 

y = a + b = ab 

b

a
y

x = a + b + c = abc 
c x

x = 0 

Figure 53 The output of the Netlist Viewer shows the logic circuits used to write the simplified equations
for x and y.

A • B

A • (A + C)

X

Figure 54 Partial solution to Example 18.

A • B

A • (A + C)

X

B

A

A + C

A

C

B

A

Figure 55 Logic circuit of the equation for Example 18.
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TABLE 3 Truth Table for Example 18

A B C

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

X � A � C � B

Next, we use De Morgan’s theorem and Boolean algebra to simplify the
equation:

Apply Rule 10:

This equation can be interpreted as: X is HIGH if A is LOW or C is
LOW or B is HIGH. Now, to construct a truth table (Table 3), we need three
input columns (A, B, C) and eight entries and we fill in a 1 for X
when or B = 1.A = 0, C = 0,

(23
= 8),

X = A + C + B d simplified equation

 = A + AC + B

 = A + A + AC + B

 = A + B + A + A � C

 = (A + B) + (A + A + C)

 X = A � B + A � (A + C)

E X A M P L E  1 9

Repeat Example 18 for the following equation:

Solution: The required logic circuit is shown in Figure 56. The Boolean
equation simplification is

 = A + B d simplified equation

 = A + B(1 + AC)

 = A + B + ABC

 = A(1 + C) + B + ABC

 = A + B + A C + ABC

 = (A + B2 + A � C + A ABBC

 = AB + A + C + AB � 1A � B � C2

 X = AB � (A + C) + AB � A + B + C

X = AB � (A + C) + AB � A + B + C
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Three columns are used in the truth table (Table 4) because the orig-
inal equation contained three variables (A, B, C). C is considered a don’t
care, however, because it does not appear in the final equation and it does
not matter whether it is 1 or 0.

From the simplified equation we can determine that
when A is 0 or when B is 1, and we fill in the truth table accordingly.X = 1

(X = A + B),

if or 
B = 1

A = 0X = 1

Figure 56 Logic circuit for the equation of Example 19.

TABLE 4 Truth Table for Example 19

A B C

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

X � A � B ➤

E X A M P L E  2 0

Complete the truth table and timing diagram for the following simplified
Boolean equation:

Solution: The required truth table and timing diagram are shown in Figure
57. To fill in the truth table for X, we first put a 1 for X when 
Then for Then for All
other entries for X are 0.

The timing diagram performs the same function as the truth table, ex-
cept it is a more graphic illustration of the HIGH and LOW logic levels of
X as the A, B, and C inputs change over time. The logic levels at X are filled
in the same way as they were for the truth table.

C = 1.A = 0, B = 0,X = 1B = 1, C = 0.X = 1
B = 1.A = 1,

X = AB + BC + A BC

AB

A + B + C

X

A + C

AB

A

B

C
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Bubble Pushing
A shortcut method of forming equivalent logic circuits, based on De Morgan’s theo-
rem, is called bubble pushing and is illustrated in Figure 59. As you can see, to form
the equivalent logic circuit, you must

1. Change the logic gate (AND to OR or OR to AND).

2. Add bubbles to the inputs and outputs where there were none, and remove
the original bubbles.

Prove to yourself that this method works by comparing the truth table of each
original circuit to its equivalent.

Notice in Figure 59 that we have equivalent logic circuits for the AND and OR
gates (V and W). It is worth pointing out here that you will be seeing these two equiv-
alents often when studying data memory ICs and microprocessor circuitry. 

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

E X A M P L E  2 1

Repeat Example 20 for the following simplified equation:

Solution: The required truth table and timing diagram are shown in Figure
58.

X = AB C + A BC + ABC

A

B

C

X

A B C

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

X

0
1
0
0
1
0
0
1

Answer

ABC

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8

ABC

ABC

Figure 58 Truth table and timing diagram depicting the logic levels at X for all
combinations of inputs.

A

B

C

X

A B C

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

X

0
1
1
0
0
0
1
1

Answer

BCABC ABAB, BC

ABC
BC

AB, BC
AB

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8

Figure 57 Truth table and timing diagram depicting the logic levels at X for all
combinations of inputs.
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Active-LOW Input/Output used in Microprocessor Systems
Figure 60 shows part of the gating circuitry that is often used to access microprocessor
memory. Microprocessor control signals are usually active-LOW, meaning that they is-
sue a LOW when they want to perform their specified task. Also, for the microproces-
sor to activate the block labeled Memory, the line labeled (memory access) must be
made LOW. (The overbars on the variables signify that they are active-LOW.) 

The gating shown in Figure 60 will provide the LOW at if is LOW
and either is LOW or is LOW. The control signals from the microprocessor
meet these conditions whenever the microprocessor is reading or writing 
from memory For example, if the microprocessor is to read from memory, it
will make the ( ) line go LOW to signify that it wants to read, and it will make the
( ) line go LOW to signify that it wants to read its information from memory.
With these two lines LOW, is LOW, which activates the block labeled Memory.
(When working with circuitry like this, it is better not to think of the bubbles as invert-
ers; instead, think of that line as a part of the circuit that requires a LOW to “do its
thing” or satisfy that input.)

The OR gate with three bubbles outputs a LOW if either input is LOW. This sym-
bol makes the logic easy to understand, but to actually implement the circuit, its equiv-
alent (the 7408 AND gate) would be used. Also, the AND gate with three bubbles
would actually be an OR gate (the 7432). 5

MA
MEM

RD
(MEM).

(WR)(RD)
RDWR

MEMMA

MA

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Common
Misconception

Students often want to
invert the signal labeled

because it enters a
bubble before the memory.
That is a dangerous habit.
It is better to interpret the
bubble as signifying that
the memory requires a
LOW to be accessed. Also,
the overbar on 
specifies that that line goes
LOW when active.

MA

MA

V ≡
A

B

A

B
W       ≡

A

B
X       ≡

Y       ≡
C

D

E

F
Z       ≡

A

B
V

W
A

B

X
A

B

C

D
Y

Z
E

F

(a) (b)

Figure 59 (a) Original logic circuits; (b) equivalent logic circuits.

Memory

MARD

WR

MEM

Microprocessor
control
signals AND gate

OR gate

This line must go LOW
to access Memory.

Figure 60 Typical gating circuitry used for microprocessor memory access.

Helpful 
Hint

At this point, it is
enlightening to see a
schematic of an actual
microprocessor-based
system like that of a PC.
Try to identify the 
active-LOW signals and
gates that can be bubble-
pushed.
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L O G I C  S I M P L I F I C AT I O N

Figure 61 shows how the MultiSIM® Logic Converter can be used to solve
the simplification of the logic circuit presented in Example 12 (Figure 42).
The simplified equation that it determines for X is A B as shown in the
lower box of the Logic Converter. [Note: MultiSIM uses the prime ( ) sym-
bol to represent an inversion overbar, so is written A B.]

MultiSIM exercise:

(a) Use MultiSIM to open the file fig5_61 from the text companion web-
site. Double-click on the Logic Converter symbol (XLC1) to expand its
size. To have MultiSIM simplify the circuit, press the first button under
Conversions to create a truth table. Press the second button to write the
logic equation for that truth table, and then press the third button to
write the simplified equation. Notice that the simplified equation
shown in the lower box is A�B just as we got for Example 12.

¿AB
¿

¿

U1

U2

X

A

B
NAND2

AND2

XLC1

AB

Figure 61 Using MultiSIM® to simplify the combinational logic circuit of
Example 12.
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Review Questions

7. Why is De Morgan’s theorem important in the simplification of Boolean
equations?

8. Using De Morgan’s theorem, you can prove that a NOR gate is equiva-
lent to an ___________ (OR, AND) gate with inverted inputs.

9. Using the bubble-pushing technique, an AND gate with one of its inputs
inverted is equivalent to a ___________ (NAND, NOR) gate with its other
input inverted.

10. Using bubble pushing to convert an inverted-input OR gate will yield
a(n) ___________ (AND, NAND) gate.

6 Entering a Truth Table in VHDL Using 
a Vector Signal

Suppose we wanted to implement the logic for the truth table shown in Table 5. One
method would be to write the Boolean equation for X by listing each combination of
ABC that produces a HIGH at X, then simplify the equation and build the logic circuit.
We could also write the equation for X as a VHDL architecture statement, and let the
software synthesize it in an FPGA. However, in this section we will use techniques that
employ several new concepts important to VHDL programmers.

The first thing that we need to do is to define an internal signal to represent the
three inputs. This internal signal will group the three inputs together as a 3-bit vector.
Let’s call this new internal vector signal “input.” The following signal declare is placed
within the architecture body, just before the BEGIN statement:

SIGNAL input: STD_LOGIC_VECTOR(2 downto 0);

This vector signal named input is similar to an array with three elements called
input(2), input(1), and input(0). The specification (2 downto 0) defines three elements

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

(b) Build the logic circuit from Example 13 to see if MultiSIM comes up
with the same simplified equation as the text did. (The simplified equa-
tion for X should be B�C�.)

(c) Repeat for Example 14.

(d) Repeat for Example 15.

(e) An alternate method of simplifying Boolean equations is to enter the
equation to be simplified in the lower box of the Logic Converter in-
stead of drawing the logic circuit. Next you will press the fourth
Conversions button to form a truth table from the equation and then
press the third Conversions button to convert that truth table to the sim-
plified equation. [Note: When entering an equation that has an overbar
over more than one letter, parentheses must be used. For example, 
is written (A�BC)�.]

Test this method by simplifying the equation presented in
Example 18 should reduce to

(f) Repeat for Example 19.

X = A¿ + C¿ + B].
[X = (AB¿)¿ + (A(A¿ + C))¿

ABC

V
H

D
L
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starting with element (2), then (1), then (0). To assign values to the three elements, the
following assignment statements are placed just after the BEGIN statement:

input(2)6= a; --Move a to element 2 of the internal vector signal

input(1)6= b; --Move b to element 1 of the internal vector signal

input(0)6= c; --Move c to element 0 of the internal vector signal

[Note: The text following the double hyphen (--) is treated as a comment by
VHDL. Comments are ignored by the VHDL compiler but are very useful for docu-
menting our programs so that when you look at the program listing three months from
now, you’ll have a little help remembering why you did something the way you did.]

The final step is to assign the desired outputs for X for each input combination.
We do this with the Selected Signal Assignment as follows:

WITH input SELECT

x6= ‘1’ WHEN “000”, -- x equals 1 when input equals “000”

‘0’ WHEN “001”, -- x equals 0 when input equals “001”

‘1’ WHEN “010”, -- x equals 1 when input equals “010”

‘0’ WHEN “011”, -- x equals 0 when input equals “011”

‘1’ WHEN “100”, -- x equals 1 when input equals “100”

‘1’ WHEN “101”, -- x equals 1 when input equals “101”

‘1’ WHEN “110”, -- x equals 1 when input equals “110”

‘0’ WHEN “111”, -- x equals 0 when input equals “111”

‘1’ WHEN others;

The selected signal assignment is built to look just like the truth table entries. The
last assignment uses the term others. This is required because the std_logic type dec-
laration allows for many other bit states besides 1 and 0. [For example, a hyphen (-)
can be used to specify “don’t care” and a Z can be used to specify “High impedance (or
Float).” The “others” assignment will never be made because we will be inputting 1’s
and 0’s to a, b, and c but VHDL requires us to include it to cover all possibilities known
to the language.

Also note that when making assignments, single quotes are used for making bit
assignments and double quotes are used for making vector assignments. The complete
VHDL program listing is shown in Figure 62.

An easy way to test the results of the program is to run a simulation and compare
the waveforms with the original truth table. This is done in Figure 63.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

TABLE 5 Truth Table to Be Entered Using a Vector
Data Type as an Internal Signal

Inputs Output

A B C X

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

input(2) input(1) input(0)

¡¡¡
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Selected signal assignment

A vector with 
3 elements

output level sent to X input (0)
input (1)
input (2)

Declare 
SIGNAL

"input"
before 

BEGIN

Make
assignments
after BEGIN

Note: Single
quotes for bits and  

double quotes  
for vectors

(a)

(b)

Figure 62 Program for entering a truth table in VHDL using a vector, a signal, and the
selected signal assignment: (a) VHDL listing; (b) Block Symbol File (bsf).

Figure 63 Waveform display used to check the simulation with the original truth table.
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Design a logic circuit that can be used to tell when a 3-bit binary number is within the range of 2
(0102) to 6 (1102) inclusive. Use the VHDL selected signal assignment method discussed previously.
Perform a simulation of your design by creating an vwf file that steps through the entire range of in-
put possibilities 0002 to 1112.

Solution: The VHDL program is shown in Figure 64 and the waveform simulation is shown in
Figure 65.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Make X
HIGH for 
2, 3, 4, 5

and 6

(a)

(b)

Figure 64 VHDL Solution for Example 22: (a) VHDL listing; (b) Block Symbol File (bsf).

{

x is HIGH for 2, 3, 4, 5 and 6

Figure 65 Waveform simulation of Example 22.
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tank (2)
tank (1)
tank (0)

(a)

(b)

Figure 66 Solution to Example 23: (a) VHDL listing; (b) Block Symbol File (bsf).

alarm goes HIGH for 2 or more HIGH tanks

Figure 67 Simulation file for Example 23.

E X A M P L E  2 3

A water reclamation plant needs to have a warning system to monitor its three water overflow hold-
ing tanks. Each tank has a HIGH/LOW level sensor. Design a system that activates a warning alarm
whenever two or more tank levels are HIGH.

Solution: The program listing is shown in Figure 66. The three tanks are grouped together as a vec-
tor instead of having three different variable names. This simplifies the program because now we
don’t have to define an internal vector signal and assign three variables to the signal like we did in
Example 22.

The simulation in Figure 67 shows the alarm is HIGH whenever two or more tanks are HIGH.
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7 The Universal Capability of NAND 
and NOR Gates

NAND and NOR gates are sometimes referred to as universal gates because, by uti-
lizing a combination of NANDs, all the other logic gates (inverter, AND, OR, NOR)
can be formed. Also, by utilizing a combination of NORs, all the other logic gates (in-
verter, AND, OR, NAND) can be formed.

This principle is useful because you often may have extra NANDs available but
actually need some other logic function. For example, let’s say that you designed a cir-
cuit that required a NAND, an AND, and an inverter. You would probably purchase a
7400 quad NAND TTL IC. This chip has four NANDs in a single package. One of the
NANDs will be used directly in your circuit. The AND requirement could actually
be fulfilled by connecting the third and fourth NANDs on the chip to form an AND.
The inverter can be formed from the second NAND on the chip. How do we convert a
NAND into an inverter and two NANDs into an AND? Let’s see.

An inverter can be formed from a NAND simply by connecting both NAND in-
puts, as shown in Figure 68. Both inputs to the NAND are, therefore, connected to A.
The equation at X is which is the inverter function.X = A � A = A,

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

The next task is to form an AND from two NANDs. Do you have any ideas?
What is the difference between a NAND and an AND? If we invert the output of a
NAND, it will act like an AND, as shown in Figure 69.

Now back to the original problem; we wanted to form a circuit requiring a
NAND, an AND, and an inverter using a single 7400 quad NAND TTL IC. Let’s make
the external connections to the 7400 IC to form the circuit of Figure 70, which contains
a NAND, an AND, and an inverter.

A

B

C
X

Figure 70 Logic circuit to be implemented using only NANDs.

X = A • A = A (Inverter)X
A

Connect both inputs to A
to form an Inverter.

Figure 68 Forming an inverter from a NAND.

X = A • B = AB (AND)

NAND Inverter

A

B

AND

Figure 69 Forming an AND from two NANDs.
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First, let’s redraw the logic circuit using only NANDs. Now, using the con-
figuration shown in Figure 71, we can make the actual connections to a single 7400
IC, as shown in Figure 72, which reduces the chip count from three ICs down to
one.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Besides forming inverters and ANDs from NANDs, we can form ORs and
NORs from NANDs. Remember from De Morgan’s theorem that an AND with an in-
verted output (NAND) is equivalent to an OR with inverted inputs. Therefore, if we
invert the inputs to a NAND, we should find that it is equivalent to an OR, as shown
in Figure 73.

Now, to form a NOR from NANDs, all we need to do is invert the output of
Figure 73, as shown in Figure 74.

A

B

AND XInverter
C

Figure 71 Equivalent logic circuit using only NANDs.

1

2

3

4

5

6

7

+5 V (VCC)

14

13

12

11

10

9

8

7400

B

A

C

X

Figure 72 External connections to a 7400 TTL IC to form the circuit of Figure 71.

A

B

X = A • B = A + B (OR)

Figure 73 Forming an OR from three NANDs.
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A

B

X = A • B = A + B = A + B (NOR)

Figure 74 Forming a NOR from four NANDs.

A X = A + A = A (Inverter)

Connect both inputs to A
to form an inverter.

Figure 75 Forming an inverter from a NOR gate.

The procedure for converting NOR gates into an inverter, OR, AND, or NAND
is similar to the conversions just discussed for NAND gates. For example, to form an
inverter from a NOR gate, just connect the inputs as shown in Figure 75.
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A

B
X = A + B

X = A + B = A + B

ORInverter

A

B

Figure 76 Implementing the function using only NOR gates.X = A + B

Common 
Misconception

When sketching an inverter
constructed from a NOR
or a NAND gate, students
often mistakenly show only
a single input into the gate
instead of two inputs tied
together.

Helpful 
Hint

It is instructive for you to
make a chart on your own
showing how to convert
NANDs into any of the
other four logic gates.
Repeat for NORs.

Take some time now to try to convert NORs to an OR, NORs to an AND, and NORs
to a NAND. Prove to yourself that your solution is correct by using De Morgan’s theorem
and Boolean algebra. 

E X A M P L E  2 4

Make the external connections to a 4001 CMOS NOR IC to implement the
function 

Solution: We will need an inverter and an OR gate to provide the function
for X. An inverter can be made from a NOR by connecting the inputs, and an
OR can be made by inverting the output of a NOR, as shown in Figure 76.

X = A + B.

The pin configuration for the 4001 CMOS quad NOR can be found in
a CMOS data book. Figure 77 shows the pin configuration and external
connections to implement X = A + B.
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1

2

3

4

5

6

7

VDD = +3 V to +15 V14

13

12

11

10

9

8

4001

B

A

X = A + B

VSS

VDD

Figure 77 External connections to a 4001 CMOS IC to implement the circuit of
Figure 76.

E X A M P L E  2 5

Troubleshooting

You have connected the circuit of Figure 77 and want to test it. Because the
Boolean equation is you first try and expect to
get a 1 output at X, but you don’t. VDD is set to and VSS is connected
to ground. Using a logic probe, you record the results shown in Table 6 at
each pin. Determine the trouble with the circuit.

+5 V,
A = 0, B = 1X = A + B,

TABLE 6 Logic Probe Operationa

Probe on Pin Indicator Lamp

1 Off
2 Off
3 On
4 Off
5 On
6 On
7 Off
8 Dim
9 Off

10 Off
11 On
12 Dim
13 Dim
14 On

aLamp off, 0; lamp on, 1; lamp dim, float.
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(a) Write the simplified equation that will produce the output waveform at
X, given the inputs at A, B, and C shown in Figure 78.

(b) Draw the logic circuit for this equation.

(c) Redraw the logic circuit using only NAND gates.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

A

B

C

X

Figure 78

Solution:

(a) The first HIGH pulse at X is produced for 
The second HIGH pulse at X happens when 

Therefore, X is 1 for or 

Simplifying yields

(b) The logic circuit is shown in Figure 79(a).

(c) Redrawing the same circuit using only NANDs produces the circuit
shown in Figure 79(b).

 = AC d simplified equation

 = AC(1)

 X = AC (B + B)

X = AB C + ABC

ABC.AB C0 (ABC).C =

A = 1, B = 1,
C = 0 (AB C).A = 1, B = 0,

Solution: Because pins 1 and 2 should both be 0, which they are.
Pin 3 is a 1, because 0–0 into a NOR will produce a 1 output. Pin 6 is 1, be-
cause it is connected to the 1 at B. Pin 5 matches pin 3, as it is supposed to.
Pin 4 sends a 0 to pins 8 and 9, but pin 8 is floating (not 0 or 1). That’s it!
The connection to pin 8 must be broken.

To be sure that the circuit operates properly, the problem at pin 8
should be corrected and all four combinations of inputs at A and B should
be tested.

A = 0,
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Review Questions

11. Why are NAND gates and NOR gates sometimes referred to as
universal gates?

12. Why would a designer want to form an AND gate from two NAND
gates?

13. How many inverters could be formed using a 7400 quad NAND IC?

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Figure 79 (a) Logic circuit that yields the waveform at X; (b) circuit of part (a)
redrawn using only NANDs.

8 AND–OR–INVERT Gates for Implementing 
Sum-of-Products Expressions

Most Boolean reductions result in an equation in one of two forms:

1. Product-of-sums (POS) form
2. Sum-of-products (SOP) form

The POS expression usually takes the form of two or more ORed variables within
parentheses ANDed with two or more other variables within parentheses. Examples of
POS expressions are

 X = (A + C) � (B + E) � (C + B)

 X = (B + C + D) � (BC + E)

 X = (A + B) � (B + C)

A

C

X = AC

X = AC

B Not used

(a)

B Not used

(b)

C

A
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The SOP expression usually takes the form of two or more variables ANDed to-
gether ORed with two or more other variables ANDed together. Examples of SOP ex-
pressions are

The SOP expression is used most often because it lends itself nicely to the de-
velopment of truth tables and timing diagrams. SOP circuits can also be constructed
easily using a special combinational logic gate called the AND–OR–INVERT gate.

For example, let’s work with the following equation:

Using De Morgan’s theorem yields

Using De Morgan’s theorem again puts it into a POS format:

Using the distributive law produces an equation in the SOP format:

Now, let’s fill in a truth table for X (Table 7). Using the SOP expression, we put a 1
at X for for for and for 
That wasn’t hard, was it?

However, if we were to use the POS expression, it would be more difficult to
visualize. We would put a 1 at X for or whenever or 
Confusing? Yes, it is much more difficult to deal intuitively with POS expressions.

D = 0.C = 1B = 1A = 0

B = 1, D = 0.B = 1, C = 1;A = 0, D = 0;A = 0, C = 1;

X = AC + A D + BC + BD d SOP

X = (A + B) � (C + D) d POS

X = AB � CD

X = AB + CD

 X = BC D + ABDE + CD

 X = ACD + CD + B

 X = AB + AC + ABC

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

TABLE 7 Truth Table Completed Using
the SOP Expression

A B C D X

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1
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Drawing the logic circuit for the POS expression involves using OR gates feed-
ing into an AND gate, as shown in Figure 80. Drawing the logic circuit for the SOP ex-
pression involves using AND gates feeding into an OR gate, as shown in Figure 81.
The logic circuit for the SOP expression used more gates for this particular example,
but the SOP form is easier to deal with and, in addition, there is an IC gate specifically
made to simplify the implementation of SOP circuits.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

X = (A + B)(C + D)

A

B

C

D

Product of
two sums.

Figure 80 Logic circuit for the POS expression.

X = AC + AD + BC + BD

A

C

A

D

B

C

B

D

Sum of several
products.

Figure 81 Logic circuit for the SOP expression.

That gate is the AND–OR–INVERT (AOI). AOIs are available in several different
configurations within the TTL or CMOS families. Skim through your TTL and CMOS
data books to identify some of the available AOIs. One AOI that is particularly well
suited for implementing the logic of Figure 81 is the 74LS54 TTL IC. The pin config-
uration and logic symbol for the 74LS54 are shown in Figure 82.

Y = AB + CDE + FG + HJK

A

B

12

10
9

11

H
J
K

13

1

2

3

4

5

6

7

14

13

12

11

10

9

8
74LS54

VCC

GND

4
3

5

C
D
E

1

2

F

G

Y 6

AND OR-INVERT

Figure 82 Pin configuration and logic symbol for the 74LS54 AOI gate.
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Notice that the output at Y is inverted, so we have to place an inverter after Y.
Also, two of the AND gates have three inputs instead of just the two-input gates that
we need, so we just connect the unused third input to a 1. Figure 83 shows the required
connections to the AOI to implement the SOP logic circuit of Figure 81. Omitting the
inverter from Figure 83 would provide an active-LOW output function, which may be
acceptable, depending on the operation required. (The new equation would be
X = AC + A D + BC + BD.)

X = AC + AD + BC + BD

A

C

1

A
D

B

C

X

1

B
D

74LS54

Inverter required to
cancel effect of bubble.

Figure 83 Using an AOI IC to implement an SOP equation.
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A

C

B

C

X

A
B
D

Figure 84 Original circuit for Example 27.

Common
Misconception

Students often forget the
inverter, which makes the
output active-LOW. The
equations so far have been
active-HIGH, but later you

 will see why active-LOW is
 so common.

E X A M P L E  2 7

Simplify the circuit shown in Figure 84 down to its SOP form, then draw
the logic circuit of the simplified form using a 74LS54 AOI gate.

Solution:

The simplified circuit is shown in Figure 85.

 = AB + AC + B C + ABD d SOP

 = AB + AC + B C + CC + ABD

 = (A + C)(B + C) + ABD

 = AC � BC + ABD

 = AC + BC + A + B + D

 X = (AC + BC) � (A + B + D)
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Review Questions

14. Which form of Boolean equation is better suited for completing truth
tables and timing diagrams, SOP or POS?

15. AOI ICs are used to implement ___________ (SOP, POS) expressions.

16. The equation has only three product terms. If
a 74LS54 AOI IC is used to implement the equation, what must be done
with the three inputs to the unused fourth AND gate?

9 Karnaugh Mapping

We learned in previous sections that by using Boolean algebra and De Morgan’s theo-
rem, we can minimize the number of gates that are required to implement a particular
logic function. This is very important for the reduction of circuit cost, physical size,
and gate failures. You may have found that some of the steps in the Boolean reduction
process require ingenuity on your part and a lot of practice.

Karnaugh mapping was named for its originator, Maurice Karnaugh, who in 1953
developed another method of simplifying logic circuits. It still requires that you reduce
the equation to an SOP form, but from there, you follow a systematic approach, which
will always produce the simplest configuration possible for the logic circuit.

A Karnaugh map (K-map) is similar to a truth table in that it graphically shows
the output level of a Boolean equation for each of the possible input variable combina-
tions. Each output level is placed in a separate cell of the K-map. K-maps can be used
to simplify equations having two, three, four, five, or six different input variables.
Solving five- and six-variable K-maps is extremely cumbersome; they can be more
practically solved using advanced computer techniques. In this text, we solve two-,
three-, and four-variable K-maps.

Determining the number of cells in a K-map is the same as finding the number of
combinations or entries in a truth table. A two-variable map requires cells. A
three-variable map requires cells. A four-variable map requires cells.
The three different K-maps are shown in Figure 86.

Each cell within the K-map corresponds to a particular combination of the
input variables. For example, in the two-variable K-map, the upper left cell corre-
sponds to the lower left cell is the upper right cell is and the lower right
cell is AB.

AB,AB,A B,

24
= 1623

= 8
22

= 4

X = AB + BCD + DE

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

X = AB + AC + BC + ABD

A

B

1

A
C

B

C

X

A
B

74LS54
D

Put 1 on
unused input.

Figure 85 Using an AOI IC to implement the simplified SOP equation for
Example 27.

Team
Discussion

What other options are
available instead of
inputting a 1 to the second
AND gate?

Team
Discussion

How could you create the
AND–OR logic function
using 5 NAND gates? (Hint:
Use bubble pushing.)
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Also notice that when moving from one cell to an adjacent cell, only one vari-
able changes. For example, look at the three-variable K-map. The upper left cell is

the adjacent cell just below it is In this case, the remained the same
and only the changed, to B. The same holds true for each adjacent cell.

To use the K-map reduction procedure, you must perform the following steps: 

1. Transform the Boolean equation to be reduced into an SOP expression.

2. Fill in the appropriate cells of the K-map.

3. Encircle adjacent cells in groups of two, four, or eight. (The more adjacent
cells encircled, the simpler the final equation is; adjacent means a side is
touching, not diagonal.)

4. Find each term of the final SOP equation by determining which variables re-
main constant within each circle.

Now, let’s consider the equation

First, transform the equation to an SOP expression:

The terms of that SOP expression can be put into a truth table and then transferred to a
K-map, as shown in Figure 87. Working with the K-map, we now encircle adjacent 1’s
in groups of two, four, or eight. We end up with two circles of two cells each, as shown
in Figure 88. The first circle surrounds the two 1’s at the top of the K-map, and the sec-
ond circle surrounds the two 1’s in the left column of the K-map. 

Once the circles have been drawn encompassing all the 1’s in the map, the final
simplified equation is obtained by determining which variables remain the same
within each circle. Well, the first circle (across the top) encompasses and 
The variables that remain the same within the circle are Therefore, becomes
one of the terms in the final SOP equation. The second circle (left column) encom-
passes and The variables that remain the same within that circle are 
Therefore, the second term in the final equation is A C.

A C.ABC.A B C

A BA B.
A BC.A B C

X = A BC + A B C + ABC

X = A(BC + B C) + ABC

B
A CABC.A B C;

A

A

B B

AB

C C

AB

AB

AB

AB

CD

AB

AB

AB

CD CD CD

Figure 86 Two-, three-, and four-variable Karnaugh maps.
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AB

C C

AB

AB

AB

A B C

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

X

1
1
1
0
0
0
0
0

(ABC)
(ABC)
(ABC)

11

1

Figure 87 Truth table and Karnaugh map of X = A B C + A BC + ABC.

Common
Misconception

Students sometimes design
their own layouts for 
K-maps by moving the
overbars. This move can
produce invalid results if it
causes more than one
variable to change as you
move from cell to cell.
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Because the final equation is always written in the SOP format, the answer is
Actually, the original equation was simple enough that we could have

reduced it using standard Boolean algebra. Let’s do it just to check our answer:

There are several other points to watch out for when applying the Karnaugh map-
ping technique. The following examples will be used to illustrate several important
points in filling in the map, determining adjacencies, and obtaining the final equation.
Work through these examples carefully so that you do not miss any special techniques.

 = A B + A C  ✓

 = A(B + C)

 = A(B + BC)

 = A B + ABC

 = A B(C + C) + ABC

 X = A BC + A B C + ABC

X = A B + A C.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

AB

C C

AB

AB

AB

X = AB + AC

11

1

These are the variables
that remained constant
within each circle.

Figure 88 Encircling adjacent cells in a Karnaugh map.

E X A M P L E  2 8

Simplify the following SOP equation using the Karnaugh mapping technique:

Solution:

1. Construct an eight-cell K-map (see Figure 89), and fill in a 1 in each
cell that corresponds to a term in the original equation. (Notice that 
has no C variable in it. Therefore, is satisfied whether C is HIGH or
LOW, so will fill in two cells: ABC + ABC.)AB

AB
AB

X = AB + A B C + ABC + AB C

AB

C C

AB

AB

AB

X = AB + C    Answer

1

1

1

1

1

Figure 89 Karnaugh map and final equation for Example 28.
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AB

AB

AB

AB

X = ABD + ABC + CD    Answer

1

1

CD CD CD CD

1 11

1

Figure 90 Solution to Example 29.

AB

AB

AB

AB

X = BD + BC     Answer

CD CD CD CD

1 11

1 11

Figure 91 Solution to Example 30.

E X A M P L E  2 9

Simplify the following equation using the Karnaugh mapping procedure:

Solution: Because there are four different variables in the equation, we
need a 16-cell map as shown in Figure 90.(24

= 16),

X = ABCD + AB CD + A B CD + ABCD + ABC D + ABCD

E X A M P L E  3 0

Simplify the following equation using the Karnaugh mapping procedure:

Solution: Notice in Figure 91 that the term in the original equation
fills in two cells: Also notice in Figure 91 that we could
have encircled four cells and then two cells, but that would not have given
us the simplest final equation. By encircling four cells and then another
four cells, we are sure to get the simplest final equation. (Always encircle
the largest number of cells possible, even if some of the cells have already
been encircled in another group.) 

ABC D + ABC D.
BC D

X = BC D + ABCD + ABCD + ABCD + ABCD

Common
Misconception

Students often solve a map
like this by encircling 4
and 2 instead of 4 and 4.
Analyze both results to see
why choosing 4 and 4 is
better.

2. Encircle adjacent cells in the largest group of two or four or eight.

3. Identify the variables that remain the same within each circle, and
write the final simplified SOP equation by ORing them together.
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AB

AB

AB

AB

X = B + AD      Answer

CD CD CD CD

1 1

1 11 1

1 11 1

Figure 92 Solution to Example 31 illustrating the wraparound feature.

E X A M P L E  3 1

Simplify the following equation using the Karnaugh mapping procedure:

Solution: Notice in Figure 92 that a new technique called wraparound is
introduced. You have to think of the K-map as a continuous cylinder in the
horizontal direction, like the label on a soup can. This makes the left row of
cells adjacent to the right row of cells. Also, in the vertical direction, a con-
tinuous cylinder like a soup can lying on its side makes the top row of cells
adjacent to the bottom row of cells. In Figure 92, for example, the four top
cells are adjacent to the four bottom cells, to combine as eight cells having
the variable in common.

Another circle of four is formed by the wraparound adjacencies of the
lower left and lower right pairs combining to have in common. The final
equation becomes Compare that simple equation with the
original equation that had five terms in it.

X = B + AD.
AD

B

X = A B C + AC D + AB + ABCD + A BC

E X A M P L E  3 2

Simplify the following equation using the Karnaugh mapping procedure:

Solution: Before filling in the K-map, an SOP expression must be formed:

The group of four 1’s can be encircled to form as shown in
Figure 93. Another group of four can be encircled using wraparound to
form That leaves two 1’s that are not combined with any others. The
unattached 1 in the bottom row can be combined within a group of four, as
shown, to form 

The last 1 is not adjacent to any other, so it must be encircled by itself
to form The final simplified equation is

X = A B + B C + BD + ABCD

ABCD.

BD.

B C.

A B,

 = BCD + B C + A BCD + ABCD

 X = BCD + B C + CD(A B + AB)

X = B(CD + C) + CD(A + B + AB)
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AB

AB

AB

AB

Four corners = BD

CD CD CD CD

1 11 1

1 1

1 11 1 A

Figure 94 Solution to Example 33.

Common
Misconception

Students often neglect to
include the single
encirclement (4-variable)
term in the final equation.

AB

AB

AB

AB

BD

CD CD CD CD

1

1 11 1

1 11

BC

AB

ABCD

Figure 93 Solution to Example 32.

E X A M P L E  3 3

Simplify the following equation using the Karnaugh mapping procedure:

Solution: First, the group of eight cells can be encircled, as shown in
Figure 94. is the only variable present in each cell within the circle, so the
circle of eight simply reduces to (Notice that larger circles will reduce to
fewer variables in the final equation.)

A.
A

X = A D + AB D + A CD + ACD

Also, all four corners are adjacent to each other because the K-map
can be wrapped around in both the vertical and horizontal directions.
Encircling the four corners results in The final equation is

X = A + B D

B D.

Team
Discussion

What is the final equation
of a map that has all cells
filled in?

E X A M P L E  3 4

Simplify the following equation using the Karnaugh mapping procedure:

X = A B D + AC D + ABC + ABCD + ABCD
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10 System Design Applications

Let’s summarize the entire chapter now by working through two complete design
problems. The following examples illustrate practical applications of a K-map to en-
sure that when we implement the circuit using an AOI, we will have the simplest pos-
sible solution.

AB

AB

AB

AB

Redundancy

CD CD CD CD

1 1

1

1 1

1 1

BC

1

BD

Figure 95 Solution to Example 34.

Team
Discussion

So what’s wrong with
being redundant?

Team
Discussion

The LSB (variable A) is
always HIGH for an odd
number. Why can’t we just
say “odd number A”?�

SY S T E M  D E S I G N  1

Design a circuit that can be built using an AOI and inverters that will out-
put a HIGH (1) whenever the 4-bit hexadecimal input is an odd number
from 0 to 9.

Solution: Encircling the four corners forms as shown in Figure 95.
The other group of four forms You may be tempted to encircle the 
group of four as shown by the dotted line, but that would be a redundancy
because each of those 1’s is already contained within an existing circle.
Therefore, the final equation is 

X = B D + BC

C DBC.
B D,

TABLE 8 Hex Truth Table Used to Determine the Equation 
for Odd Numbersa from 0 to 9

D C B A DEC

0 0 0 0 0

0 0 0 1 1
0 0 1 0 2

0 0 1 1 3
0 1 0 0 4

0 1 0 1 5
0 1 1 0 6

0 1 1 1 7
1 0 0 0 8
1 0 0 1 9

aOdd number = AB C D + ABC D + ABCD + ABCD + AB CD.

d AB CD

d ABCD

d ABCD

d ABC D

d AB C D
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Solution: First, build a truth table (Table 8) to identify which hex codes
from 0 to 9 produce odd numbers. (Use the variable A to represent the 20

hex input, B for 21, C for 22, and D for 23.) Next, reduce this equation into
its simplest form by using a Karnaugh map, as shown in Figure 96(a).
Finally, using an AOI with inverters, the circuit can be constructed as shown
in Figure 96(b). 

AB

AB

AB

AB

(a)

CD CD CD CD

1 1

1 1

1
Odd number = AD + ABC where A = LSB

Figure 96 (a) Simplified equation derived from a Karnaugh map; 
(b) implementation of the odd-number decoder using an AOI.

(b)

Output = 1
for odd
numbers

A

B

C

D

74LS54 (AOI)

SY S T E M  D E S I G N  2

A chemical plant needs a microprocessor-driven alarm system to warn
of critical conditions in one of its chemical tanks. The tank has four
HIGH/LOW (1/0) switches that monitor temperature (T ), pressure (P),
fluid level (L), and weight (W ). Design a system that will notify the mi-
croprocessor to activate an alarm when any of the following conditions
arise:

1. High fluid level with high temperature and high pressure

2. Low fluid level with high temperature and high weight

3. Low fluid level with low temperature and high pressure

4. Low fluid level with low weight and high temperature
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TP

TP

TP

TP

(a)

LW LW LW LW

1

1 1

1
Alarm = TP + PL + TL

(b)

Microprocessor
alarm

T

P

L

W

1

1 1

1

74LS54 (AOI)

1

Figure 97 (a) Simplified equation derived from a Karnaugh map; 
(b) implementation of the chemical tank alarm using an AOI.

Review Questions

17. The number of cells in a Karnaugh map is equal to the number of en-
tries in a corresponding truth table. True or false?

18. The order in which you label the rows and columns of a Karnaugh map
does not matter as long as every combination of variables is used. True or
false?

19. Adjacent cells in a Karnaugh map are encircled in groups of 2, 4, 6, or
8. True or false?

20. Which method of encircling eight adjacent cells in a Karnaugh map
produces the simplest equation: two groups of four, or one group of eight?

Team
Discussion

By rereading conditions 2
and 4, can you logically
explain why the weight is
irrelevant and doesn’t
appear in the final
equation?

Solution: First, write in Boolean equation form the conditions that will
activate the alarm:

Next, factor the equation into its simplest form by using a Karnaugh map,
as shown in Figure 97(a). Finally, using an AOI with inverters, the circuit
can be constructed as shown in Figure 97(b). 

alarm = LTP + LTW + L TP + L WT
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Summary

In this chapter, we have learned that

1. Several logic gates can be connected together to form combinational
logic.

2. There are several Boolean laws and rules that provide the means to form
equivalent circuits.

3. Boolean algebra is used to reduce logic circuits to simpler equivalent
circuits that function identically to the original circuit.

4. De Morgan’s theorem is required in the reduction process whenever in-
version bars cover more than one variable in the original Boolean equation.

5. NAND and NOR gates are sometimes referred to as universal gates
because they can be used to form any of the other gates.

6. AND–OR–INVERT (AOI) gates are often used to implement sum-of-
products (SOP) equations.

7. Karnaugh mapping provides a systematic method of reducing logic
circuits.

8. Combinational logic designs can be entered into a computer using
schematic block design software or VHDL.

9. Using vectors in VHDL is a convenient way to group like signals to-
gether similar to an array.

10. Truth tables can be implemented in VHDL using vector signals with
the selected signal assignment statement.

11. Quartus® II can be used to determine the simplified equation of com-
binational circuits.

Glossary

Active-LOW: An output of a logic circuit that is LOW when activated, or an input
that needs to be LOW to be activated.

Adjacent Cell: Cells within a Karnaugh map that border each other on one side or the
top or bottom of the cell.

AND–OR–INVERT (AOI) Gate: An integrated circuit containing combinational
logic consisting of several AND gates feeding into an OR gate and then an
inverter. It is used to implement logic equations in the SOP format.

Boolean Reduction: An algebraic technique that follows specific rules to convert a
Boolean equation into a simpler form.

Bubble Pushing: A shortcut method of forming equivalent circuits based on De
Morgan’s theorem.

Cell: Each box within a Karnaugh map. Each cell corresponds to a particular combi-
nation of input variable logic levels.

Chip Planner: A Quartus® II software tool used to display the simplified equation to
be programmed into an FPGA.
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Combinational Logic: Logic circuits formed by combining several of the basic logic
gates to form a more complex function.

De Morgan’s Theorem: A Boolean law used for equation reduction that allows the
user to convert an equation having an inversion bar over several variables
into an equivalent equation having inversion bars over single variables only.

Don’t Care: A variable appearing in a truth table or timing waveform that will have
no effect on the final output regardless of the logic level of the variable.
Therefore, don’t-care variables can be ignored.

Equivalent Circuit: A simplified version of a logic circuit that can be used to per-
form the exact logic function of the original complex circuit.

Floorplan Editor Display: A Quartus® II display that is used to view and modify the
layout and configuration of a CPLD.

Inversion Bubbles: The bubble (or circle) can appear at the input or output of a logic
gate. It indicates inversion (1 becomes 0; 0 becomes 1).

Karnaugh Map: A two-dimensional table of Boolean output levels used as a tool to
perform a systematic reduction of complex logic circuits into simplified
equivalent circuits.

Logic Array Block (LAB): Several logic cells put together as a group. The Altera
EPM7128SLC CPLD has 8 LABs, each containing 16 logic cells.

Logic Cell: Also known as a macrocell, and is an array of AND-OR logic and I/O
registers.

Netlist Viewer: A Quartus® II software tool used to display the simplified logic cir-
cuit to be programmed into an FPGA.

Product-of-Sums (POS) Form: A Boolean equation in the form of a group of
ORed variables ANDed with another group of ORed variables [e.g.,

Redundancy: Once all filled-in cells in a Karnaugh map are contained within a circle,
the final simplified equation can be written. Drawing another circle around
a different group of cells is needless (redundant).

Selected Signal Assignment: A VHDL statement that executes specific assignments
based on the value of the specified signal used in the statement.

Signal: A VHDL architecture statement that declares one or more inputs as internal
signals.

Sum-of-Products (SOP) Form: A Boolean equation in the form of a group of
ANDed variables ORed with another group of ANDed variables (e.g.,

Type declaration: A VHDL entity statement that defines what type of input or output
data is to be used.

Universal Gates: The NOR and NAND logic gates are sometimes called universal
gates because any of the other logic gates can be formed from them.

Vector: A grouping of like signals similar to an array.

Wraparound: The left and right cells and the top and bottom cells of a Karnaugh map
are actually adjacent to each other by means of the wraparound feature.

X = ABC + BDE + A D).

X = (A + B + C) (B + D) (A + C)].
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Problems

Section 1
1. Write the Boolean equation for each of the logic circuits shown in
Figure P1.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

W

A

B

C

D

(a)

X

A

B

C

(b)

Y

A

B

(c)

C

(d)

D

A

B

C

Z

Figure P1

2. Refer to the gray water reclamation tank in Figure 7 (Example 4). Write
the Boolean equation and draw the logic circuit to implement the following
functions:

(a) Turn on the red light (R) if there is a HIGH opacity (C) and 
pressure (P) when the level is full (F).

(b) Turn on the green light (G) if there is a HIGH opacity (C) and 
pressure (P) when the level is mid (M) or full (F).

(c) Turn on the blue light (B) when the tank level is full and any of the sen-
sors for PH (H), opacity (C), or pressure (P) are HIGH.

Section 2
3. Draw the logic circuit that would be used to implement the following
Boolean equations. Also, construct a truth table for each of the equations.
(Hint: Where applicable, apply Law 3 to the equation first. Do not simplify
the equation for this problem.)

(a)
(b)
(c)
(d)
(e)
(f) S = B(A + C) + AC + D

R = BC + D + AD

Q = (A + B)BCD

P = (AC + BC) (A + C)

N = (A + B + C)D

M = (AB) + (C + D)
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4. Write the Boolean equation and then complete the timing diagram at W,
X, Y, and Z for the logic circuits shown in Figure P4.
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(a)

D

A

B

C

(d)

D

A

B

C

Z

W

A
B

D
X

(b)

C

A
B

D
Y

(c)

C

A

B

C

D

W

X

Y

Z

0   1   2   3   4   5   6   7

Figure P4

5. State the Boolean law that makes each of the equivalent circuits
shown in Figure P5 valid.

D
A

B
E

C

X = C + D + A + E + B

Original circuit

B
C

E
D

A

X = A + B + C + D + E

Equivalent circuit

(a)

Figure P5
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6. Using the 10 Boolean rules presented in Table 2, determine the out-
puts of the logic circuits shown in Figure P6.
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M
A

0

B

1
N

(a) (b)

P
A
B

C

0
Q

(c) (d)

R
A

A

B
S

(e) (f)

T
A

B
U

(g) (h)

V
A

A

(i) (j)

1
D

WA

Figure P6

(b)

(c)

A
B

D
X = (ABC)D

Original circuit

C

A

B

D

Equivalent circuit

C X = (AB)CD

A

B

C
X = (A + B)C

Original circuit

A

C

Equivalent circuit

X = AC + BC

B

C

Figure P5 Continued

Section 3
7. Write the Boolean equation for the circuits of Figure P7. Simplify the
equations, and draw the simplified logic circuit.
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X

A

B

C

(b)

(d)

A

B

C

Z

W

A

B

C

(a)

Y
A

B

C

(c)

Figure P7

8. Repeat Problem 7 for the circuits shown in Figure P8.

A

B

C

(a)

Y
A

B

C

(b)

X

A

B

C

(c)

Z

Figure P8

9. Draw the logic circuit for the following equations. Simplify the equa-
tions, and draw the simplified logic circuit.

(a)
(b) W = (BCD + C)CD

V = AC + ACD + CD
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(c)
(d)
(e)

10. Construct a truth table for each of the simplified equations of Problem
9.

11. The pin layouts for a 74HCT08 CMOS AND gate and a 74HCT32
CMOS OR gate are given in Figure P11. Make the external connections to
the chips to implement the following logic equation. (Simplify the logic
equation first.)

X = (A + B) (D + C) + ABD

Z = ABC + CD + CDE

Y = AB + BC + ABC

X = (B + D) (A + C) + ABD
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W
A

B

A

B
X

(a)

(b)

Y
A

B

A

B
Z

(c)

(d)

Figure P15

1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

74HCT3274HCT08

1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

Figure P11

16. Use De Morgan’s theorem to prove that a NOR gate with inverted in-
puts is equivalent to an AND gate.

12. Repeat Problem 11 for the following equation

Section 5
13. Write a sentence describing how De Morgan’s theorem is applied in
the simplification of a logic equation.

14. (a) De Morgan’s theorem can be used to prove that an OR gate with
inverted inputs is equivalent to what type of gate?

(b) An AND gate with inverted inputs is equivalent to what type of
gate?

15. Which two circuits in Figure P15 produce equivalent output equa-
tions?

Y = AB(C + BD) + BD
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Y

A

B

C

(b)

X

A

B

C

(a)

Figure P18

17. Draw the logic circuit for the following equations. Apply De Morgan’s
theorem and Boolean algebra rules to reduce them to equations having in-
version bars over single variables only. Draw the simplified circuit.

(a)
(b)
(c)
(d)

18. Write the Boolean equation for the circuits of Figure P18. Use De
Morgan’s theorem and Boolean algebra rules to simplify the equation.
Draw the simplified circuit.

Z = AB + (A + C)

Y = (AB) + C + BC

X = AB + C + BC

W = AB + A + C

X

A

B

C

(a)

D

Y

(b)

A

B

C

Figure P20

19. Repeat Problem 17 for the following equations.

(a)
(b)
(c)
(d)

20. Repeat Problem 18 for the circuits of Figure P20.

Z = (C + D) ACD (AC + D)

Y = ABC + D + AB + BC

X = A + B � BC + BC

W = AB + CD + ACD

C

C
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A

B

C

X

Y

Z

Figure P28

21. *Design a logic circuit that will output a 1 (HIGH) only if A and B are
both 1 while either C or D is 1.

22. Design a logic circuit that will output a 0 only if A or B is 0.

23. Design a logic circuit that will output a LOW only if A is HIGH or B is
HIGH while C is LOW or D is LOW.

24. Design a logic circuit that will output a HIGH if only one of the inputs
A, B, or C is LOW.

25. Design a circuit that outputs a 1 when the binary value of ABCD

26. Design a circuit that outputs a LOW when the binary value of ABCD
and 

27. Complete a truth table for the following simplified Boolean equations.

(a)
(b)
(c)
(d)

28. Complete the timing diagram in Figure P28 for the following simpli-
fied Boolean equations.

(a)
(b)
(c) Z = BC + AB + ABC

Y = B + ABC + AC

X = A B C + ABC + AC

Z = ABCD + AC + CD + B C

Y = CD + A B C D + BCD + ACD

X = A B + ABC + BC

W = AB C + BC + AB

6 10.(D = LSB) is 7 7

(D = LSB) is 7 11.

29. Use the bubble-pushing technique to convert the gates in Figure P29.

*The letter D designates a circuit D esign problem.

DC

DC

DC

D

D

D*
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(a) (b)

(c) (d)

Figure P29

30. Some computer systems have two disk drives, commonly called drive
A and drive B, for storing and retrieving data. Assume that your computer
has four control signals provided by its internal microprocessor to enable
data to be read and written to either drive. Design a gating scheme similar
to that provided in Figure 60 to supply an active-LOW drive select signal to
drive A or to drive B whenever they are read or written to. The
four control signals are also active-LOW and are labeled (Read), 
(Write), (drive A), and (drive B).

Section 7
31. Draw the connections required to convert

(a) A NAND gate into an inverter

(b) A NOR gate into an inverter

32. Draw the connections required to construct

(a) An OR gate from two NOR gates

(b) An AND gate from two NAND gates

(c) An AND gate from several NOR gates

(d) A NOR gate from several NAND gates

33. Redraw the logic circuits of Figure P33 to their equivalents using only
NOR gates.

DBDA
WRRD

(DSb)(DSa)

Y

A

B

C

(b)

Z

A

B

C

(c)

X

A

B

C

(a)

Figure P33

CD
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34. Convert the circuits of Figure P34 to their equivalents using only
NAND gates. Next, make the external connections to a 7400 quad NAND
to implement the new circuit. (Each new equivalent circuit is limited to four
NAND gates.)

X

A

B

C

(a)

Y

L

M

N

(b)

Figure P34

Section 8
35. Identify each of the following Boolean equations as a POS expression,
a SOP expression, or both.

(a)
(b)
(c)
(d)
(e)
(f)

36. Simplify the circuit of Figure P36 down to its SOP form, then draw the
logic circuit of the simplified from implemented using a 74LS54 AOI gate.

Z = (A + B) (BC + A) + AB + CD

Y = (AB + D) (A + CD)

X = AB + C + BD

W = AC (B + C)

V = (A + C) (B + C)

U = ABC + BC + AC

C

C

D

B

C

B

D

A

C
B

X

Figure P36
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Section 9
37. Using a Karnaugh map, reduce the following equations to a minimum
form.

(a)
(b)
(c)

38. Using a Karnaugh map, reduce the following equations to a minimum
form.

(a)
(b)
(c)
(d)

39. Use a Karnaugh map to simplify the circuits in Figure P39.

Z = B CD + BCD + C D + CD(B + A B)

Y = A(CD + C D) + ABD + A BCD

X = A B D + B(C D + ACD) + AB D

W = B(CD + AD) + B C(A + A D)

Z = ABC + AB C + A BC + ABC

Y = BC + A BC + BC

X = ABC + AB + A B

X

A

B

C

(a)

D

Y

(b)

A

B

C

D

Figure P39

Section 10
40. Seven-segment displays are commonly used in calculators to display
each decimal digit. Each segment of a digit is controlled separately, and
when all seven of the segments are on, the number 8 is displayed. The upper
right segment of the display comes on when displaying the numbers 0, 1, 2,
3, 4, 7, 8, and 9. (The numerical designation for each of the digits 0 to 9 is
shown in Figure P40.) Design a circuit that outputs a HIGH (1) whenever a
4-bit BCD code translates to a number that uses the upper right segment.
Use variable A to represent the 23 BCD input. Implement your design with
an AOI and inverters.

C

C
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41. Repeat Problem 40 for the lower left segment of a seven-segment dis-
play (0, 2, 6, 8).

42. The logic circuit of Figure P42(a) is implemented by making connec-
tions to the 7400 as shown in Figure P42(b). The circuit is not working
properly. The problem is in the IC connections or in the IC itself. The data
table in Figure P42(c) is completed by using a logic probe at each pin.
Identify the problem.

Figure P40

DC

1

2

3

4

5

6

7

+5 V14

13

12

11

10

9

8
7400

A

GND

VCC

C

X

B

Test conditions
A = 1
B = 1
C = 1
X should equal 0

Probe on pin: Indicator lamp

1
2
3
4
5
6
7
8
9

10
11
12
13
14

On
On
Off
Off
Off
Off
Off
On

Dim
Dim
On
On
Off
On

(c)

(b)

A

B

C

(a)

X

Figure P42

43. Repeat Problem 42 for the circuit shown in Figure P43.

T

T
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Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

44. Find U8 in the HC11D0 schematic. Pins 11 and 12 are unused so they
are connected to VCC. What if they were connected to ground instead?

45. Find U1:A in the Watchdog Timer schematic. This device is called a
flip-flop. It has two inputs, D and CLK, and two outputs, QA and Write
the Boolean equation at the output (pin 3) of U2:A.

46. Write the Boolean equation at the output (pin 3) of U12:A in the
Watchdog Timer schematic. (Hint: Use the information given in Problem
45.)

47. Locate the U14 gates in the 4096/4196 schematic.

(a) Write the Boolean equation of the output at pin 6 of U14.

(b) What kind of gate does it turn into if you use the bubble-pushing tech-
nique?

(c) This is a 74HC08. What kind of logic gate is that?

(d) Complete the following sentence: Pin 3 of U14:A goes LOW if
___________ OR if ___________.

48. U10 of the 4096/4196 schematic is a RAM memory IC. To enable the
chip to work, the Chip Enable input at pin 20 must be made LOW. Write a
sentence describing the logic operation that makes that line go LOW. (Hint:
Pin 20 of U10 goes LOW if ___________.)

QA.

1

2

3

4

5

6

7

+5 V14

13

12

11

10

9

8
7400

A

GND

VCC

C

Test conditions
A = 0
B = 1
C = 1
X should equal 0

Probe on pin: Indicator lamp

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Off
Off
On
On
On
Off
Off
On
Off
On
On
On
Off
On

(c)

(b)

B

X

A

B

C

(a)

X

Figure P43

S

S

S

SC

SC
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MultiSIM® Exercises

E1. Load the circuit file for Section 1a. This circuit is an automobile
warning system used to warn you if you leave your key in the ignition or
leave your headlights on as you leave your car.

(a) Write the Boolean equation at B. Test your Boolean equation by moving
the appropriate switches.

(b) The equation and the circuit can be reduced to a simpler form using
just two gates and three switches to perform the same operation. What
is the reduced equation? Test your reduced equation by building the
new circuit.

E2. Load the circuit file for Section 1b.

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

E3. Load the circuit file for Section 3a.

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

E4. Load the circuit file for Section 3b.

(a) What is the Boolean equation at X?

(b) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(c) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

E5. Load the circuit file for Section 3c. Use the gates that are provided to
draw the logic circuit for the following equation: 

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

(c) Draw the simplified circuit using the Logic Converter.

E6. Load the circuit file for Section 3d. Use the gates that are provided to
draw the logic circuit for the following equation: 

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

(c) Draw the simplified circuit using the Logic Converter.

E7. Load the circuit file for Section 3e. The Combinational logic circuit
inside of the box labeled “COMBO1” produces an output at X. Use the
waveforms shown on the Logic Analyzer to determine the Boolean logic
that is inside circuit “COMBO1.” Write the equation at X.

E8. Load the circuit file for the Section 3f. The combinational logic circuit
inside of the box labeled “COMBO2” produces an output at X. Study the

ABD + CD + CDE.
X =

X = (ABC + B)BC.
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waveforms shown on the Logic Analyzer to determine the Boolean logic
that is inside circuit “COMBO2.” Write the equation at X.

E9. Load the circuit file for Section 4a. The circuit shown has a Boolean
equation of The prime is used instead of an over-
bar.

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

E10. Load the circuit file for Section 4b. The circuit shown is a combina-
tional logic circuit.

(a) What is the Boolean equation at X?

(b) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(c) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

E11. Load the circuit file for Section 4c. Use the gates that are provided to
draw the logic circuit for the following equation:

(a) Create a truth table using the Logic Converter. How many different
input combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

(c) Draw the simplified circuit using the Logic Converter.

E12. Load the circuit file for Section 4d. Use the gates that are provided
to draw the logic circuit for the following equation: 

(a) Create a truth table using the Logic Converter. How many different in-
put combinations produce a 1 in the output?

(b) Use the Logic Converter to find the simplified equation at X. What is
the simplified equation?

(c) Draw the simplified circuit using the Logic Converter.

E13. Load the circuit file for Section 4e. On a separate piece of paper use the
“bubble-pushing” technique to convert the gates connected to X and Y.

(a) What logic gate could be used to provide the logic at X?

(b) What logic gate could be used to provide the logic at Y? Check your
answer by observing the output at X and Y on the Logic Analyzer.

E14. Load the circuit file for Section 4f. The Word Generator is set up to
output a binary up-counter waveform similar to the one commonly used in
the text. Design a circuit that will output a HIGH if only one of the inputs
A, B, or C is LOW. Connect the output of your design to the Logic Ana-
lyzer. Study the four waveforms to see if your design worked.

E15. Load the circuit file for Section 4g. The Word Generator is set up to
output a binary up-counter waveform similar to the one commonly used in
the text. Design a circuit that will output a HIGH when the binary value 
of ABCD is greater than 11. Connect the output of your design
to the Logic Analyzer. Study the five waveforms to see if your design 
worked.

(D = LSB)

(ABC¿ + D)¿ + (AB¿ + BC¿)¿.
X =

X = A(B + C)¿ + (BC)¿.

(¿)X = (AB)¿(A + B)¿.

C

C

DC

D
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E16. Load the circuit file for Section 4h. The Word Generator is set up to
output a binary up-counter waveform similar to the one commonly used in
the text. Design a circuit that will output a LOW when the binary value of
ABCD is greater than 7 and less than 10. Connect the output of
your design to the Logic Analyzer. Study the five waveforms to see if your
design worked.

MultiSIM® Troubleshooting Exercises

E17. The following circuit files have faults in them. Study the combinational
logic circuit operation in Section 1 before attempting to find the faults.

(a) AND-OR_t-shoot_a (b) AND-OR_t-shoot_b

(1) The circuit should operate the same as the automobile warning system
presented in Figure 1 Test the logic operation by ex-
ercising all combinations for K, H, and D by pressing each of those
keys on your keyboard.

(2) What problems do you observe?

(3) Use the Logic Probe indicator to determine which gate is not operating
properly. Which gate is bad?

(4) Delete the bad gate, replace it, and validate proper circuit operation.

E18. The following circuit files have faults in them. Study the combina-
tional logic circuit operation in Example 6 before attempting to find the
faults.

(a) AND-OR_t-shoot_c (b) AND-OR_t-shoot_d

(1) The circuit should operate the same as Example 6 in Figure 23, which
reduces to Test the logic operation by exercising all
combinations for A, B, and C by pressing each of those keys on your
keyboard.

(2) What problems do you observe?

(3) Use the Logic Probe indicator to determine which gate is not operating
properly. Which gate is bad?

(4) Delete the bad gate, replace it, and validate proper circuit operation.

E19. The following circuit files have faults in them. Study the combina-
tional logic circuit operation in Example 8 before attempting to find the
faults.

(a) AND-OR-invert_t-shoot_a (b) AND-OR-invert_t-shoot_b

(1) The circuit should operate the same as Example 8 in Figure 27, which
reduces to Test the logic operation by exercising all com-
binations for A, B, and C by pressing each of those keys on your key-
board.

(2) What problems do you observe?

(3) Use the Logic Probe indicator to determine which gate is not operating
properly. Which gate is bad?

(4) Delete the bad gate, replace it, and validate proper circuit operation.

E20. The following circuit files have faults in them. Study the combina-
tional logic circuit operation in Example 9 before attempting to find the
faults.

(a) AND-OR-invert_t-shoot_c (b) AND-OR-invert_t-shoot_d

X = B + C.

X = AB + C.

(B = KD + HD).

(D = LSB)

D

T

T

T

T
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(1) The circuit should operate the same as Example 9 in Figure 28(a),
which reduces to Test the logic operation by exercising all
combinations for A, B, and C by pressing each of those keys on your
keyboard.

(2) What problems do you observe?
(3) Use the Logic Probe indicator to determine which gate is not operating

properly. Which gate is bad?
(4) Delete the bad gate, replace it, and validate proper circuit operation.

E21. The following circuit files have faults in them. Study the combina-
tional logic circuit operation in Example 13 before attempting to find the
faults.

(a) NAND-NOR_t-shoot_a (b) NAND-NOR_t-shoot_b
(1) The circuit should operate the same as Example 13 in Figure 44, which

reduces to Test the logic operation by exercising all combi-
nations for A, B, and C by pressing each of those keys on your key-
board.

(2) What problems do you observe?
(3) Use the Logic Probe indicator to determine which gate is not operating

properly. Which gate is bad?
(4) Delete the bad gate, replace it, and validate proper circuit operation.

E22. The following circuit files have faults in them. Study the combina-
tional logic circuit operation in Example 15 before attempting to find the
faults.

(a) NAND-NOR_t-shoot_c (b) NAND-NOR_t-shoot_d
(1) The circuit should operate the same as Example 15 in Figure 49, which

reduces to Test the logic operation by exercising
all combinations for A, B, and C by pressing each of those keys on
your keyboard.

(2) What problems do you observe?
(3) Use the Logic Probe indicator to determine which gate is not operating

properly. Which gate is bad?
(4) Delete the bad gate, replace it, and validate proper circuit operation.

E23. Load the circuit file for Section 4i. The 7400 shown is a quad
NAND.

(a) If no other ICs are available, how many gates on the 7400 are required
to implement the equation 

(b) One of the gates on this 7400 is bad. Use the Logic Analyzer to deter-
mine which one.

(c) With the three remaining good gates, connect the circuit for 
Route its output to the Logic Analyzer to check its operation.

E24. Load the circuit file for Section 4j. The 7400 shown is a quad
NAND.

(a) On a separate piece of paper write the Boolean equation for the circuit
shown.

(b) Simplify the equation.
(c) Use the Logic Analyzer to observe the waveforms. Are they what you

expect? If not, troubleshoot the circuit using the Logic Analyzer.
(d) Is one of the gates bad? Substitute gate-4 for the bad gate and retest the

circuit.

(X = 1 if A = 0 AND B = 1).

X = A¿B.

X = A¿B?

X = AB + AC + BC.

X = B C.

X = AB.

T

T

T

TC
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FPGA Problems

The following problems are solved using the Altera Quartus® II software. In each
case the design is completed by building a block design file (bdf ) or a VHDL file
(vhd) and then proving the results by producing a simulation (vwf) file. [Note: If you
build a vhd file having the same name as the bdf file there will be a conflict. You
must first remove the bdf file from the project using steps 38 through 40 in Section 4
from the chapter, Programmable Logic Devices: CPLDs and FPGAs with VHDL
Design. This will ensure that the compiler uses the current file to synthesize and sim-
ulate your design. You can use the same simulation (vwf ) file for either design
method. The simulation will be performed on whichever project file is currently set.]
Also be sure to complete step 29 in Section 4 from the chapter Programmable Logic
Devices: CPLDs and FPGAs with VHDL Design to perform a functional simulation
without propagation delays.

A final step that can be performed is to download the design to an FPGA on a
programmer board like the Altera DE2 and demonstrate it to your instructor.

Section 1
C1. Prove that the reduced circuit for the bank alarm in Figure 5 is equiv-
alent to its original in Figure 4. Call the output of the original circuit
original and call the output of the reduced circuit reduced.

(a) Enter the logic circuit for the original circuit and for the reduced
circuit in the same block design file called prob_c5_1.bdf. Prove that the
equations produce identical results by building a vector waveform file
called prob_c5_1.vwf that tests all possible input conditions at H, F,
and V.

(b) Enter the logic equation for the original circuit and for the reduced
circuit in the same VHDL file called prob_c5_1.vhd. Prove that the
equations produce identical results by building a vector waveform file
called prob_c5_1.vwf that tests all possible input conditions at H, F,
and V.

(c) Download your design to an FPGA IC. Discuss your observations of
the alarm LED (reduced ) with your instructor as you try various
combinations of the switches representing banking hours (H), vault door
(V), and front door (F).

C2. Design the logic to implement the following Boolean equation (do not
reduce):

(a) Enter the logic circuit for the equation as a block design file called
prob_c5_2.bdf. Simulate the results of your design by building a vector
waveform file called prob_c5_2.vwf that tests all possible input conditions
at A, B, C, and D.

(b) Enter the logic circuit for the equation as a VHDL file called
prob_c5_2.vhd. Simulate the results of your design by building a vector
waveform file called prob_c5_2.vwf that tests all possible input conditions
at A, B, C, and D.

(c) Download your design to an FPGA IC. Discuss your observations of
the output LED (X) with your instructor as you try various combinations
of the switches representing A, B, C, and D.

C3. Repeat problem C2 (a), (b), and (c) for the following equation:

Y = ABC + AD + BD

X = AB + BC + CD

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES
V

H
D

L
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Section 2
C4. Ten rules for Boolean reduction were given in Table 2. The 10th rule
states that:

1.
2.

(a) Create a block design file (prob_c5_4.bdf) and a vector waveform file
(prob_c5_4.vwf) to prove that both equations in (1) and both equations in
(2) are equivalent.

(b) Create a VHDL file (prob_c5_4.vhd) and a vector waveform file
(prob_c5_4.vwf) to prove that both equations in (1) and both equations in
(2) are equivalent.

Section 4
C5. Use the Quartus® II software to determine the simplified form of the
following Boolean equation:

Enter the circuit design using the Block Editor to create a file called
prob_c5_5.bdf. Determine the simplified equation by using the Netlist
Viewer technique shown in Figure 33.

C6. Repeat Problem C5 for the following equations:

(a) (b)

Section 5
C7. Use the Quartus® II software to determine the simplified form of the
following Boolean equations:

(a) (b)

Enter the circuit design using the VHDL text editor to create a file called
prob_c5_7.vhd. Determine the simplifed equation by using the Netlist
Viewer technique shown in Figure 33.

C8. Design the logic to implement the circuit in Example 13 (do not re-
duce):

(a) Enter the logic circuit given in the example as a block design file
called prob_c5_8.bdf. Simulate the results of your design by building a
vector waveform file called prob_c5_8.vwf that tests all possible input
conditions at A, B, and C.

(b) Enter the logic circuit for the equation as a VHDL file called
prob_c5_8.vhd. Simulate the results of your design by building a vector
waveform file called prob_c5_8.vwf that tests all possible input conditions
at A, B, and C.

(c) Download your design to an FPGA IC. Discuss your observations of
the output LED (X) with your instructor as you try various combinations
of the switches representing A, B, and C.

C9. Repeat problem C8 (a), (b), and (c) for Example 14.

C10. Design the logic using the VHDL text editor to implement the
following Boolean equations:

(a) (b) (c) Z = AB + A + BY = A + B + ABX = AB(A + B)

Z = (A + C) + BCY = A + C + BC

Z = A(ABC + B C)Y = BC(ABC + AB)

X = AB(B + ABC)

A + AB = A + B

A + AB = A + B and

239



Enter all three equations in the same architecture section of the program
(prob_c5_10.vhd). Determine which two of those equations yield equiva-
lent outputs by studying their waveforms in the vector waveform file
(prob_c5_10.vwf).

C11. A chemical processing plant has four HIGH/LOW sensors on each of
its chemical tanks. [Temperature (T), Pressure (P), Fluid Level (L), and
Weight (W)]. Several different combinations of sensor levels need to be
constantly monitored. Design an FPGA solution using a VHDL program
(prob_c5_11.vhd) that will tell the circuit to turn on any of the three indi-
cator lights [Emergency (E), Warning (W), or Check (C)] if the listed con-
ditions are met:
1. (Emer) Emergency: Shut down and drain system if any of the follow-

ing exists:
(a) High T with high P with low W
(b) High T with high P with low L
(c) High T with low P with (low W or low L)

2. (Warn) Warning: Check controls and perform corrections if any of the
following exists:
(a) High P with high L with low W
(b) High P with high W with low L
(c) High P with low L with low T

3. (Chec) Check: Read gauges and report if any of the following exists:
(a) Any two levels are high (b) Any time W is high

Build a vector waveform file (prob_c5_11.vwf) to simulate the operation
of all three indicator lights and then download the program to an FPGA to
demonstrate its complete operation to your instructor.

C12. Quartus® II provides active-LOW input, active-LOW output gates
called BNAND2 and BNOR2 in the primitive symbols library of the Block
Editor. Use those gates in a block design file (prob_c5_12.bdf) to imple-
ment the microprocessor memory gating scheme presented in Figure 60.
Exercise the design by creating a vector waveform file (prob_c5_12.vwf)
that illustrates the following sequence of events:

(a) Read from memory (d) Wait

(b) Wait (all control signals HIGH) (e) Repeat (a)–(d) once again

(c) Write to memory

[Hint: Specialized (nonrepetitive) control waveforms can be created by
highlighting areas of a waveform and selecting a HIGH level or LOW
level from the left side menu.] After a successful simulation, download
the design to an FPGA and discuss your observations with your instruc-
tor as you physically simulate read/write operations with the on-board
switches.

C13. Create a block design file (prob_c5_13.bdf) using BNAND and
BNOR gates to implement the computer disk drive controller explained in
Problem 30. Exercise the design by creating a vector waveform file
(prob_c5_13.vwf) that illustrates the following sequence of events:

(a) Read from disk A (d) Wait

(b) Wait (all control signals HIGH) (e) Repeat (a)–(d) once again

(c) Write to disk drive B

[Hint: Specialized (nonrepetitive) control waveforms can be created by
highlighting areas of a waveform and selecting a HIGH level or LOW level

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES
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from the left side menu.] After a successful simulation, download the de-
sign to an FPGA and discuss your observations with your instructor as you
physically simulate read/write operations with the on-board switches.

Section 6
C14. Design a logic circuit using VHDL (prob_c5_14.vhd) that can be
used to tell when a 4-bit binary number is odd and within the range of 6
(01102) to 14 (11102) inclusive. Use the VHDL selected signal assignment
method shown in Example 22. Perform a simulation of your design by cre-
ating a vector waveform file (prob_c5_14.vwf) that steps through the entire
range of input possibilities 00002 to 11112. After a successful simulation,
download the design to an FPGA and discuss your observations with your
instructor as you physically count through all possibilities on the on-board
switches.

C15. A water reclamation plant needs to have a warning system to moni-
tor an overflow condition in its four chemical holding tanks. Each tank has
a HIGH/LOW level sensor. The tanks are labeled T3, T2, T1, and T0.
Design a system that activates a warning alarm whenever the two odd-num-
bered tanks (T3 and T1) are both HIGH or whenever the two even-num-
bered tanks (T2 and T0) are both HIGH. Write a VHDL program
(prob_c5_15.vhd) that groups the tanks together as a vector and uses the
selected signal assignment similar to the one used in Example 23. Perform
a simulation of your design by creating a vector waveform file
(prob_c5_15 vwf) that steps through the entire range of input possibilities
00002 to 11112. After a successful simulation, download the design to an
FPGA and discuss your observations with your instructor as you physically
test all possibilities on the on-board switches.

BOOLEAN ALGEBRA AND REDUCTION TECHNIQUES

Answers to Review Questions

1. (a) 2 (b) 3 (c) 4

2. (a) Associative law of addition

(b) Commutative law of
multiplication

(c) Distributive law

3. True

4. False

5. False

6. (a) (b)
7. Because it enables you to

convert an expression having
an inversion bar over more
than one variable into an
expression with inversion bars
over single variables only

8. AND

9. NOR

B + CA + B

10. NAND

11. Because by utilizing a combi-
nation of these gates, all other
gates can be formed

12. Because in designing a circuit
you may have extra NAND
gates available and can avoid
using extra ICs

13. 4

14. SOP

15. SOP

16. They must be connected to
ground.

17. True

18. False

19. False

20. One group of 8
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1.

3.
Z = (AB + B + (B + C))D
Y = (AB + B)C
X = AB + BC
W = (A + B)(C + D)

A B C D M N Q R S A B C P

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 1 1 1
0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 1 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1
1 0 1 0 1 0 0 0 1
1 0 1 1 1 1 0 1 1
1 1 0 0 1 0 0 0 1
1 1 0 1 1 1 0 1 1
1 1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1

A
B

C
M

D

(a)

A
B
C ND

(b)

A

B
C

(c)

P

A
B

C
Q

D

(d)

A

B
C
D

(e)

R

A

B
C

D

(f)

S

5. (a) Commutative law (b) Associative law
(c) Distributive law

7.

D
A

A

VC

D

VC

V = C(A+D)

C
A

B

XC

D

W

X = (A+C)(B+D)

C

B

WD

D
C
B NC

W = CD

A

D
B

X

C
A

A

Y
B

C
YB

Y = (A+C)B

B
C

W

A NC

A

B
C

X

C
B
A

Y

NC

B

C

Z

A NC

9.

X = B + AC
X = (A + B)(B + C)

Y = A + BC
Y = A + (A + B)BC

Z = B
Z = AB + B + BC

W = BC
W = (A + B)BC

Answers to Odd-Numbered Problems
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W

A
B

C
D

W

A
B
C
D
W = A+B+C+D

X

A
B

C

X = 1

Y

A
B
C
D

Y = DA+DB+DC+AB+AC+BC

11.
13. Break the long bar and change the AND to

an OR, or the OR to an AND.

15. Y and Z are both ORs.

17.

X = (A + B)(D + C)

B

Z
C
D

A

E

Z
B

D

A

E NC

C

Z = ABC + CD

W

B

A

C

X

A
B

C

W = A+B
B
A

C NC

X = B+C
C
B

A NC

Z = ABC

Y
A
B
C Y = C

B NC

A NC

C

A

B

C

Z
A
B
C

19.

Y

A

B
D
C

(a)

(b)

(c)

(d)

21.

23.

25.

27.

Z

A

C

D
C

Z = C+AD

A
D

Z

A
B

C
D

29.

A

C

B

D

A
B ABCD>11

NCC
NCD

(23)
(22)
(21)
(20)

A B C W X A B C D Y Z

0 0 0 0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0 1 1 1
0 1 0 1 1 0 0 1 0 1 1
0 1 1 1 0 0 0 1 1 0 1
1 0 0 1 0 0 1 0 0 0 0
1 0 1 1 1 0 1 0 1 1 0
1 1 0 0 1 0 1 1 0 1 1
1 1 1 0 0 0 1 1 1 1 1

1 0 0 0 0 1
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 1 1 0
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33.

31.
A

(a) X = A

A
(b) X = A

X

A

B

C

(b)

CANCEL

A

B

C

(c)

X

X = ACD + BCD where A = MSB

X

A

B

C

D

(TO LOWER-
LEFT
SEGMENT)

74LS54 AOI

A
B X
C

(a)

35. u. SOP x. SOP
v. POS y. POS
w. POS z. POS, SOP

37.

39. (a) (b)
41.

Y = 1X = CD + AC + B

Z = AC + AB + A BC
Y = B + AC
X = A + BC

43. The IC checks out OK. The problem is that
pin 9 should be connected to pin 10 (not 9
to GND).

45.
47. (a)

(b) AND
(c) quad 2 input AND
(d) is LOW or is LOW

E1. (a)
(b)

E3. (a) 5
(b) X = BC + A

B = D(K + H)
B = KD + HD

WRRD

pin 6 = P1.0 + A15

WATCHDOG_EN � Qa

E5. (a) 2
(b)
(c)

X = BC

E7.
E9. (a) 2

(b)
E11. (a) 6

(b)
(c)

X = B¿ + C¿

X = B¿C¿

X = AB¿C¿ + A¿BC¿ + AB¿C

E13. (a) AND
(b) OR

E15.

E17. (a) U1b
(b) U1a

E19. (a) U2b
(b) U3a

E21. (a) U1a
(b) U2a

E23. (a) 3
(b) Gate 2
(c)

A

B
X

A(2^3)
B(2^2) X

X
B
C

B
C X
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Exclusive-OR and 
Exclusive-NOR Gates

OUTLINE

1 The Exclusive-OR Gate
2 The Exclusive-NOR Gate
3 Parity Generator/Checker
4 System Design Applications
5 FPGA Design Applications with VHDL

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Describe the operation and use of exclusive-OR and exclusive-NOR gates.
• Construct truth tables and draw timing diagrams for exclusive-OR and exclusive-

NOR gates.
• Simplify combinational logic circuits containing exclusive-OR and exclusive-

NOR gates.
• Design odd- and even-parity generator and checker systems.
• Explain the operation of a binary comparator and a controlled inverter.
• Implement circuits in FPGA ICs using VHDL.

INTRODUCTION

By using various combinations of the basic gates, we can form almost any logic func-
tion that we need. Often, a particular combination of logic gates provides a function
that is especially useful for a wide variety of tasks. The AOI is one such circuit. In this
chapter, we learn about and design systems using two new combinational logic gates:
the exclusive-OR and the exclusive-NOR.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 6 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 The Exclusive-OR Gate

Remember, a two-input OR gate provides a HIGH output if one input or the other in-
put is HIGH or if both inputs are HIGH. The exclusive-OR, however, provides a
HIGH output if one input or the other input is HIGH, but not both. This point is made
more clear by comparing the truth tables for a two-input OR gate versus an exclusive-
OR gate, as shown in Table 1.

Helpful 
Hint

The 74LS86 and
74LS266 are commonly
used EX-OR ICs.

TABLE 1 Truth Tables for an OR Gate versus an 
Exclusive-OR Gate

A B X A B X

0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

(OR) (Exclusive-OR)

The Boolean equation for the Ex-OR function is written and can
be constructed using the combinational logic shown in Figure 1. By experimenting and
using Boolean reduction, we can find several other combinations of the basic gates that
provide the Ex-OR function. For example, the combination of AND, OR, and NAND
gates shown in Figure 2 will reduce to the “one or the other but not both” (Ex-OR)
function.

X = AB + AB

X = AB + AB

B

A AB

AB

Figure 1 Logic circuit for providing the exclusive-OR function.

X

B

A

X = AB (A + B)
X = (A + B)(A + B)
X = AA + AB + BA + BB
X = AB + AB

Figure 2 Exclusive-OR built with an AND–OR–NAND combination.

The exclusive-OR gate is common enough to deserve its own logic symbol and
equation, as shown in Figure 3. (Note the shorthand method of writing the Boolean
equation is to use a plus sign with a circle around it.) 

X = A ⊕ B = AB + AB
B

A

Figure 3 Logic symbol and equation for the exclusive-OR.

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES
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2 The Exclusive-NOR Gate

The exclusive-NOR is the complement of the exclusive-OR. A comparison of the truth
tables in Table 2 illustrates this point.

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

X = AB + AB

B
A AB

AB

X = A ⊕ B = AB + AB
B

A

Figure 4 Exclusive-NOR logic circuit and logic symbol.

TABLE 2 Truth Tables of the Exclusive-NOR 
versus the Exclusive-OR

A B X A B X

0 0 1 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

Exclusive-NOR Exclusive-OR

X � AB � ABX � AB � A B

One or the other,
but not both

Both LOW or
both HIGH

The truth table for the Ex-NOR shows a HIGH output for both inputs LOW 
or both inputs HIGH. The Ex-NOR is sometimes called the equality gate because both
inputs must be equal to get a HIGH output. The basic logic circuit and symbol for the
Ex-NOR are shown in Figure 4.

Summary
The exclusive-OR and exclusive-NOR gates are two-input logic gates that provide a
very important, commonly used function that we will see in upcoming examples.
Basically, the gates operate as follows:

The exclusive-OR gate provides a HIGH output for one or the other inputs
HIGH, but not both 

The exclusive-NOR gate provides a HIGH output for both inputs HIGH or both
inputs LOW 

Also, the Ex-OR and Ex-NOR gates are available in both TTL and CMOS IC
packages. For example, the 7486 is a TTL quad Ex-OR and the 4077 is a CMOS quad
Ex-NOR.

(X = AB + A B).

(X = AB + AB).
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E X A M P L E  1

Determine for each circuit shown in Figure 5 if its output provides the Ex-
OR function, the Ex-NOR function, or neither.

Solution:

(a)

(b)

(c)

 = AB + AB d Ex@OR

 = AB + AA + BA + BB

 = (A + B)(A + B)

 = AB A + B

 Z = AB + A + B

 = A + B d neither (OR function)

 = A + B(1 + A)

 = A + B + AB

 = A + B + AB

 Y = A + B AB

 = A B + AB d Ex@NOR

 = A + B + AB

 X = (A + B)AB

X

B

A

(a)

Z

B

A

(c)

Y

B

A

(b)

Figure 5
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E X A M P L E  2

Write the Boolean equation for the circuit shown in Figure 6 and simplify.

X

B

A

Figure 6

Solution:

 = AB

 = ABAB + AB AB

 = (AB + AB)A B

 X = (AB + AB)A + B

E X A M P L E  3

Write the Boolean equation for the circuit shown in Figure 7 and simplify.

X

C

A

AB

(B + C )

B

IN1

IN2

Figure 7

Solution: Hint:

 = AB + AC + BC

 = AB + AC + BB + BC

 = (A + B)(B + C) + ABB C

X � IN1IN2 � IN1IN2 X = AB(B + C) + AB(B + C)

Review Questions

1. The exclusive-OR gate is the complement (or inverse) of the OR gate.
True or false?

2. The exclusive-OR gate is the complement of the exclusive-NOR gate.
True or false?

3. Write the Boolean equation for an exclusive-NOR gate.
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1
B

0

C 0

D

Transmitting
device

1Parity
generator

1
B

0

C0

D
1

Receiving
device

1

Parity
checker

(Parity bit)

1

Error
indicator

Figure 8 Odd-parity generator/checker system.

3 Parity Generator/Checker

Now let’s look at some digital systems that use the Ex-OR and Ex-NOR gates. We start
by studying the parity generator.

In the transmission of binary information from one digital device to another, it
is possible for external electrical noise or other disturbances to cause an error in the
digital signal. For example, if a 4-bit digital system is transmitting a BCD 5 (0101),
electrical noise present on the line during the transmission of the LSB may change a 
1 to a 0. If so, the receiving device on the other end of the transmission line would 
receive a BCD 4 (0100), which is wrong. If a parity system is used, this error would be
recognized, and the receiving device would signal an error condition or ask the trans-
mitting device to retransmit.

Parity systems are defined as either odd parity or even parity. The parity system
adds an extra bit to the digital information being transmitted. A 4-bit system will require
a fifth bit, an 8-bit system will require a ninth bit, and so on.

In a 4-bit system such as BCD or hexadecimal, the fifth bit is the parity bit and
will be a 1 or 0, depending on what the other 4 bits are. In an odd-parity system, the
parity bit that is added must make the sum of all 5 bits odd. In an even-parity system,
the parity bit makes the sum of all 5 bits even.

The parity generator is the circuit that creates the parity bit. On the receiving end,
a parity checker determines if the 5-bit result is of the right parity. The type of system
(odd or even) must be agreed on beforehand so that the parity checker knows what to
look for (this is called protocol). Also, the parity bit can be placed next to the MSB or
LSB as long as the device on the receiving end knows which bit is parity and which bits
are data.

Let’s look at the example of transmitting the BCD number 5 (0101) in an odd-
parity system.

As shown in Figure 8, the transmitting device puts a 0101 on the BCD lines. The
parity generator puts a 1 on the parity-bit line, making the sum of the bits odd

The parity checker at the receiving end checks to see that
the 5 bits are odd and, if so, assumes that the BCD information is valid.
(0 + 1 + 0 + 1 + 1 = 3).

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

If, however, the data in the LSB were changed due to electrical noise somewhere
in the transmission cable, the parity checker would detect that an even-parity number
was received and would signal an error condition on the error indicator output.

This scheme detects only errors that occur to 1 bit. If 2 bits were changed, the
parity checker would think everything is okay. However, the likelihood of 2 bits being
affected is highly unusual. An error occurring to even 1 bit is unusual. 

Helpful 
Hint

Typically, the error
indicator is actually a
signal that initiates a
retransmission of the
original signal or produces
an error message on a
computer display.
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The parity generator and checker can be constructed from exclusive-OR gates.
Figure 9 shows the connections to form a 4-bit even- and a 4-bit odd-parity generator.
The odd-parity generator has the BCD number 5 (0101) at its inputs. If you follow the
logic through with these bits, you will see that the parity bit will be a 1, just as we want.
Try some different 4-bit numbers at the inputs to both the even- and odd-parity gener-
ators to prove to yourself that they work properly. Computer systems generally trans-
mit 8 or 16 bits of parallel data at a time. An 8-bit even-parity generator can be
constructed by adding more gates, as shown in Figure 10.

A parity checker is constructed in the same way as the parity generator, except
that in a 4-bit system, there must be five inputs (including the parity bit), and the out-
put is used as the error indicator (1 error condition). Figure 11 shows a 5-bit even-
parity checker. The BCD 6 with even parity is input. Follow the logic through the
diagram to prove to yourself that the output will be 0, meaning “no error.”

=
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E X A M P L E  4

Add a parity bit next to the LSB of the following hexadecimal codes to
form even parity: 0111, 1101, 1010, 1111, 1000, 0000.

Solution:

01111
11011
10100
11110
10001
00000

------parity bitc

1

Parity bit = 1
(odd)

11

10
21 20

10
23 22

Parity bit
(even)

21 2023 22

The number
of 1's in
the input
plus parity
is odd.

Figure 9 Even- and odd-parity generators.

IC Parity Generator/Checker
You may have guessed by now that parity generator and checker circuits are available
in single IC packages. One popular 9-bit parity generator/checker is the 74280 TTL IC
(or 74HC280 CMOS IC). The logic symbol and function table for the 74280 are given
in Figure 12.
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21 2023 2225 2427 26

Parity bit
(even)

Figure 10 Eight-bit even-parity generator.

21 2023 22

Error indicator
(0 = no error   1 = error)

01100

Parity
bit

1 1

0

0

Figure 11 Five-bit even-parity checker.
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9 10 11 12 13 1 2 4

Even
Odd

I0

8

I1 I2 I3 I4 I5 I6 I7 I8

5

ΣE

6

ΣO

= Pin 14
= Pin 7

VCC
GND

ΣE

Number of HIGH
data inputs (I0–I8)

HIGH
LOW

LOW
HIGH

ΣO

Function table

Sum Output

ΣO = LOW if
I0 + I1 + … + I8
= Even

Figure 12 Logic symbol and function table for the 74280 9-bit parity generator/checker.

Inside 
Your PC

One of the most prevalent
uses of parity is in the main
RAM memory in a PC.
Many systems use a 9-bit
memory scheme (8 bits
data, with 1 parity bit). The
extra bits add one-ninth to
the cost of the memory, and
parity checking slightly
increases the memory
access time. However, it is
well worth the expense to
ensure data integrity.
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The 74280 has nine inputs. If used as a parity checker, the first eight inputs would
be the data input, and the ninth would be the parity-bit input. If your system is looking
for even parity, the sum of the nine inputs should be even, which will produce a HIGH
at the output and a LOW at the output.

4 System Design Applications

©O©E
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E X A M P L E  5

Parity Error-Detection System

Using 74280s, design a complete parity generator/checking system. It is to
be used in an 8-bit, even-parity computer configuration.

Solution: Parity generator: Because the 74280 has nine inputs, we have to
connect the unused ninth input (I8) to ground (0) so that it will not affect
our result. The 8-bit input data are connected to I0 through I7.

Now, the generator sums bits I0 through I7 and puts out a LOW on and
a HIGH on if the sum is even. Therefore, the parity bit generated should
be taken from the output because we want the sum of all 9 bits sent to
the receiving device to be even.

Parity checker: The checker will receive all 9 bits and check if their sum 
is even. If their sum is even, the line goes HIGH. We will use the 
output because it will be LOW for “no error” and HIGH for “error.” The
complete circuit design is shown in Figure 13.

©O©E

©O

©E

©O

I0

8-Bit
digital

computer

I1

I2

I3

I4

I5

I6

I7

I8

Σ E

ΣO74280
Parity

bit

I0

8-Bit
digital

receiver

I1

I2

I3

I4

I5

I6

I7

I8

Σ E

ΣO74280
Error indicator

      1 = error
      0 = no error

9-Bit
transmission

cable

Figure 13 Complete 8-bit even-parity error-detection system.

Common 
Misconception

Students often have a hard
time understanding why
we use the sum-odd
output in an even system.
The key to understanding
that reasoning is found in
the function table for the
74280 in Figure 12.

(©O)
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E X A M P L E  6

Parallel Binary Comparator

Design a system—called a parallel binary comparator—that compares the
4-bit binary string A to the 4-bit binary string B. If the strings are exactly
equal, provide a HIGH-level output to drive a warning buzzer.

Solution: Using four exclusive-NOR gates, we can compare string A to
string B, bit by bit. Remember, if both inputs to an exclusive-NOR are the
same (0�0 or 1�1), it outputs a 1. If all four Ex-NOR gates are outputting
a 1, the 4 bits of string A must match the 4 bits of string B. The complete
circuit design is shown in Figure 14.

A0

A1

A2

A3

Binary
string

A

B0

B1

B2

B3

Binary
string

B

1 if A = B
0 if A ≠ B

Warning
buzzer

A0

B0

A1

B1

A2

B2

A3

B3

Each Ex-NOR
checks for
equality.

Figure 14 Binary comparator system.

E X A M P L E  7

Controlled Inverter

Often in binary arithmetic circuits, we need to have a device that comple-
ments an entire binary string when told to do so by some control signal.
Design an 8-bit controlled inverter (complementing) circuit. The circuit
will receive a control signal that, if HIGH, causes the circuit to complement
the 8-bit string and, if LOW, does not.

Solution: The circuit shown in Figure 15 can be used to provide the com-
plementing function. If the control signal (C) is HIGH, each of the input
data bits is complemented at the output. If the control signal is LOW, the
data bits pass through to the output uncomplemented. Two 7486 quad ex-
clusive-OR ICs could be used to implement this design. 

Team 
Discussion

Test your bubble-pushing
skills by determining
what the AND gate 
must be converted to 
if Ex-ORs were used 
instead of Ex-NORs.
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D6 X6

D5 X5

D4 X4

D7 X 7

D3

D2

D1

D0

X3

X2

X1

X 0

Complementing
control signal

(C )

8-Bit
input

Controlled output
if C = 1, X 0-7 = D0-7
if C = 0, X 0-7 = D0-7

Figure 15 Controlled inverter (complementing) circuit.

VCC

D0

VCC

U1

EOR2

U2

EOR2

U3

EOR2

U4
D3

Control signal
(press space)

D2

D1

1

0

0

0

0

EOR2

X0

X1

X2

X3

5 V

5 V

Figure 16 Using MultiSIM® to simulate a controlled inverter.

C O N T R O L L E D  I N V E R T E R  S I M U L AT I O N

Figure 16 shows a MultiSIM® simulation of a 4-bit controlled inverter.
Indictor probes are used to show logic levels on the inputs and outputs. In
this illustration, the binary string 0001 is hard wired to the D3–D2–D1–D0
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inputs. With the switch in the UP position, 5 V (‘1’) is applied as the control
signal, so all four inputs are complemented as shown.

MultiSIM Exercise:

(a)

(b) Reconstruct the circuit using ex-NORs instead of ex-ORs. What must
the level of the control signal be to create the complement at the output?
Why?

Review Questions

4. An odd parity generator produces a 1 if the sum of its inputs is odd. True
or false?

5. In an 8-bit parallel transmission system, if one or two of the bits are
changed due to electrical noise, the parity checker will detect the error.
True or false?

6. Which output of the 74280 parity generator is used as the parity bit in an
odd system?

7. If all nine inputs to a 74280 are HIGH, the output at will be
_____________ (HIGH, LOW)?

5 FPGA Design Applications with VHDL

In this section we will design circuits related to Ex-ORs and Ex-NORs by building
graphic design files and VHDL programs. Several new concepts related to FPGAs will
be introduced, including the use of 7400-series macro-functions, grouping nodes into
a common bus, changing a group’s radix, and creating a VHDL Process Statement
and For Loop.

Example 8 examines the characteristics of odd and even parity by using the pre-
defined macro-function for the 74280 parity generator. Examples 8, 9, and 10 will
group common inputs and outputs together as a bus. These groups can be displayed in
the Waveform Editor in any of four different radixes: bin, hex, oct, or dec. Example 10
introduces the concept of using loops in VHDL to perform repetitive operations.

©E

E X A M P L E  8

The 74280 Parity Generator Using an Input 
Bus Configuration

Demonstrate the operation of the 74280 parity generator by building a
Block Diagram File (bdf ) and a Vector Waveform File (vwf). While creating
the bdf file, when in the enter symbol mode, type: 74280b. [The Quartus®

symbol library provides the original 74280 having discrete inputs (scalar
configuration) and the 74280b which groups the inputs together as a bus

V
H

D
L

Load the file fig6_16 from the text companion website. Run the simulation
and press the space bar to move the control signal switch to the 0 position. Press
it again to return to the 1 position. Which position creates the complement
signal at the output?

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES
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(vector configuration)]. Generate a binary count on the 9-bit bus input so
that several combinations of odd and even parity will be observed in the
vwf file.

Solution: The ex6_8.bdf file is shown in Figure 17. The 9-bit input is con-
figured as a bus by specifying the name as D[8..0]. This way, when the
connection line is drawn from the pinstub to the 74280b, it will be a bus
line as signified by its thickness.

Bus line style

Bus name

Figure 17 The block design file for Example 8.

Figure 18 shows the simulation report for the ex6_8.vwf file. The D-
input waveform is set up as a counter by right-clicking on D and choosing:
Value + Count Value + Radix + Binary + Timing + Count Every 
1 Ms + OK. The two output waveforms prove the operation of the 74280
as specified in Figure 12. The Sum_even goes HIGH whenever the sum of
the HIGH input bits is even. The Sum_odd goes HIGH whenever the sum
of the HIGH input bits is odd.

Choose Binary Radix to show 1s and 0s.

Figure 18 The vector waveform file for Example 8.

258



EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

E X A M P L E  9

FPGA Parallel Binary Comparator

Reproduce the parallel binary comparator of Example 6 using Quartus® II
software tools. Complete the circuit using both design entry methods: bdf
and VHDL. Test its operation by building a vwf file that inputs several 4-bit
input combinations at A[3..0] and B[3..0]. (Make some equal and some not.)

Solution: The block design method (ex6_9.bdf ) is shown in Figure 19. All
four bits of the A-string are grouped together as a common bus A[3..0].

The same with B[3..0]. To get the inputs labeled correctly for the
compiler, right-click on the line leaving the pinstubs and choose Bus Line.
Right-click on each line entering a gate and choose Node Line. Right click
on each node line, choose properties and provide a Node Name as shown.

The simulation file (ex6_9.vwf ) is shown in Figure 20. The A and B in-
puts were initially set up as counters with a hexadecimal radix. Then several

Bus line style

Bus names

Node line style Node Names

Figure 19 The block design file for Example 9.

B ≠ A

Figure 20 The simulation file for Example 9.
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of the B values were changed to force inequality. To do this, high-light the
hex number that you wish to change, then right-click on it and choose:
Value + Arbitrary Value, then enter a new number and press OK. The
proof that the circuit works can be seen by noting that the output at W goes
HIGH whenever the A-bits equal the B-bits.

The VHDL design entry method (ex6_9.vhd ) is shown in Figure 21.
The results of this design must also be tested by recompiling the project
using the vhd file and performing a simulation.

(Note: Be sure that the simulation is being performed on the VHDL
design by following steps 38 through 40 in Section 4–4.)

Describes the circuit of Figure 19
(a)

(b)

Figure 21 Solution to Example 9: (a) VHDL listing; (b) block symbol file (bsf).

E X A M P L E  1 0

FPGA Controlled Inverter

Reproduce the controlled inverter of Example 7 using Quartus® II software
tools. Complete the circuit using both design entry methods: bdf and
VHDL. Test its operation by building a vwf file that inputs a count on the
data input d[3..0] while the control input, c, randomly goes LOW then
HIGH to complement the bits.

Solution: The ex6_10.bdf file is shown in Figure 22. Note that the data in-
puts d[3..0] and the controlled output x[3..0] are grouped together as a bus
for simplicity.

The simulation file (ex6_10.vwf ) is shown in Figure 23. Notice that
when the complementing control signal c is LOW, the data bits are passed
out to x uncomplemented, but when c is HIGH, the data bits at x are com-
plemented.

The VHDL design entry method (ex6_10.vhd ) is shown in Figure 24.
This is our first introduction to sequential process loops. The loop control
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is useful whenever you need to perform repetitive operations or assignments.
In this case we are XORing each data bit input with the complementing
control signal to assign each x output. This is considered to be a sequential
operation. This means that when executing the program, x(3) is assigned
before x(2), and x(2) is assigned before x(1), and so on. If, instead of using
the process loop, we assigned each output with separate statements we
would be making concurrent assignments. This way, x(3) will receive its
logic level concurrently (at the same time) with x(2), x(1), and x(0). The
concurrent assignments would be made using the following program seg-
ment in place of the process loop:

x(0)6 = d(0) XOR c;

x(1)6 = d(1) XOR c;

x(2)6 = d(2) XOR c;

x(3)6 = d(3) XOR c;

Complementing control signal

Figure 22 The block design file for Example 10.

x = d
_

Note:

Figure 23 The simulation file for Example 10.
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In this program either method works just as well, but as we will
learn, sequential statements will play a much more important role when we
design sequential circuits like counters and shift registers.

Sequential process

Loop 4 times 
for i = 3, 2, 1 then 0

(a)

(b)

Figure 24 Solution to Example 10: (a) VHDL listing; (b) block symbol file
(bsf).

Summary

In this chapter, we have learned that

1. The exclusive-OR gate outputs a HIGH if one or the other inputs, but
not both, is HIGH.

2. The exclusive-NOR gate outputs a HIGH if both inputs are HIGH or if
both inputs are LOW.

3. A parity bit is commonly used for error detection during the transmis-
sion of digital signals.

4. Exclusive-OR and NOR gates are used in applications such as parity
checking, binary comparison, and controlled complementing circuits.

5. FPGAs can be used to implement circuits containing the exclusive gates.
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Glossary

Binary String: Two or more binary bits used collectively to form a meaningful binary
representation.

Bus: A group of inputs or outputs having a common use such as bits in a binary string.

Comparator: A device or system that identifies an equality between two quantities.

Concurrent: In VHDL, concurrent statements are those that are all executed at the
same time in the synthesized circuit.

Controlled Inverter: A digital circuit capable of complementing a binary string of
bits based on an external control signal.

Electrical Noise: Unwanted electrical irregularities that can cause a change in a digital
logic level.

Error Indicator: A visual display or digital signal that is used to signify that an error
has occurred within a digital system.

Exclusive-NOR: A gate that produces a HIGH output for both inputs HIGH or both
inputs LOW.

Exclusive-OR: A gate that produces a HIGH output for one or the other input HIGH,
but not both.

For Loop: In VHDL, the For Loop allows the programmer to specify multiple itera-
tions of program statements like assignments or circuit definitions.

Function Table: A chart that illustrates the input/output operating characteristics of
an integrated circuit.

Group: Inputs or outputs having common characteristics such as bits in a binary
string that can be put together as a “Group” and referred to as a single
name.

Macro-function: A library in the Quartus® II software containing most of the 7400-
series fixed-function logic.

Parity: An error-detection scheme used to detect a change in the value of a bit.

Process statement: In VHDL, the Process statement is used to declare the beginning
of a series of sequential operations.

Radix: A number system such as: binary, hexadecimal, octal, or decimal.

Sequential: In VHDL, sequential statements are those that are all executed one after
another in the synthesized circuit.

Transmission: The transfer of digital signals from one location to another.

Problems

Sections 1 and 2
1. Describe in words the operation of an exclusive-OR gate and of an
exclusive-NOR gate.

2. Describe in words the difference between

(a) An exclusive-OR and an OR gate

(b) An exclusive-NOR and an AND gate
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3. Complete the timing diagram in Figure P3 for the exclusive-OR and
the exclusive-NOR.

W

B

A

(a)

B

A

(b)

X

Y

B

A

(c)

B

A

(d)

Z

Figure P4

5. Design an exclusive-OR gate constructed from all NOR gates.

6. Design an exclusive-NOR gate constructed from all NAND gates.

7. Write the Boolean equations for the circuits of Figure P7. Reduce the
equations to their simplest form.

B

A

(a)

X

B

A

(b)

Y

Figure P7

C 8. Repeat Problem 7 for the circuits of Figure P8.

D

D

A

Y
B

A

X
B

A

B

X

Y

Figure P3

4. Write the Boolean equations for the circuits in Figure P4. Simplify
the equations and determine if they function as an Ex-OR, Ex-NOR, or
neither.
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Section 3
9. Convert the following hexadecimal numbers to their 8-bit binary
code. Add a parity bit next to the LSB to form odd parity. 

A7 4C 79 F3 00 FF

10. The pin configuration of the 74HC86 CMOS quad exclusive-OR IC is
given in Figure P10. Make the external connections to the IC to form a 4-
bit even-parity generator.

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

X

C

A

(a)

B

Y

A

(b)

B

C

Figure P8

1

3

5

2

4

6

7

11

9

12

10

8

14

13

VCC

GND

Figure P10

1

3

5

2

4

6

7

11

9

12

10

8

14

13

VCC

GND

Figure P11

11. Repeat Problem 10 for a 5-bit even-parity checker. Use the pin config-
uration shown in Figure P11.
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13. Referring to Figure 13, design and sketch a 4-bit odd-parity error-de-
tection system. Use two 74280 ICs and a five-line transmission cable 
between the sending and receiving devices.

14. Design a binary comparator system similar to Figure 14 using 
exclusive-ORs instead of exclusive-NORs.

15. If the exclusive-ORs in Figure 15 are replaced by exclusive-NORs,
will the circuit still function as a controlled inverter? If so, should C be
HIGH or LOW to complement?

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

16. Find Port 1 (P1.7–P1.0) of U8 in the 4096/4196 schematic. On 
a separate piece of paper, draw an 8-bit controlled inverter for that 
output port. The inverting function is to be controlled by the P3.5 output
(pin 15).

17. Find Port 2 (P2.7–P2.0) of U8 in the 4096/4196 schematic. This port
outputs the high-order address bits for the system (A8–A15). On a separate
piece of paper, draw a binary comparator that compares the 4 bits A8–A11
to the 4 bits A12–A15. The HIGH output for an equal comparison is to be
input to P3.4 (pin 14) of U8.

MultiSIM® Exercises

E1. Load the circuit file for Section 2a. The switches are used to 
input a 1(up) or a 0(down) to each gate input. The lamp connected to each
gate output comes ON if the output is HIGH.

(a) What is the level at X and Y if all switches are up? Try it.

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

DC

DC

C

D SC

D SC

21 20

Parity
bit

23 22

Figure P12

Section 4
12. Figure P12 shows another design used to form a 4-bit parity genera-
tor. Determine if the circuit will function as an odd- or even-parity gen-
erator.
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(b) What is the level at X and Y if all switches are down? Try it.

(c) Experimentally complete a truth table for each gate.

E2. Load the circuit file for Section 2b. The Logic Analyzer 
shows the input waveforms A and B and the output waveforms X and Y.
Gate 1 and Gate 2 are hidden from your view, but each is either an 
Ex-OR or an Ex-NOR. Use the Logic Analyzer display to determine the
following:

(a) What is Gate 1, and

(b) What is Gate 2?

E3. Load the circuit file for Section 2c. This circuit is used to troubleshoot
the number-4 gate of a 7486 Quad Ex-OR IC. Because that gate is working
OK, the Logic Probe will flash.

(a) If the unused input (Pin13) was tied to ground instead of Vcc, would
the Logic Probe still flash? Why? Try it.

(b) Test the remaining three Ex-OR gates on the chip. Are any bad?

E4. Load the circuit file for Section 2d. Write the Boolean equation at
X. Connect the circuit to the Logic Converter and check your 
answer.

E5. Load the circuit file for Section 2e. Write the simplified Boolean
equation at X. Connect the circuit to the Logic Converter and check your
answer.

E6. Load the circuit file for Section 2f. Write the simplified Boolean equa-
tion at X. Connect the circuit to the Logic Converter and check your an-
swer.

E7. Load the circuit file for Section 3. On a piece of paper, make up a
chart for the even parity bit that would be generated for the binary count
from 0000 to 1111 (0 to 15). Check all 16 of your answers 
by pressing “step” on the Word Generator repeatedly as you compare
your parity bit with the Even Parity Light. Note: The number 1 is an odd
number, and the number 2 is even. Why do they both generate an even
parity bit?

E8. Load the circuit file for Section 4. This is a Parallel Binary Compara-
tor similar to Figure 14. Two 4-bit binary strings are provided by the Word
Generator.

(a) What type of Word Generator numbers turn the light ON?

(b) Let’s say that when you go to build the circuit in lab, you can’t find
any Ex-NORs but have four Ex-ORs. To get the same circuit function,
what must the AND gate be changed to? Try it.

FPGA Problems

The following problems are solved using the Altera Quartus® II software. In each
case the design is completed by building a block design file (bdf) or a VHDL file
(vhd) and then proving the results by producing a simulation (vwf) file. [Note:
If you build a vhd file having the same name as the bdf file there will be a conflict.
You must first remove the bdf file from the project using steps 38 through 40 in
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Section 4–4. This will ensure that the compiler uses the current file to synthesize
and simulate your design. Also, you can use the same simulation (vwf) file for ei-
ther design method. The simulation will be performed on whichever project file is
currently set.]

A final step that can be performed is to download the design to an FPGA on a pro-
grammer board like the DE2 and demonstrate it to your instructor.

C1. Use the macro-function library to test a parity circuit like in Example
8. Use the 74280 (not the 74280b) to determine the odd/even parity for sev-
eral 1-digit hexadecimal numbers.

(a) Build a bdf file called prob_c6_1.bdf using the 74280 macrofunction.
Use a 4-bit group called D[3..0] to provide the hex digit input and include
both the sum_odd and sum_even outputs. Since you will only use four
inputs, just ground (gnd) the five unused bits.

(b) Simulate the operation by entering the following hex digits into 
the D[3..0] group of an vwf file named prob_c6_1.vwf: AF19714C.
(See Example 9 for entering specific group numbers into the
waveform.)

(c) Download your design to an FPGA IC. Discuss your observations of
the odd and even LEDs with your instructor as you use the switches to
step through the eight hex inputs.

C2. Redesign the binary comparator of Example 9 using Ex-ORs instead
of Ex-NORs. Bubble-push the original circuit to determine which gate is
required now instead of the AND.

(a) Build a bdf file (prob_c6_2.bdf) and run a simulation (prob_c6_2.vwf)
of the circuit with some equal, and some unequal, inputs at A[3..0] and
B[3..0].

(b) Build a VHDL file (prob_c6_2.vhd) and run a simulation
(prob_c6_2.vwf) of the circuit with some equal and some unequal inputs
at A[3..0] and B[3..0].

(c) Download your design to an FPGA IC. Discuss your observations of
the W output LED with your instructor as you use the switches to step
through several combinations of equal and unequal inputs.

C3. Redo problem C2 (a), (b), and (c) for an 8-bit comparator.

C4. Quartus® II provides an 8-bit bus-oriented magnitude comparator
named 8mcompb. It compares an A-string with a B-string and provides
three outputs indicating less-than, greater-than, and equal. Build a 
bdf file to exercise this macro-function. Simulate its operation by enter-
ing several 2-digit hex numbers as you monitor all three output wave-
forms.

C5. Redo Example 10 for an 8-bit controlled inverter.

(a) Build a bdf file and then perform a simulation to observe the invert/
non-invert function.

(b) Build a VHDL file and redo the simulation with the VHDL file set as
the current project.

(c) Download your design to an FPGA IC. Discuss your observations
of the output LEDs with your instructor as you enter a binary string 
on the switches and use a push-button to control the complementing
action.

EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES
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EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

Answers to Review Questions

1. False

2. True

3.
4. False

X = AB + A B

5. False

6.
7. LOW

©E

Answers to Odd-Numbered Problems

7.

9.

11.
 FF = 1111 1111 1
 00 = 0000 0000 1
 F3 = 1111 0011 1
 79 = 0111 1001 0
 4C = 0100 1100 0

 A7 = 1010 0111 0

Y = AB + AB � AB = 1

X = (AB + A B) + AB = AB

5.
15. Yes; LOW

1. (a) Exclusive-OR produces a HIGH output
for one or the other input HIGH, but not
both. (b) Exclusive-NOR produces a
HIGH output for both inputs HIGH or both
inputs LOW.

A8

A9

A10

A11

X0

X1

X2

X3

X4

P3.4

A12

A13

A14

A15

5-Bit
TRANSMISSION
CABLE

R
E
C
E
I
V
I
N
G

D0

D3

S
E
N
D
I
N
G

D0

D3

I0

I8

‘1’ = ERROR
‘0’ = OK

ΣE

I0

I8

ΣE
7
4
2
8
0

7486
GND

23 2122 20

EVEN

VCC

24 23 22 21 20 24

EVEN

A

B

Ex-OR

“AND”

A

B

X

Y

Ex-OR

Ex-NOR

A B X A B Y

0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

1. (a)
(b)
(c)

X = 0, Y = 1
X = 0, Y = 1

E3. (a) Yes, because it is an Ex-OR.
(b) Second gate from top

E5.
E7. Because they both have an odd number of 1s.

X = (A¿B + AB¿)BC = A¿BC

 3.

 17.

E

15.

13.
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Arithmetic Operations 
and Circuits

OUTLINE

1 Binary Arithmetic
2 Two’s-Complement Representation
3 Two’s-Complement Arithmetic
4 Hexadecimal Arithmetic
5 BCD Arithmetic
6 Arithmetic Circuits
7 Four-Bit Full-Adder ICs
8 VHDL Adders Using Integer Arithmetic
9 System Design Applications

10 Arithmetic/Logic Units
11 FPGA Applications with VHDL and LPMs

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Perform the four binary arithmetic functions: addition, subtraction,
multiplication, and division.

• Convert positive and negative numbers to signed two’s-complement notation.
• Perform two’s-complement, hexadecimal, and BCD arithmetic.
• Explain the design and operation of a half-adder and a full-adder circuit.
• Utilize full-adder ICs to implement arithmetic circuits.
• Explain the operation of a two’s-complement adder/subtractor circuit and 

a BCD adder circuit.
• Explain the function of an arithmetic/logic unit (ALU).
• Implement arithmetic functions in FPGAs using VHDL.

INTRODUCTION

An important function of digital systems and computers is the execution of arithmetic
operations. In this chapter, we will see that there is no magic in taking the sum of two
numbers electronically. Instead, there is a basic set of logic-circuit building blocks, and
the arithmetic operations follow a step-by-step procedure to arrive at the correct answer.
All the “electronic arithmetic” will be performed using digital input and output levels
with basic combinational logic circuits or medium-scale-integration (MSI) chips.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter  of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 Binary Arithmetic

Before studying the actual digital electronic requirements for arithmetic circuits, let’s
look at the procedures for performing the four basic arithmetic functions: addition,
subtraction, multiplication, and division.

Addition
The procedure for adding numbers in binary is similar to adding in decimal, except that
the binary sum is made up of only 1’s and 0’s. When the binary sum exceeds 1, you
must carry a 1 to the next-more-significant column, as in regular decimal addition.

The four possible combinations of adding two binary numbers can be stated as
follows:

The general form of binary addition in the least significant column can be written

The sum output is given by the summation symbol called sigma, and the
carry-out is given by The truth table in Table 1 shows the four possible condi-
tions when adding two binary digits.

Cout.
(©),

A0 + B0 = ©0 + Cout

1 + 1 = 0 carry 1

1 + 0 = 1 carry 0

0 + 1 = 1 carry 0

0 + 0 = 0 carry 0

If a carry-out is produced, it must be added to the next-more-significant column
as a carry-in (Cin). Figure 1 shows this operation and truth table. In the truth table, the
Cin term comes from the value of Cout from the previous addition. Now, with three pos-
sible inputs, there are eight combinations of outputs Review the truth table to
be sure that you understand how each sum and carry were determined.

(23
= 8).

0
0
1
1
0
0
1
1

A1

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

B1 Cin CoutΣ1

Σ1 Σ 0

Cin Cin

A1 A0

B1 B0+

Σ2

+ +
CoutCout

Figure 1 Addition in the more significant columns requires including Cin with A1 + B1.

TABLE 1 Truth Table for Addition of Two
Binary Digits in the
Least Significant Column

A0 B0 Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

©0

(A0 � B0)

ARITHMETIC OPERATIONS AND CIRCUITS
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Now let’s perform some binary additions. We represent all binary numbers in
groups of 8 or 16 because that is the standard used for arithmetic in most digital com-
puters today.

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  1

Perform the following decimal additions. Convert the original decimal
numbers to binary and add them. Compare answers. (a) (b)
(c) (d) (e)

Solution:

Decimal Binary

(a)

✓

(b)

✓

(c)

✓

(d)

✓

(e)

✓

 
31

+   7
38

             
0001 1111

+  0000 0111
0010 0110

 
 
= 3810

147
+   75

222
            

1001 0011
  +  0100 1011

1101 1110

 
 
= 22210

 
18

+   2
20

                    
0001 0010

+  0000 0010
0001 0100

 
 
= 2010

 
 8

+   3
11

             
0000 1000

+  0000 0011
0000 1011

 
 
= 1110

 ˛  

5
+  2

7
             

0000  010
+  0000 0010

0000 0111

 
 
= 710

31 + 7.147 + 75;18 + 2;
8 + 3;5 + 2;

Subtraction
The four possible combinations of subtracting two binary numbers can be stated as
follows:

The general form of binary subtraction in the least significant (LS) column can be written

The difference, or remainder, from the subtraction is and if a borrow is required,
Bout is 1. The truth table in Table 2 shows the four possible conditions when subtract-
ing two binary digits.

If a borrow is required, the A0 must borrow from A1 in the next-more-significant
column. When A0 borrows from its left, A0 increases by 2 (just as in decimal subtraction,
where the number increases by 10). For example, let’s subtract (102 - 012).2 - 1

R0,

A0 - B0 = R0 + Bout

1 - 1 = 0 borrow 0

1 - 0 = 1 borrow 0

0 - 1 = 1 borrow 1

0 - 0 = 0 borrow 0
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Borrow 1
from A1

Because A0 was 0, it borrowed 1 from A1. A1 becomes a 0, and A0 becomes 2 (210
or 102). Now the subtraction can take place: in the LS column, and in the
more significant (MS) column, 

As you can see, the second column and all more significant columns first have to
determine if A was borrowed from before subtracting Therefore, they have
three input conditions, for a total of eight different possible combinations, as illustrated
in Figure 2.

A - B.

0 - 0 = 0.
2 - 1 = 1,

A1 A0

B1 B0

-R1 R0

 
1
0
 0

2

-0 1
0 1

0
0
1
1
0
0
1
1

A1

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0
1
1
1
0
0
0
1

B1 Bin BoutR 1

R1 R 0

Bin Bin

A1 A0

B1 B0−

+ +
BoutBout

Borrow (Bout ) required
because Bin needs
to borrow from
A1, which is zero.

Figure 2 Subtraction in the more significant columns requires including Bin with A1, B1.

TABLE 2 Truth Table for Subtraction of
Two Binary Digits in
the Least Significant Column

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

BoutR0B0A0

(A0 � B0)

←⎯  Borrow required 
because A0 6 B0

→

⎯⎯⎯⎯→

Helpful 
Hint

This table is difficult for
most students. It helps to
remind yourself where 
comes from and what
causes to be 1.Bout

Bin

The outputs in the truth table in Figure 2 are a little more complicated to figure
out. To help you along, let’s look at the subtraction :

To subtract A0 must borrow from A1, but A1 is 0. Therefore, A1
must first borrow from A2, making A2 a 0. Now A1 is a 2. A0 borrows from A1, making
A1 a 1 and A0 a 2. Now we can subtract to get 0011 Actually, the process is
very similar to the process you learned many years ago for regular decimal subtrac-
tion. Work through each entry in the truth table (Figure 2) to determine how it was
derived.

Fortunately, as we will see in Section 2, digital computers use a much easier
method for subtracting binary numbers, called two’s complement. We do, however,

(310).

0100 - 0001,

1

0 2� → 2
0 1� 0� 0� 

� 0 0 0 1
0 0 1 1 � 310

→410

� 110

310

    A3A2A1A0

A3A2A1A0

R3R2R1R0

(01002 - 00012)4 - 1
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need to know the standard method for subtracting binary numbers. Work through the
following example to better familiarize yourself with the binary subtraction procedure.

Decimal Binary

13
× 11

13
133
143

0000 1101 (multiplicand)
           × 0000 1011 (multiplier)

0000 1101
00001 101

000000 00
0000110 1
0001000 1111 (product)

8-bit answer = 1000 1111 = 14310

Figure 3 Binary multiplication procedure.

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  2

Perform the following decimal subtractions. Convert the original decimal
numbers to binary and subtract them. Compare answers. (a)
(b) (c) (d) (e)

Solution:

Decimal Binary

(a)

✓

(b)

✓

(c)

✓

(d)

✓

(e)

✓

1100  0000
- 0000  0011

1011  1101 = 18910

192
-   3

189

1001  1010
- 0011  0110

0110  0100 = 10010

154
-  54

100

1010  1100
- 0010  1010

1000  0010 = 13010

172
-  42

130

0000  1001
- 0000  0100

0000  0101 = 510

9
- 4

5

0001  1011
- 0000  1010

0001  0001 = 1710

27
- 10

17

192 - 3.154 - 54;172 - 42;9 - 4;
27 - 10;

Multiplication
Binary multiplication is like decimal multiplication, except you deal only with 1’s and
0’s. Figure 3 illustrates the procedure for multiplying 13 * 11.

The procedure for the multiplication in Figure 3 is as follows:

1. Multiply the 20 bit of the multiplier times the multiplicand.

2. Multiply the 21 bit of the multiplier times the multiplicand. Shift the result
one position to the left before writing it down.
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3. Repeat step 2 for the 22 bit of the multiplier. Because the 22 bit is a 0, the re-
sult is 0.

4. Repeat step 2 for the 23 bit of the multiplier.

5. Repeating step 2 for the four leading 0’s in the multiplier will have no effect
on the answer, so don’t bother.

6. Take the sum of the four partial products to get the final product of 14310.
(Written as an 8-bit number, the product is 1000 11112.)

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  3

Perform the following decimal multiplications. Convert the original deci-
mal numbers to binary and multiply them. Compare answers. (a)
(b) (c) (d)

Solution:

Decimal Binary

(a)

✓

(b)

✓

(c)

(d)

✓

15
*   15

75
+ 15 

225
         

0000 1111
* 0000 1111

0000 1111
00001 111 

000011 11  
+ 0000111 1   

0001110 0001

 
 
 
 
 
 

= 1110 0001 = 22510

 45
*   3

135         

0010 1101
* 0000 0011

0010 1101
+ 00101 101 

01000 0111

 
 
 
 

= 1000 0111 = 13510

 5
*  3

15          

0000 0101
* 0000 0011

0000 0101
+ 00000 101 

00000 1111

 
 
 
 

= 0000 1111 = 1510

23 * 9.15 * 15;45 * 3;
5 * 3;

Division
Binary division uses the same procedure as decimal division. Example 4 illustrates this
procedure. 

Common
Misconception

Most errors in binary
multiplication occur when
students are careless in the
vertical alignment of the
addition columns.

Team
Discussion

Develop a method to deter-
mine the value to carry
when adding columns with
several 1’s in them, such as
those encountered when
multiplying 15 � 15.

✓

23
*   9

207
          

0001 0111
* 0000 1001

0001 0111
00000 000 

000000 00  
0001011 1   
0001100 1111

 
 
 
 
 
 

= 1100 1111 = 20710
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7
    5� 35

- 35
0           

111
0000 0101�0010 0011

- 1 01    
111  

- 101  
101

- 101
0

= 710

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  4

Perform the following decimal divisions. Convert the original decimal num-
bers to binary and divide them. Compare answers. (a) (b)
(c) (d)

Solution:

Decimal Binary

(a)

(b)

 3
   3� 9

- 9
0
             

11
0000 0011�0000 1001

-  11 
11

- 11
0

= 310

221 � 17.135 � 15;
35 � 5;9 � 3;

Helpful 
Hint

It is beneficial to review the
procedure for base 10 long
division that you learned in
grade school.

✓

✓

✓

✓

(c) 9
15� 135

- 135
0           

1001
0000 1111�1000 0111

- 111 1      
1111

- 1111
0

= 910

(d) 13
17� 221

- 17  
51  
51  
0  

           

1101
0001 0001�1101 1101

- 1000 1      
101 01    

- 100 01    
1 0001

- 1 0001
0

= 1310

Review Questions

1. Binary addition in the least significant column deals with how many in-
puts and how many outputs?

2. In binary subtraction, the borrow-out of the least significant column be-
comes the borrow-in of the next-more-significant column. True or false?

3. Binary multiplication and division are performed by a series of addi-
tions and subtractions. True or false?
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2 Two’s-Complement Representation

The most widely used method of representing binary numbers and performing arith-
metic in computer systems is by using the two’s-complement method. With this
method, both positive and negative numbers can be represented using the same format,
and binary subtraction is greatly simplified.

All along we have seen representing binary numbers in groups of eight for a
reason. Most computer systems are based on 8- or 16-bit numbers. In an 8-bit system,
the total number of different combinations of bits is 256 (28); in a 16-bit system, the
number is 65,536 (216).

To be able to represent both positive and negative numbers, the two’s-complement
format uses the most significant bit (MSB) of the 8- or 16-bit number to signify
whether the number is positive or negative. The MSB is therefore called the sign bit
and is defined as 0 for positive numbers and 1 for negative numbers. Signed two’s-
complement numbers are shown in Figure 4.

ARITHMETIC OPERATIONS AND CIRCUITS

D7D6D5D4D3D2D1D0

Sign bit

(a)

D15D14D13D12D11D10 D9D8D7D6D5D4D3D2D1D0

Sign bit

(b)

Figure 4 Two’s-complement numbers: (a) 8-bit number; (b) 16-bit number.

The range of positive numbers in an 8-bit system is 0000 0000 to 0111 1111 (0
to 127). The range of negative numbers is 1111 1111 to 1000 0000 to In
general, the maximum positive number is equal to and the maximum nega-
tive number is where N is the number of bits in the number, including the
sign bit (e.g., for an 8-bit positive number, 

A table of two’s-complement numbers can be developed by starting with some
positive number and continuously subtracting 1. Table 3 shows the signed two’s-com-
plement numbers from to 

Converting a decimal number to two’s complement, and vice versa, is simple
and can be done easily using logic gates, as we will see later in this chapter. For now,
let’s deal with 8-bit numbers; however, the procedure for 16-bit numbers is exactly
the same. 

Steps for Decimal-to-Two’s-Complement Conversion
1. If the decimal number is positive, the two’s-complement number is the true

binary equivalent of the decimal number (e.g., 

2. If the decimal number is negative, the two’s-complement number is found by

(a) Complementing each bit of the true binary equivalent of the decimal
number (this is called the one’s complement).

(b) Adding 1 to the one’s-complement number to get the magnitude bits.
(The sign bit will always end up being 1.)

+18 = 0001 0010).

-8.+7

28 - 1
- 1 = 127).

-(2N - 1),
2N - 1

- 1,
-128).(-1

Team 
Discussion

Try to represent the number
16010 in two’s-complement
for an 8-bit system. Why
doesn’t it work?
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Steps for Two’s-Complement-to-Decimal Conversion
1. If the two’s-complement number is positive (sign bit do a regular 

binary-to-decimal conversion.

2. If the two’s-complement number is negative (sign bit the decimal sign
will be �, and the decimal number is found by

(a) Complementing the entire two’s-complement number, bit by bit.
(b) Adding 1 to arrive at the true binary equivalent.
(c) Doing a regular binary-to-decimal conversion to get the decimal numeric

value. 
The following examples illustrate the conversion process.

= 1),

= 0),

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  5

Convert to two’s complement.

Solution:

 Two’s complement = 0010  0011 Answer

 True binary = 0010  0011

+3510

E X A M P L E  6

Convert to two’s complement.

Solution:

 Two’s complement =  1101  1101 Answer

 Add 1 =  +1

 One’s complement =  1101  1100

 True binary =  0010  0011

-3510

Common 
Misconception

As soon as some students
see the phrase “convert to
two’s complement,” they go
ahead with the procedure
for negative numbers
whether the original 
number is positive or 
negative.

TABLE 3 Signed Two’s-Complement
Numbers �7 Through �8

Decimal Two’s Complement

�7 0000 0111
�6 0000 0110
�5 0000 0101
�4 0000 0100
�3 0000 0011
�2 0000 0010
�1 0000 0001

0 0000 0000
�1 1111 1111
�2 1111 1110
�3 1111 1101
�4 1111 1100
�5 1111 1011
�6 1111 1010
�7 1111 1001
�8 1111 1000
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Review Questions

4. Which bit in an 8-bit two’s-complement number is used as the sign bit?

5. Are the following two’s-complement numbers positive or negative?

(a) 1010 0011

(b) 0010 1101

(c) 1000 0000

3 Two’s-Complement Arithmetic

All four of the basic arithmetic functions involving positive and negative numbers can
be dealt with very simply using two’s-complement arithmetic. Subtraction is done by

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  7

Convert 1101 1101 two’s complement back to decimal.

Solution: The sign bit is 1, so the decimal result will be negative.

 Decimal complement = -35 Answer

 True binary =  0010  0011

 Add 1 =  +1

 Complement =  0010  0010

 Two’s complement =  1101  1101

E X A M P L E  8

Convert to two’s complement.

Solution:

 Two’s complement =  1001  1110 Answer

 Add 1 =  +1

 One’s complement =  1001  1101

 True binary =  0110  0010

-9810

E X A M P L E  9

Convert 1011 0010 two’s complement to decimal.

Solution: The sign bit is 1, so the decimal result will be negative.

 Decimal complement = -78 Answer

 True binary =  0100  1110

 Add 1 =  +1

 Complement =  0100  1101

 Two’s complement =  1011  0010
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adding the two two’s-complement numbers. Thus, the same digital circuitry can be
used for additions and subtractions, and there is no need always to subtract the smaller
number from the larger number. We must be careful, however, not to exceed the
maximum range of the two’s-complement number: to for 8-bit systems,
and to for 16-bit systems to 

When adding numbers in the two’s-complement form, simply perform a regular
binary addition to get the result. When subtracting numbers in the two’s-complement
form, convert the number being subtracted to a negative two’s-complement number
and perform a regular binary addition [e.g., ]. The result will be a
two’s-complement number, and if the result is negative, the sign bit will be 1.

Work through the following examples to familiarize yourself with the addition
and subtraction procedure.

5 - 3 = 5 + (-3)

-2N - 1).(+2N - 1
- 1-32,768+32,767

-128+127

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  1 0

Add using 8-bit two’s-complement arithmetic.

Solution:

19 =

27 =

Sum =

0001  0011
0001  1011
0010  1110 = 4610

19 + 27

E X A M P L E  1 1

Perform the following subtractions using 8-bit two’s-complement arithmetic.

(a)
(b)
(c)
(d)

Solution:

(a) is the same as so just add 18 to negative 7.

Note: The carry-out of the MSB is ignored. (It will always occur for posi-
tive sums.) The 8-bit answer is 0000 1011.

(b)

(c)

(d) +59 =

-96 =

Sum =

0011  1011
1010  0000
1101  1011 = -3710

+118 =

-54 =

Sum =

0111  0110
1100  1010
0100  0000 = 6410

+21 =

-13 =

Sum =

0001  0101
1111  0011
0000  1000 = 810

+18 =

-7 =

Sum =

0001  0010
1111  1001
0000  1011 = 1110

18 + (-7),18 - 7

59 - 96.

118 - 54;

21 - 13;

18 - 7;
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Review Questions

6. Which of the following decimal numbers cannot be converted to 8-bit
two’s-complement notation?

(a) 89

(b) 135

(c)

(d)

7. The procedure for subtracting numbers in two’s-complement notation is
exactly the same as for adding numbers. True or false?

8. When subtracting a smaller number from a larger number in two’s com-
plement, there will always be a carry-out of the MSB, which will be 
ignored. True or false?

4 Hexadecimal Arithmetic*

Hexadecimal representation is a method of representing groups of 4 bits as a single
digit. Hexadecimal notation has been widely adopted by manufacturers of computers
and microprocessors because it simplifies the documentation and use of their equip-
ment. Eight- and 16-bit computer system data, program instructions, and addresses use
hexadecimal to make them easier to interpret and work with than their binary equiva-
lents.

Hexadecimal Addition
Remember, hexadecimal is a base 16 numbering system, meaning that it has 16 differ-
ent digits (as shown in Table 4). Adding in hex equals 9, and equals C.
But, adding in hex equals a sum greater than F, which will create a carry. The
sum of is which is 1 larger than 16, making the answer 1116.1710,9 + 8

9 + 8
5 + 73 + 6

-144

-107

ARITHMETIC OPERATIONS AND CIRCUITS

*Most scientific calculators perform number base conversions and arithmetic. This allows you to enter binary, octal, decimal, or
hexadecimal numbers and perform any of the arithmetic operations. In this chapter we will learn the step-by-step procedures for
performing these operations by hand, but as the numbers get more complex it is best to use your calculator for these functions.

TABLE 4 Hexadecimal Digits with Their
Equivalent Binary and Decimal Values

Hexadecimal Binary Decimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
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The procedure for adding hex digits is as follows:

1. Add the two hex digits by working with their decimal equivalents.

2. If the decimal sum is less than 16, write down the hex equivalent.

3. If the decimal sum is 16 or more, subtract 16, write down the hex result in
that column, and carry 1 to the next-more-significant column.

Work through the following examples to familiarize yourself with this procedure.

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  1 2

Add in hex.

Solution: C is equivalent to decimal 12.

Because 21 is greater than 16: (a) subtract and (b) carry 1 to
the next-more-significant column. Therefore,

9 + C = 1516 Answer

21 - 16 = 5,

12 + 9 = 21

9 + C

E X A M P L E  1 3

Add in hex.

Solution:

Answer

Explanation: which is 12 with a carry 
The 12 is written down as C; 4 + 2 + carry = 7.12).

(28 - 16 =F + D = 15 + 13 = 28,

4  F
+ 2 D

7 C

4F + 2D

E X A M P L E  1 4

Add in hex.

Solution:

Answer

Explanation: which is D, which is 6 with a
carry. which is 5 with a carry. 
which is D.

A + 2 + carry = 13,7 + D + carry = 21,
C + A = 22,5 + 8 = 13,

A 7 C 5
+  2 D A 8

D 5 6 D

A7C5 + 2DA8

Alternative Method: An alternative method of hexadecimal addition, which you
might find more straightforward, is to convert the hex numbers to binary and
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perform a regular binary addition. The binary sum is then converted back to hex. For
example:

Hexadecimal Subtraction
Subtraction of hexadecimal numbers is similar to decimal subtraction, except that
when you borrow 1 from the left, the borrower increases in value by 16. Consider the
hexadecimal subtraction .

Explanation: We cannot subtract C from 4, so the 4 borrows 1 from the 2. This
changes the 2 to a 1, and the 4 increases in value to 20 Now,

and Therefore,

The next two examples illustrate hexadecimal subtraction.

24 - 0C = 18

1 - 0 = 1.20 - C = 20 - 12 = 8,
(4 + 16 = 20).

24
- 0C

18

24 - 0C

4 F
+ 2 D

1
0100 11112

+ 0010 11012

0111 11002

 
 

= 7 C16

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  1 5

Subtract in hex.

Solution:

Answer

Explanation: 7 borrows from the D, which increases its value to 23
and which is an F. D becomes a C, and

C - A = 12 - 10 = 2.
23 - 8 = 15,(7 + 16 = 23),

D 7
- A 8

2 F

D7 - A8

E X A M P L E  1 6

Subtract in hex.

Solution:

Answer

Explanation: The 5 borrows from the 0, which
borrows from the A The 0 bor-
rowed from the A, but it was also borrowed from, so it is now a 15;

which is a B. The A was borrowed from, so it is now a 9;
9 - 2 = 7.
15 - 4 = 11,

21 - C = 21 - 12 = 9.(5 + 16 = 21);
C - A = 12 - 10 = 2.

A 0 5 C
-  2 4 C A

7 B 9 2

A05C - 24CA
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Review Questions

9. Why is hexadecimal arithmetic commonly used when working with 8-,
16-, and 32-bit computer systems?

10. When adding two hex digits, if the sum is greater than ___________
(9, 15, 16), the result will be a two-digit answer.

11. When subtracting hex digits, if the least significant digit borrows from
its left, its value increases by ___________ (10, 16).

5 BCD Arithmetic

If human beings had 16 fingers and toes, we probably would have adopted hexadeci-
mal as our primary numbering system instead of decimal, and dealing with micro-
processor-generated numbers would have been so much easier. (Just think how much
better we could play a piano, too!) But, unfortunately, we normally deal in base 10 dec-
imal numbers. Digital electronics naturally works in binary, and we have to group four
binary digits together to get enough combinations to represent the 10 different decimal
digits. This 4-bit code is called binary-coded decimal (BCD).

So what we have is a 4-bit code that is used to represent the decimal digits that
we need when reading a display on calculators or computer output. The problem arises
when we try to add or subtract these BCD numbers. For example, digital circuitry
would naturally like to add the BCD numbers to get 1011, but 1011 is an
invalid BCD result. (Previously we described the range of valid BCD numbers as 0000
to 1001.) Therefore, when adding BCD numbers, we have to build extra circuitry to
check the result to be certain that each group of 4 bits is a valid BCD number.

BCD Addition
Addition is the most important operation because subtraction, multiplication, and divi-
sion can all be done by a series of additions or two’s-complement additions.

The procedure for BCD addition is as follows:

1. Add the BCD numbers as regular true binary numbers.

2. If the sum is 9 (1001) or less, it is a valid BCD answer; leave it as is.

3. If the sum is greater than 9 or there is a carry-out of the MSB, it is an invalid
BCD number; do step 4.

4. If it is invalid, add 6 (0110) to the result to make it valid. Any carry-out of
the MSB is added to the next-more-significant BCD number.

5. Repeat steps 1 to 4 for each group of BCD bits.

Use this procedure for the following example.

1000 + 0011

ARITHMETIC OPERATIONS AND CIRCUITS

E X A M P L E  1 7

Convert the following decimal numbers to BCD and add them. Convert the
result back to decimal to check your answer.

(a)
(b)
(c)

(d) 78 + 69.

52 + 63;

9 + 9;

8 + 7;
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Solution:

(a)

(b)

(c)

(d)

52 = 0101  0010
+ 63 = 0110  0011
Sum = 1011  0101

Add 6 = 0110   invalid      
1 0001  0101 = 0001  0001  0101 = 11510

9 =

+ 9 =

Sum =

Add 6 =

 

1001
1001

1 0010
cy  

  0110
1 1000

 
 
 (invalid because of carry)
 
 
= 0001 1000BCD = 1810

 

        8 = 1000
  + 7 = 0111
   Sum = 1111 (invalid BCD, so add six)
Add 6 = 0110
          1  0101 = 0001 0101BCD = 1510 ✓

✓

✓

→

→

✓

When one of the numbers being added is negative (such as in subtraction), the
procedure is much more difficult, but it basically follows a complement-then-add
procedure, which is not covered in this text but is similar to that introduced in
Section 3.

Now that we understand the more common arithmetic operations that take place
within digital equipment, we are ready for the remainder of the chapter, which explains
the actual circuitry used to perform these operations.

Review Questions

12. When adding two BCD digits, the sum is invalid and needs correction
if it is ___________ or if ___________.

13. What procedure is used to correct the result of a BCD addition if the
sum is greater than 9?

6 Arithmetic Circuits

All the arithmetic operations and procedures covered in the previous sections can be
implemented using adders formed from the basic logic gates. For a large number of
digits we can use medium-scale-integration (MSI) circuits, which actually have sev-
eral adders within a single integrated package.

(both groups of 4
BCD bits are invalid)

←⎯⎯⎯

78 = 0111  1000
+ 69 = 0110  1001
Sum = 1110  0001   

cy    
Add 6 =    0110

1110  0111
Add 6 = 0110     

1  0100  0111 = 0001  0100  0111 = 14710
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Basic Adder Circuit
By reviewing the truth table in Figure 5, we can determine the input conditions that
produce each combination of sum and carry output bits. Figure 5 shows the addition of
two 2-bit numbers. This could easily be expanded to cover 4-, 8-, or 16-bit addition.
Notice that addition in the least-significant-bit (LSB) column requires analyzing only
two inputs (A0 plus B0) to determine the output sum and carry (Cout), but any more
significant columns (21 column and up) require the inclusion of a third input, which is
the carry-in (Cin) from the column to its right. For example, the carry-out (Cout) of the
20 column becomes the carry-in (Cin) to the 21 column. Figure 5(c) shows the inclusion
of a third input for the truth table of the more significant column additions.

(©0)

0
1
0
1

A0

0
0
1
1

0
1
1
0

0
0
0
1

B0 CoutΣ0

Σ1 Σ 0

Cin Cin

A1 A0

B1 B0+

+ +
CoutCout

(a)

2 inputs 2 outputs

(b)

3 inputs 2 outputs

(c)

0
0
1
1
0
0
1
1

A1

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

B1 Cin CoutΣ1

Figure 5 (a) Addition of two 2-bit binary numbers; (b) truth table for the LSB addition; (c)
truth table for the more significant column.

A0

B0
Σ0 = A0B0 + A0B0

Cout = A0B0

Figure 6 Half-adder circuit for addition in the LSB column.

ARITHMETIC OPERATIONS AND CIRCUITS

Helpful 
Hint

To make yourself feel good
about your new found
knowledge, close your text
and design a circuit to
produce the sum and carry
function for a half-adder
[i.e., a circuit that provides
the table in Figure 5(b)].
Next, how about the 
full-adder?

Half-Adder
Designing logic circuits to automatically implement the desired outputs for these truth
tables is simple. Look at the LSB truth table; for what input conditions is the bit
HIGH? The answer is A or B HIGH but not both (exclusive-OR function). For what in-
put condition is the Cout bit HIGH? The answer is A and B HIGH (AND function).
Therefore, the circuit design to perform addition in the LSB column can be imple-
mented using an exclusive-OR and an AND gate. That circuit is called a half-adder
and is shown in Figure 6. If the exclusive-OR function in Figure 6 is implemented 

©0
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Σ0 = A0B0 + A0B0

Cout = A0B0

A0

B0

Figure 7 Alternative half-adder circuit built from an AND–NOR–NOR configuration.

using an AND–NOR–NOR configuration, we can tap off the AND gate for the carry,
as shown in Figure 7. [The AND–NOR–NOR configuration is an Ex-OR, as proved in
Figure 5(c).] 

Full-Adder
As you can see in Figure 5, addition in the 21 (or higher) column requires three inputs
to produce the sum and carry (Cout) outputs. Look at the truth table [Figure 5(c)];
for what input conditions is the sum output HIGH? The answer is that the bit
is HIGH whenever the three inputs (A1, B1, Cin) are odd. You may remember that an
even-parity generator produces a HIGH output whenever the sum of the inputs is odd.
Therefore, we can use an even-parity generator to generate our output bit, as shown
in Figure 8.

©1

©1(©1)
(©1)

ARITHMETIC OPERATIONS AND CIRCUITS

Σ1 = 1 for odd
number of HIGH
inputs

A1

Cin

B1

Figure 8 The sum function of the full-adder is generated from an even-parity generator.(©1)

Cout = 1 for any
two inputs HIGH

A1

Cin

B1

A1

Cin

B1

Figure 9 Carry-out (Cout) function of the full-adder.

How about the carry-out (Cout) bit? What input conditions produce a HIGH at Cout?
The answer is that Cout is HIGH whenever any two of the inputs are HIGH. Therefore,
we can take care of Cout with three ANDs and an OR, as shown in Figure 9.

The two parts of the full-adder circuit shown in Figures 8 and 9 can be combined
to form the complete full-adder circuit shown in Figure 10. In the figure, the func-
tion is produced using the same logic as that in Figure 8 (an Ex-OR feeding an Ex-OR).
The Cout function comes from A1B1 or Cin Prove to yourself (A1B1 + A1B1).

©1

287



ARITHMETIC OPERATIONS AND CIRCUITS

Cout

B1

A1

Cin

Cin (A1B1 + A1B1)

A1B1

Σ1

Figure 10 Logic diagram of a full-adder.

Cout = 1

B1 = 1

A1 = 0

Cin = 1
Σ1 = 0

1

0

1

0

1

Correct
answer

Figure 11 Full-adder operation for Example 18.

that the Boolean equation at Cout will produce the necessary result. [Hint: Write the
equation for Cout from the truth table in Figure 5(c).] Also, Example 18 will help you
better understand the operation of the full-adder. 

E X A M P L E  1 8

Apply the following input bits to the full-adder of Figure 10 to demonstrate
its operation 

Solution: The full-adder operation is shown in Figure 11.

Cin = 1).B1 = 1,(A1 = 0,

Helpful 
Hint

Wow, you should be getting
excited about this! We have
actually designed and
demonstrated a circuit that
adds two numbers. We are
developing the fundamental
building block for the
modern computer.

E X A M P L E  1 9

VHDL Description of a Full-Adder

Write the VHDL statements required to implement the full-adder of Figure
8 and 9. Run a simulation to check the results of the and Cout bits.
Compare the simulator output to Figure 5(c).

Solution: The VHDL program is shown in Figure 12. Two equations are
in the architecture of the program depicting the Boolean equation for the
sum and carry. These are called concurrent statements because they syn-
thesize two logic circuits that will be executed concurrently (at the same
time) as soon as the inputs to the logic (a1, b1, and cin) are provided. The
simulation of the circuitry is shown in Figure 13. As you can see, the sum
bit sum1 is HIGH for any odd input and the carry cout is HIGH whenever
any two or more input bits are HIGH. 

©1V
H

D
L
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Concurrent statements
(a)

Figure 12 Solution for the full-adder: (a) VHDL listing; (b) block symbol file (bsf).

Figure 13 The simulation proving the operation of the full-adder.

(b)

F U L L - A D D E R  S I M U L AT I O N

In Figure 14, MultiSIM® is used to simulate the operation of a full-adder.
It has three inputs and two outputs. The input level at A1, B1, and Cin are
shown in their LOW position but can be made HIGH by pressing the ap-
propriate key on your computer keyboard (A, B, or C). The Sum and Carry
outputs have LED probes connected to them to show when the Sum bit or
Carry bit is HIGH.
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Block Diagrams
Now that we know the construction of half-adder and full-adder circuits, we can sim-
plify their representation by just drawing a box with the input and output lines, as shown
in Figure 15. When drawing multibit adders, a block diagram is used to represent the
addition in each column. For example, in the case of a 4-bit adder, the 20 column needs
only a half-adder because there will be no carry-in. Each of the more significant
columns requires a full-adder, as shown in Figure 16.

ARITHMETIC OPERATIONS AND CIRCUITS

Figure 14 Simulation of a full-adder constructed of AND, OR, and Ex-OR gates.

0 1

Key = A

5V

Key = B

'0'

'1'

Key = C

A1

B1

EOR2

EOR2

AND2

AND2

OR2

Sun

Cout

Cin

2 3 4 5

A

B

C

A

B

C

0 1 2 3 4 5

MultiSIM Exercise: On a piece of scrap paper, construct a truth table list-
ing all possible states of the three inputs. Use MultiSIM to open file
fig7_14 from the text website. Run the simulation and complete the truth
table for the results that you observe at Sum and Cout as you step through
each combination of A1, B1, and Cin. Does the truth table match Figure
5(c)?

(a) Study your truth table and describe in words what it takes to get a
HIGH at the Sum output.

(b) Study your truth table and describe in words what it takes to get a
HIGH at the Cout output.

A B

Σ

HA

(a)

Co

A Ci

Σ

FA

(b)

Co

B

Figure 15 Block diagrams of (a) half-adder; (b) full-adder.
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TABLE 5 MSI Adder ICs

Device Family Description

7483 TTL 4-bit binary full-adder, fast carry
74HC283 CMOS 4-bit binary full-adder, fast carry
4008 CMOS 4-bit binary full-adder, fast carry

A Ci

Σ

FA

Co

B

A3 B3

Σ3Σ4

A Ci

Σ

FA

Co

B

A2 B2

Σ2

A Ci

Σ

FA

Co

B

A1 B1

Σ1

A

Σ

HA

Co

B

A0 B0

Σ0

(LSB)(MSB)

4-bit addition:
bit representations

Σ 4 Σ 3 Σ 2 Σ 1 Σ 0

A3 A2 A1 A0
+ B3 B2 B1 B0

Figure 16 Block diagram of a 4-bit binary adder.

Notice in Figure 16 that the LSB half-adder has no carry-in. The carry-out (Cout)
of the LSB becomes the carry-in (Cin) to the next full-adder to its left. The carry-out
(Cout) of the MSB full-adder is actually the highest-order sum output 

Review Questions

14. Name the inputs and outputs of a half-adder.

15. Why are the input requirements of a full-adder different from those of
a half-adder?

16. The sum output of a full-adder is 1 if the sum of its three inputs is
___________ (odd, even).

17. What input conditions to a full-adder produce a 1 at the carry-out
(Cout)?

7 Four-Bit Full-Adder ICs

Medium-scale-integration (MSI) ICs are available with four full-adders in a single
package. Table 5 lists the most popular adder ICs. Each adder in the table contains four
full-adders, and all are functionally equivalent. However, their pin layouts differ (refer
to your data manual for the pin layouts). They each will add two 4-bit binary words
plus one incoming carry. The binary sum appears on the sum outputs to and the
outgoing carry.

©4)(©1

(©)

(©4).

Figure 17 shows the functional diagram, the logic diagram, and the logic symbol for
the 7483. In the figure, the least significant binary inputs (20) come into the A1B1 termi-
nals, and the most significant (23) come into the A4B4 terminals. (Be careful; depending on
which manufacturer’s data manual you are using, the inputs may be labeled A1B1 to A4B4
or A0B0 to A3B3). The carry-out (Cout) from each full-adder is internally connected to the
carry-in of the next full-adder. The carry-out of the last full-adder is brought out to a 
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Cout

FA4

Ci

Σ4

A4

B4

FA3

Ci

Σ3

Co
A3

B3

FA2

Ci

Σ2

Co
A2

B2

FA1

Ci

Σ1

Co
A1

B1

C in

Fast-look-ahead
carry

7483

(a)

Figure 17 The 7483 4-bit full-adder: (a) functional diagram; (b) logic diagram;

A
3 

+
 B

3

Cin
A1B1

A1 + B1

A2B2

A2 + B2

Cin

A1

(10)

(13)

(11)
B1

A2
(8)

(7)

A3
(3)

(4)

B2

B3

A4
(1)

(16)
B4

Σ4

(15)

Σ3

(2)

Σ2

(6)

Σ1

(9)

7483

Internal
connections

A3B3

A4B4

A4 + B4

A1B1

A3B3

A2B2

A4B4

A1 + B1

A2B2

A3B3

A4B4

A2 + B2

A3 + B3

A4B4

A3 + B3

A4B4

A4 + B4

Cout

(14)

VCC = Pin 5
GND = Pin 12
(    ) = Pin numbers

(b)
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terminal to be used as the sum5 ( ) output or to be used as a carry-in (Cin) to the next full-
adder IC if more than 4 bits are to be added (as in Example 20).

Something else that we have not seen before is the fast-look-ahead carry [see
Figure 17(a)]. This is very important for speeding up the arithmetic process. For ex-
ample, if we were adding two 8-bit numbers using two 7483s, the fast-look-ahead
carry evaluates the four low-order inputs (A1B1 to A4B4) to determine if they are going
to produce a carry-out of the fourth full-adder to be passed on to the next-higher-order
adder IC (see Example 20). In this way, the addition of the high-order bits (24 to 27)
can take place concurrently with the low-order (20 to 23) addition without having to
wait for the carries to propagate, or ripple, through FA1 to FA2 to FA3 to FA4 to be-
come available to the high-order addition. A discussion of the connections for the ad-
dition of two 8-bit numbers using two 7483s is presented in the following example.

©5
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Figure 17 (Continued) (c) logic symbol.

Σ1

A2 A3 A4B1 B2 B3 B4

Σ2 Σ3 Σ4

Cout7483Cin

8 3 111 7 4 16

9 6 2 15

(c)

13 14

A1

10

VCC = Pin 5
GND = Pin 12

E X A M P L E  2 0

Show the external connections to two 4-bit adder ICs to form an 8-bit adder
capable of performing the following addition:

Solution: We can choose any of the IC adders listed in Table 5 for our de-
sign. Let’s choose the 74HC283, which is the high-speed CMOS version of
the 4-bit adder (it has the same logic symbol as the 7483). As you can see
in Figure 18, the two 8-bit numbers are brought into the A1B1-to-A4B4 in-
puts of each chip, and the sum output comes out of the outputs of
each chip. 

The Cin of the least significant addition is grounded (0)
because there is no carry-in (it acts like a half-adder), and if it were left
floating, the IC would not know whether to assume a 1 state or 0 state.

The carry-out (Cout) from the addition of must be connected
to the carry-in (Cin) of the addition, as shown. The fast-look-ahead
carry circuit ensures that the carry-out (Cout) signal from the low-order addi-
tion is provided in the carry-in (Cin) of the high-order addition within a very
short period of time so that the addition can take place without hav-
ing to wait for all the internal carries to propagate through all four of the low-
order additions first.

A4 + B4

A4 + B4

A3 + B3

(A0 + B0)

©4@to@©1

A7 A6 A5 A4 A3 A2 A1 A0

+ B7 B6 B5 B4 B3 B2 B1 B0

©8©7©6©5©4©3©2©1©0
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A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin74HC283Cout

A7 A6 A5 A4B7 B6 B5 B4

Σ7 Σ6 Σ5 Σ4Σ8

(High-order)

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin74HC283Cout

A3 A2 A1 A0B3 B2 B1 B0

Σ3 Σ2 Σ1 Σ0

(Low-order)

8-bit inputs

Sum output

Figure 18 8-bit binary adder using two 74HC283 ICs.

E I G H T - B I T  B I N A R Y  A D D E R  S I M U L AT I O N

In Figure 19, MultiSIM® is used to simulate the operation of an 8-bit binary
adder similar to Figure 18. MultiSIM® uses the label CO for Cin and C4 for
Cout. The circuit is hard-wired to add the numbers 29 (0001 11012) plus 20
(0001 01002). The Sum output LEDs indicate the correct answer of 0011
00012, which is a decimal 49. Also notice for this case that there is a carry
out of the low-order 4 bits to the high-order 4 bits.
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Figure 19 Simulation of an 8-bit binary adder showing 29 + 20 = 29.

Team 
Discussion

What if you only wanted to
add two 6-bit numbers?
How could you get at the
internal carry to output
to E6?
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Review Questions

18. All the adders in the 7483 4-bit adder are full-adders. What is done
with the carry-in (Cin) to make the first adder act like a half-adder?

19. What is the purpose of the fast-look-ahead carry in the 7483 IC?

8 VHDL Adders Using Integer Arithmetic

The VHDL language allows us to describe the addition process as an arithmetic ex-
pression using the arithmetic operator and a new data type called integer. Previously
we declared inputs and outputs as std_logic or std_logic_vector. We used that data type
to represent a 1 or a 0, or a vector of 1’s and 0’s (array). The integer data type allows
us to specify inputs and outputs as numeric values other than 1 and 0 and perform arith-
metic operations on them.

When declaring an input or output as an integer, you must also specify the range
of the value. For example, if the inputs are for a 4-bit adder, the range of each number
will be 0 to 15 (00002 to 11112). The result of a 4-bit addition will be a 5-bit sum hav-
ing a range of 0 to 31 (000002 to 111112). When synthesizing the circuit, the software
determines how many input and output bits will be required and assigns the correct
number of pins to satisfy the range requested in the integer declare. For example, if the
range is 0 to 15, the software knows to allocate four individual input pins for that input
name. Figure 20 shows a VHDL program that uses the integer type to form a 4-bit bi-
nary adder. The assignment statement in the architecture adds the astring plus the
bstring with the cin.

ARITHMETIC OPERATIONS AND CIRCUITS

MultiSIM® Exercise: Use MultiSIM® to open file fig7_19 from the 
text website. Run the simulation and observe that equals 49.

(a) Reconnect the inputs to determine the sum of 

(b) Reconnect the inputs to determine the sum of 200 + 88.

37 + 43.

29 + 20

(a)

Figure 20 Using the integer data type in a VHDL program to form a 4-bit adder: 
(a) VHDL listing; (b) block symbol file (bsf).

(b)

V
H

D
L
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To verify the circuit operation, the simulation file shown in Figure 21 was cre-
ated. The values used for astring, bstring, and cin are arbitrary, and the radix used for
the string values is hexadecimal. Notice the additional output called sum_string4.
Sum_string4 is the fifth bit of the sum, which would have to be used as a carry-out if
this was to feed the carry-in of another 4-bit adder, like we did in Figure 18. It is 

ARITHMETIC OPERATIONS AND CIRCUITS

Figure 21 The simulation file for the 4-bit adder of Figure 20.

Figure 22 The RTL window shows the generation of inputs and outputs as well as a graphi-
cal interpretation of the addition function.
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also used to indicate that the sum exceeded (overflowed) the maximum value of a 
4-bit number.

It is informative to look at the RTL viewer to see how Quartus® resolved the
astring, bstring, and sum_string integers.

Choose Tools Netlist Viewers RTL Viewer

As you can see in Figure 22 the RTL viewer gives us two important windows. In
the Hierarchy List you can see that the astring and bstring inputs are set up with 4 bits
each to accommodate the integer range of 0 to 15. The output string (sum_string) is set
up with 5 bits to accommodate the integer range of 0 to 31. The second window shows
us a graphical look at the addition function.

9 System Design Applications

Each arithmetic operation discussed in Sections 1 through 5 can be performed by us-
ing circuits built from IC adders and logic gates. First, we will design a circuit to per-
form two’s-complement arithmetic and then, we will design a BCD adder.

Two’s-Complement Adder/Subtractor Circuit
A quick review of Section 3 reminds us that positive two’s-complement numbers are
exactly the same as regular true binary numbers and can be added using regular binary
addition. Also, subtraction in two’s-complement arithmetic is performed by convert-
ing the number to be subtracted to a negative number in the two’s-complement form
and then using regular binary addition. Therefore, once our numbers are in two’s-
complement form, we can use a binary adder to get the answer whether we are adding
or subtracting.

For example, to subtract we would first convert 9 to a negative two’s-
complement number by complementing each bit and then adding 1. We would then
add 

Answer

So it looks like all we need for a combination adder/subtractor circuit is an input switch
or signal to signify addition or subtraction so that we will know whether to form a pos-
itive or a negative two’s complement of the second number. Then we will just use a
binary adder to get the final result.

To form negative two’s complement, we can use the controlled inverter circuit
presented in Figure 6–15 and add 1 to its output. Figure 23 shows the complete circuit
used to implement a two’s-complement adder/subtractor using two 4008 CMOS
adders. The 4008s are CMOS 4-bit binary adders. The 8-bit number on the A inputs (A7
to A0) is brought directly into the adders. The other 8-bit binary number comes in on
the B7 to B0 lines. If the B number is to be subtracted, the complementing switch will
be in the up (1) position, causing each bit in the B number to be complemented (one’s
complement). At the same time, the low-order Cin receives a 1, which has the effect of
adding a 1 to the already complemented B number, making it a negative two’s-complement
number.

Now the 4008s perform a regular binary addition. If the complementing switch is
up, the number on the B inputs is subtracted from the number on the A inputs. If it is
down, the sum is taken. As discussed in Section 3, the Cout of the MSB is ignored. The
result can range from 0111 1111 to 1000 0000 (-128).(+127)

Two’s complement of 18 = 0001  0010
+ Two’s complement of -9 = 1111  0111

Sum = 0000  1001

 
 

= +910

18 + (-9):

18 - 9,

++

ARITHMETIC OPERATIONS AND CIRCUITS
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Inputs (A = 0010 1010, B = 0001 0111)

0 0 1

1 1 1

A4

Σ4

0

A3 A2 A1B4 B3 B2 B1

0

0

Σ3

0

Σ2

0

Σ1

1

Cin4008Cout

1

1 (subtract)

0 (add)

0100

A7 A6 A5 A4B7 B6 B5 B4

27 26 25 24

1 1 1

1 0 0

A4

Σ4

0

A3 A2 A1B4 B3 B2 B1

0

0

Σ3

0

Σ2

1

Σ1

1

Cin4008Cout

1

0101

A3 A2 A1 A0B3 B2 B1 B0

23 22 21 20

Complementing
switch

Output sum or remainder

Figure 23 8-bit two’s-complement adder/subtractor illustrating the subtraction
42 - 23 = 19.

E X A M P L E  2 1

Prove that the subtraction produces the correct answer at the out-
puts by labeling the input and output lines on Figure 23.

Solution: should equal 19 (0001 0011). Convert the decimal in-
put numbers to regular binary, and label Figure 23

The B input number is complemented, the LSB Cin is 1,
and the final answer is 0001 0011, which proves that the circuit works for
that number.

Try adding and subtracting some other numbers to better familiarize
yourself with the operation of the circuit of Figure 23.

23 = 0001 0111).
(42 = 0010 1010,

42 - 23

42 - 23

E I G H T - B I T  T WO ’ S  C O M P L E M E N T  A D D E R /
S U BT R AC TO R  S I M U L AT I O N

In Figure 24, MultiSIM® is used to simulate the operation of an 8-bit two’s
complement adder/subtractor similar to Figure 23. (MultiSIM® uses the la-
bel CO for Cin and C4 for Cout.) The circuit is hard-wired to subtract the
numbers 42 (0010 10102) minus 23 (0001 01112). The output LEDs indi-
cate the correct answer of 0001 0011, which is a decimal 19. Also notice
for this case that there is a carry out of the high-order 4 bits (as there always
should in subtraction with positive answers).

298



ARITHMETIC OPERATIONS AND CIRCUITS

MultiSIM® Exercise: Use MultiSIM® to open file fig7_24 from the text
companion website. Run the simulation and observe that equals 19.

(a) Press C on your keyboard to change the operation to addition. What is
the binary and decimal answer for 

(b) Reconnect the inputs to determine the remainder of the sum
of 

(c) Reconnect the inputs to determine the remainder of (it should
be a negative two’s complement number with no Cout). Determine the
sum of 25 + 50.

25 - 50

67 + 18.
67 - 18;

42 + 23?

42 - 23

‘0’ ‘1’
5V

‘0’

‘1’
5V

Subtract

Add
Key = C

B = 0001 0111

A = 0010 1010

B7

B0

A0

A7

SU
M

_4
A

4
12

10

74HC283

SU
M

_3
A

3
14

13

SU
M

_2
A

2
3

1

SU
M

_1
A

1
5

4

B
4

11

B
3

15

B
2

2

B
1

6

C
4

C
0

7
9

SU
M

_4
A

4
12

10
74HC283

SU
M

_3
A

3
14

13

SU
M

_2
A

2
3

1

SU
M

_1
A

1
5

4

B
4

11

B
3

15

B
2

2

B
1

6

C
4

C
0

7
9

Figure 24 Simulation of an 8-bit two’s complement adder/subtractor showing
42 - 23 = 19.
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B0

A4

Σ4

A3 A2 A1B4 B3 B2 B1

1

Σ3

1

Σ2

0

Σ1

1

Cin
7483

Cout

1110

23 22 21 20

A3 A2 A1 A0B3 B2 B1

0110

BCD input
A3A2A1A0

+ B3B2B1B0

Basic adder

A4

Σ4

A3 A2 A1B4 B3 B2 B1

0

Σ3

0

Σ2

1

Σ1

1

Cin
7483

Cout

0110 1011

Correction adder
Not
used

Carry to next
higher digit

(or use as MSD)

Error correction (add 6)

0

1
1

1

1

0

1

MSD = 1 (0001) Corrected LSD
BCD sum = 3 (0011)

Carry from next
lower digit, if any
(equals 0 if LSD)

Figure 25 BCD adder illustrating the addition 
0001 0011 BCD).

7 + 6 = 13 (0111 + 0110 =

The corrected answer is 0001 0011BCD, which equals 13.
Checking for a sum greater than 9, or a carry-out, can be done easily using logic

gates. Then, when an invalid sum occurs, it can be corrected by adding 6 (0110) via the
connections shown in Figure 25. The upper 7483 performs a basic 4-bit addition. If its
sum is greater than 9, the (23) output and either the (22 or 21) output will
be HIGH. A sum greater than 9 or a carry-out will produce a HIGH out of the left OR
gate, placing a HIGH–HIGH at the A3 and A2 inputs of the correction adder, which has
the effect of adding a 6 to the original addition. If there is no carry and the original sum
is not greater than 9, the correction adder adds 0000.

©3 or ©2©4

carry to next BCD digit
➤

➤

➤

invalid BCD
add 6 to correct

BCD Adder Circuit
BCD adders can also be formed using the IC 4-bit binary adders. The problem, as you may
remember from Section 5, is that when any group-of-four BCD sum exceeds 9, or when
there is a carry-out, the number is invalid and must be corrected by adding 6 to the invalid
answer to get the correct BCD answer. (The valid range of BCD numbers is 0000 to 1001.)

For example, adding gives us an invalid result:

0111
+ 0110

1101 

+ 0110
1 0011

(7 + 6)0111BCD + 0110BCD

Common
Misconception

Students typically have a
hard time seeing where the
error correction number 6
(0110) is input to the
correction adder at A4-A1.

E X A M P L E  2 2

Prove that the BCD addition produces the correct
answer at the outputs by labeling the input and output lines on Figure 25.

(7 + 6)0111 + 0110
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BCD Adder IC: A 4-bit BCD adder is available in a single IC package. The
74HCT583 IC has internal correction circuitry to add two 4-bit numbers and produce
a corrected 4-bit answer with carry-out. Refer to a high-speed CMOS data sheet for an
in-depth description of the chip. 

B C D  A D D E R  S I M U L AT I O N

In Figure 26, the MultiSIM® software is used to illustrate the operation of
the BCD adder. Hexadecimal displays were added in strategic locations 

X X X O O O

4

A number

B number

3 2 1

31
T

R

Word generator

16
015

4 3 2 1 4 3 2 1

4

Invalid
BCD

3 2 1

4 3 2 1

12
10 13 1 4 5

A
4

A
3

A
2

A
1

SU
M

_4
SU

M
_3

SU
M

_2
SU

M
_1

B
4

B
3

B
2

B
1

14 3 5 11 15 2 6 7
C

0
C

4

Basic
adder

74HC283

12
10 13 1 4

A
4

A
3

A
2

A
1

SU
M

_4
SU

M
_3

SU
M

_2
SU

M
_1

B
4

B
3

B
2

B
1

14 3 5 11 15 2 6 7
5

C
0

C
4

Correction
adder

74HC283

NC

Error correction (add 6)

MSD
Corrected

LSD

0

A

B

C

D

E

F

G

A

B

C

D

E

F

G

1 2 3 4 5 6 7 8

0 1 2 3 4 6 7 8

Figure 26 Simulation of the BCD adder with correction circuitry and hex displays.

Solution: The sum out of the basic adder is 13 (1101). Because the bit
and the bit are both HIGH, the error correction OR gate puts out a
HIGH, which is added to the next more significant BCD digit and also puts
a HIGH–HIGH at A3, A2 of the correction adder, which adds 6. The correct
answer has a 3 for the least significant digit (LSD) and a 1 in the next more
significant digit, for the correct answer of 13.

Familiarize yourself with the operation of Figure 25 by testing the ad-
dition of several other BCD numbers.

22
23
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Review Questions

20. The complementing switch in Figure 24 is placed in the 1 position to
subtract B from A. Explain how this position converts the binary number on
the B inputs into a signed two’s-complement number.

21. What is the purpose of the AND and OR gates in the BCD adder cir-
cuit of Figure 25?

10 Arithmetic/Logic Units

Arithmetic/logic units (ALUs) are available in large-scale IC packages (LSI). The LSI
circuits are generally considered to be ICs containing from 100 to 10,000 gate equiva-
lents. Typically, an ALU is a multipurpose device capable of providing several different
arithmetic and logic operations. The specific operation to be performed is chosen by the
user by placing a specific binary code on the mode select inputs. Microprocessors may
also have ALUs built in as one of their many operational units. In such cases, the spe-
cific operation to be performed is chosen by software instructions.

The ALU that we learn to use in this section is the 74181 (TTL) or 74HC181
(CMOS). The 74181 is a 4-bit ALU that provides 16 arithmetic plus 16 logic operations.
Its logic symbol and function table are given in Figure 27. The mode control input (M)
is used to set the mode of operation as either logic or arithmetic
When M is HIGH, all internal carries are disabled and the device performs logic opera-
tions on the individual bits (A0 to A3, B0 to B3), as indicated in the function table.

When M is LOW, the internal carries are enabled, and the device performs
arithmetic operations on the two 4-bit binary inputs. Ripple carry output is provided at

and fast-look-ahead carry is provided at G and P for high-speed arithmetic op-
erations. The carry-in and carry-out terminals are each active-LOW (as signified by the
bubble), which means that a 0 signifies a carry.

Once the mode control (M) is set, you have 16 choices within either the logic or
arithmetic categories. The specific function you want is selected by applying the ap-
propriate binary code to the function select inputs (S3 to S0).

For example, with and the F outputs will be equal to
the complement of A (see the function table). This means that 

and Another example is with and the
F outputs will be equal to (A or B). This means that 

and F3 = A3 + B3.F2 = A2 + B2,F1 = A1 + B1,
F0 = A0 + B0,A + B

S3S2S1S0 = HHHL;M = HF3 = A3.F2 = A2,
F1 = A1,F0 = A0,

S3S2S1S0 = LLLL,M = H

CN + 4,

(M = L).(M = H)

ARITHMETIC OPERATIONS AND CIRCUITS

to indicate the logic levels at those points. The two BCD digits to be added
were entered into the Word Generator, which can be stepped through to test
several different additions. This simulation shows the addition of 
This creates an invalid BCD sum d as shown. Because d is greater than 9, 6
is added, resulting in the correct answer of 13 BCD.

MultiSIM® Exercise: Use MultiSIM® to open the file fig7_26 from the
text companion website. Double-click on the Word Generator, run the sim-
ulation, and press the step button to observe the addition of 

(a) Predict what the hex display will show if you were adding Press
Step to check your prediction.

(b) Predict what the hex display will show if you were adding Press
Step to check your prediction.

9 + 9.

3 + 4.

6 + 7.

7 + 6.
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From the function table we can see that other logic operations (AND, NAND,
NOR, Ex-OR, Ex-NOR, and several others) are available.

The function table in Figure 27(b) also shows the result of the 16 different
arithmetic operations available when Note that the results listed are with
carry-in equal to H (no carry). For just add 1 to all results. All results
produced by the device are in two’s-complement notation. Also, in the function table,
note that the sign means logical-OR and the word “PLUS” means arithmetic-SUM.+

CN = L,(CN)
M = L.

ARITHMETIC OPERATIONS AND CIRCUITS

Carry-out (CN + 4)

Equality

Generate

Propagate

Carry-in (CN)

Mode control

A0

B0

CN

M

S0

F0

CN + 4

A = B

G

P

A1
A2
A3

B1
B2
B3

S1
S2
S3

F1

F3

F2

74181

(a)

A

B

Inputs

Function
select

F

Outputs

Figure 27 The 74181 ALU: (a) logic symbol; (b) function table.

Mode
select 

F = A

F = A + B

F = A + B

F = minus 1 (2's comp.)

F = A plus AB

F = (A + B) plus AB

F = A minus B minus 1

F = AB minus 1

F = A plus AB

F = A plus B

F = (A + B) plus AB

F = AB minus 1

F = A plus A*

F = (A + B) plus A

F = (A + B) plus A

F = A minus 1

Arithmetic 
operations

(M = L)(Cn = H)

Logic 
functions

(M = H)S3

F = A

F = A + B

F = AB

F = 0

F = AB

F = B 

F = A ⊕ B

F = AB

F = A + B

F = A ⊕ B

F = B

F = AB

F = 1

F = A +B

F = A + B

F = A

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

S1

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

S2

L

L

L

L

H

H

H

H

L

L

L

L

H

H

H

H

S0

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

*Each bit is shifted to the next-more-significant position.

(b)

F = A means:
F0=A0, F1=A1, F2=A2, F3=A3 
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For example, to subtract B from A set and
The result at the F outputs will be the two’s complement of A minus

B minus 1; therefore, to get just A minus B, we need to add for 1. (This can be done auto-
matically by setting Also, as discussed earlier for two’s-complement subtrac-
tion, a carry-out (borrow) is generated when the result is positive or zero.
Just ignore it.

Read through the function table to see the other 15 arithmetic operations that are
available.

(CN + 4 = 0)
CN = 0.)

S3S2S1S0 = LHHL.
M = L(A3A2A1A0 - B3B2B1B0),

ARITHMETIC OPERATIONS AND CIRCUITS

A0

74181

Inputs

1
A10
A21
A31

B01
B11
B21
B30

CN0

M0

S00
S11
S21
S30

F0 0
F1 1
F2 1
F3 0

CN + 4 0

A = B 0

G 0

P 0

Outputs

13

7

6

Figure 28 4-bit binary subtractor using the 74181 ALU to subtract 13 7.-

E X A M P L E  2 3

Show the external connections to a 74181 to form a 4-bit subtractor. Label
the input and output pins with the binary states that occur when subtracting

Solution: The 4-bit subtractor is shown in Figure 28. The ALU is set in the
subtract mode by setting and (LHHL). 13 (1101) is
input at A, and 7 (0111) is input at B.

S3S2S1S0 = 0110M = 0

13 - 7 (A = 13, B = 7).

By setting the output at F0, F1, F2, F3 will be A minus B instead of
A minus B minus 1, as shown in the function table [Figure 27(b)]. The re-
sult of the subtraction is a positive 6 (0110) with a carry-out 
(As before, with two’s-complement subtraction, there is a carry-out for any
positive or zero answer, which is ignored.)

(CN + 4 = 0).

CN = 0,

E X A M P L E  2 4

Place the following values at the inputs of a 74181: 
and 

(a) With determine the output at F (F3 F2 F1 F0).

(b) Change M to 0 and determine the output at F (F3 F2 F1 F0).

M = 1,

CN = 1.B3 B2 B1 B0 = 0011 S3 S2 S1 S0 = 1101
A3 A2 A1 A0 = 1001
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Review Questions

22. What is the purpose of the mode control input to the 74181 arith-
metic/logic unit?

23. If and L, H, H on the 74181, then 
will be set to L, L, L, L. True or false?

24. The arithmetic operations of the 74181 include both and
How are the two designations different?

11 FPGA Applications with VHDL and LPMs

In this section we will duplicate several of the arithmetic circuits covered earlier in this
chapter using FPGA implementation created with macrofunctions, VHDL, and a new
form of design entry that uses a built-in Library of Parameterized Modules (LPM).
LPMs are provided in the Quartus® II software to ease the design process for com-
monly used systems like adders and ALUs.

F = A PLUS B.
F = A + B

F1, F0

F3, F2,S3, S2, S1, S0 = L,M = H

ARITHMETIC OPERATIONS AND CIRCUITS

Solution: (a) From the chart in Figure 27(b), the logic function chosen is
(F equals A ORed with the complement of B).

Answer

(b) With the arithmetic operation is (A ORed with B) with the
result added to A.

AnswerA OR B PLUS A = 0100

 A OR B = 1011

 B = 0011

 A = 1001

M = 0,

A = 1001

B = 0011

B = 1100

F = A + B = 1101

F = A + B

E X A M P L E  2 5

Build a block design file for a 4-bit adder using the macro-function for the
74283 fixed-function IC. Group the A inputs, B inputs, and SUM outputs as
busses. Simulate several different additions as you monitor the results on
the SUM bits and Cout.

Solution: The bdf file utilizing the 74283 macrofunction is shown in
Figure 29. The A and B inputs and the SUM outputs are grouped together
as 4-bit busses at the terminal pins by giving them the names A[3..0],
B[3..0], and SUM[3..0]. Each element of the group must then be broken
out by specifying the element name (A0, B0, A1, and so on) on the line en-
tering or leaving the symbol.

The simulation in Figure 30 shows a variety of numbers that were
chosen for A and B to exercise the adder and test the Cout line. As you can
see, the numbers are all listed with a hexadecimal radix. For example, in
the first addition, instead of adding the simulation
shows The third addition, would equal 12, but 12 in hex
is C. The fifth, sixth, and seventh additions cause a carry-out because they
are greater than 15.

6 + 6,3 + 6 = 9.
0011 + 0110 = 1001,

V
H

D
L
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Figure 30 The simulation of the 4-bit adder for Example 25.

Bus line

Bus names

Element names

Figure 29 The 74283 4-bit adder macrofunction for Example 25.

E X A M P L E  2 6

Design an 8-bit adder/subtractor in VHDL using the and arithmetic
operators. In Figure 20 we used integer data types for performing arith-
metic. In this example, instead use std_logic vectors for the input/output
data types, and use a WHEN-ELSE conditional signal assignment to se-
lect whether to add or subtract the numbers. Create a simulation to test sev-
eral 8-bit additions and subtractions.

Solution: Figure 31 shows the VHDL listing for the adder/subtractor. The
first thing that you may notice is that there is a new library declare state-
ment called ieee.std_logic_signed. This is required whenever you are using
vectors in signed arithmetic. Signed numbers are those where the MSB is
used to represent the sign, as is the case with two’s-complement notation.
The add_sub input will be used to tell the logic whether to add the input
numbers or to subtract them. Since this is an 8-bit system we use a vector
size of (7 DOWNTO 0). The WHEN-ELSE statement is called a “condi-
tional signal assignment” because it performs a specific assignment based
on the condition listed after the WHEN command. When add_sub = ‘0’ the
inputs are added. Otherwise (ELSE) they are subtracted. 

The simulation in Figure 32 shows the results of several different ad-
ditions and subtractions. The first six operations are additions showing 

-+
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WHEN ELSE  conditional assignment

Required for vector arithmetic

add or subtract control

8-bit vectors

(a)

Figure 31 An 8-bit adder/subtractor employing the WHEN-ELSE assignment: 
(a) VHDL listing; (b) block symbol file (bsf).

(b)

Figure 32 Simulation results for the adder/subtractor of Example 26.
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BCD Correction Adder Using an IF-THEN-ELSE

Use VHDL to reproduce the BCD adder presented in Figure 25. Assume
that the 4-bit inputs on a and b will always be valid positive BCD numbers.
When the two BCD numbers are added together, use an IF-THEN-ELSE
statement to determine if the sum is greater than 9. If so, then that sum must
be corrected by adding 6.

Solution: The VHDL program is shown in Figure 33. Since the numbers
are always positive, we don’t want the program to think that a HIGH bit in
the MSB signifies a negative result. Using ieee.std_logic_unsigned (instead
of signed) will ensure that all of the numbers are treated as positives
(unsigned number). As you saw in Figure 25, there is an intermediate sum
produced after the initial addition before it goes to the correction adder. We
will call this bin_result and declare it as a signal because it is an internal in-
terconnection point, not an input or output. The IF-THEN-ELSE statement 

the hexadecimal sum of the astring plus the bstring. The next six opera-
tions are subtractions because the add_sub line is HIGH. The result output
is in signed two’s-complement notation. The results of the first two sub-
tractions are positive but the next two are negative because bstring is larger
than astring. Study the third subtraction and prove to yourself that 0816 minus
0C16 equals FC16.

ARITHMETIC OPERATIONS AND CIRCUITS

IF-THEN-ELSE sequential statements

Internal interconnection signal

Sensitivity list

(a)

(b)

Figure 33 Solution for the BCD adder of Example 27: (a) VHDL listing; 
(b) block symbol file (bsf).
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7 + 8 = 15

1 5

Figure 34 Simulation of BCD addition for Example 27.

is sequential and needs to be put inside of a PROCESS as shown. Since the
bin_result is a 5-bit string, the carry-out will be the fifth bit, so checking for
a value greater than 9 will also be checking for a carry-out.

The results of several different BCD additions are simulated in Figure
34. A binary radix is chosen for all numbers. The bcd result was set up as
eight bits to accommodate for two BCD digits that will occur for sums
greater than 9. Study the simulation carefully to ensure that you believe that
all of the bcd_result values are correct.

E X A M P L E  2 8

LPM Adder/Subtractor

Rather than “reinvent the wheel” for each digital design, Quartus® II soft-
ware provides a library of predesigned complex logic functions commonly
used in digital systems. It is called the Library of Parameterized Modules
and is found in the /megafunctions/arithmetic subdirectory. Right-click in a
new block design (bdf) workspace and choose Insert Symbol. For the
name type: lpm_add_sub. Make sure that the Launch MegaWizard Plug-
In is checked and press OK (see Figure 35).

The MegaWizard is a design tool that will walk you through the steps
to custom design an adder/subtractor. The wizard continues with seven ad-
ditional pages (2–8) that will ask you questions on how you want the logic
to operate. Complete the MegaWizard pages as follows:

Page 2c—Check VHDL and use a meaningful name for the output file.
Press Next.

Page 3—Choose Family: Cyclone II, input bus width: 8 bits, and check the
box for Create an ‘add_sub’ input port. Press Next.

Page 4—Check No, both values vary and check Unsigned. Press Next.

Page 5—Check the box for Create a carry/borrow-out input and the box
for Create a carry/borrow-in output. Press Next.

Page 6—Check the box NO for no pipeline. Press Next.

+
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Page 7—This page shows the simulation libraries that are used. Press Next.

Page 8—This page shows the files that will automatically be generated for
this LPM. Press Finish.

Click anywhere in the workspace to drop the LPM symbol. Connect inputs
and outputs to the symbol. Give the 8-bit inputs and outputs bus names
(a[7..0], b[7..0], and result [7..0]) and connect them to the LPM symbol
with the bus line style. The circuit should look like Figure 36. (Hint: An aid
for creating pins is to right-click on the symbol and choose Generate
Pins for Symbol Ports.

7

Figure 35 The symbol screen for the lpm_add_sub symbol used in Example 28.

Bus lineBus name

LPM 
Megafunction

Figure 36 Inputs and outputs connected to the lpm_add_sub used in Example 28.
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add subtract

Figure 37 Addition and subtraction simulation for Example 28.

The input and output definitions for the lpm_add_sub megafunction
can be found in the Help menu index. (Also, if you double-click on the
symbol and choose Documentation in the MegaWizard, you can view the
reference material or sample waveforms.) The inputs and outputs are defined
as follows:

add_sub (This input is HIGH for addition, LOW for subtraction.)

cin (This input is added to the result during addition and its complement is
subtracted from the result during subtraction.)

cout (This output is HIGH after adding numbers that overflow the bit
width. It is LOW after subtracting numbers that have a negative result.)

dataa[7..0] (This input receives the 8-bit a number.)

datab[7..0] (This input receives the 8-bit b number.)

result[7..0] (This output receives the 8-bit result of the operation.)

The simulation in Figure 37 exercises the circuit by adding and then
subtracting several combinations of input values. Carefully study the hex
value in the result and cout waveforms to prove to yourself that the arith-
metic answers are correct.

Summary

In this chapter, we have learned that

1. The binary arithmetic functions of addition, subtraction, multiplication,
and division can be performed bit by bit using several of the same rules of
regular base 10 arithmetic.

2. The two’s-complement representation of binary numbers is commonly
used by computer systems for representing positive and negative numbers.
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3. Two’s-complement arithmetic simplifies the process of subtraction of
binary numbers.

4. Hexadecimal addition and subtraction is often required for determining
computer memory space and locations.

5. When performing BCD addition a correction must be made for sums
greater than 9 or when a carry to the next-more-significant digit occurs.

6. Binary adders can be built using simple combinational logic circuits.

7. A half-adder is required for addition of the least significant bits.

8. A full-adder is required for addition of the more significant bits.

9. Multibit full-adder ICs are commonly used for binary addition and
two’s-complement arithmetic.

10. Arithmetic/logic units are multipurpose ICs capable of providing sev-
eral different arithmetic and logic functions.

11. The logic circuits for adders can be described in VHDL using integer
arithmetic.

12. The Quartus® II software provides 7400-series macrofunctions and a
Library of Parameterized Modules (LPMs) to ease in the design of complex
digital systems.

13. Conditional assignments can be made using the IF-THEN-ELSE or the
WHEN-ELSE VHDL statements.

Glossary

ALU: Arithmetic/logic unit. A multifunction IC device used to perform a variety of
user-selectable arithmetic and logic operations.

Arithmetic operator: Symbols used in the VHDL language to represent arithmetic
operations that are to be performed.

Binary Word: A group, or string, of binary bits. In a 4-bit system, a word is 4 bits
long. In an 8-bit system, a word is 8 bits long, and so on.

Block Diagram: A simplified functional representation of a circuit or system drawn
in a box format.

Borrow: When subtracting numbers, if the number being subtracted from is not large
enough, it must “borrow,” or take an amount from, the next-more-significant
digit.

Carry-In: An amount from a less-significant-digit addition that is applied to the cur-
rent addition.

Carry-Out: When adding numbers, when the sum is greater than the amount allowed
in that position, part of the sum must be applied to the next-more-significant
position.

Concurrent statements: VHDL statements that are executed at the same time. In the
synthesized circuit, the assignments associated with these statements will
occur at the same time also.

Conditional signal assignment: In VHDL, an assignment that is made to a signal or
an output based on the condition of another signal. The WHEN-ELSE
clause is used for this purpose.

ARITHMETIC OPERATIONS AND CIRCUITS
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Fast-Look-Ahead Carry: When cascading several full-adders end to end, the
carryout of the last full-adder cannot be determined until each of the
previous full-adder additions is completed. The internal carry must ripple or
propagate through each of the lower-order adders before reaching the
last full-adder. A fast-look-ahead carry system is used to speed up the
process in a multibit system by reading all the input bits simultaneously
to determine ahead of time if a carry-out of the last full-adder is going to
occur.

Full-Adder: An adder circuit having three inputs, used to add two binary digits plus
a carry. It produces their sum and carry as outputs.

Function Select: On an ALU, the pins used to select the actual arithmetic or logic op-
eration to be performed.

Half-Adder: An adder circuit used in the LS position when adding two binary digits
with no carry-in to consider. It produces their sum and carry as outputs.

High Order: In numbering systems, the high-order positions are those representing
the larger magnitudes.

IF-THEN-ELSE: A clause preceding a series of sequential assignments that will be
executed based on the results of the condition.

Integer: A VHDL data type that accommodates whole numbers.

Library of Parameterized Modules (LPM): A group of predefined modules that
are the implementation of commonly used complex digital logic.

Low Order: In numbering systems, the low-order positions are those representing
the smaller magnitudes.

Mode Control: On an ALU, the pin used to select either the arithmetic or the logic
mode of operation.

MSI: Medium-scale integration. An IC chip containing combinational logic that is
packed more densely than a basic logic gate IC (small-scale integration,
SSI) but not as dense as a microprocessor IC (large-scale integration, LSI).
MSI circuits are generally considered to be ICs containing from 12 to 100
gate equivalents.

One’s Complement: A binary number that is a direct (true) complement, bit by bit,
of some other number.

Product: The result of the multiplication of numbers.

Remainder: The result of the subtraction of numbers.

Ripple Carry: See fast-look-ahead carry.

Sequential statements: VHDL statements that are executed one after the other in the
order they appear. In the synthesized circuit, the assignments associated
with these statements will occur one after the other also.

Sign Bit: The leftmost, or MSB, in a two’s-complement number, used to signify the
sign of the number 

Signed number: Positive and negative numbers represented by two’s-complement
notation where the MSB represents the sign bit.

Sum: The result of the addition of numbers.

Two’s Complement: A binary numbering representation that simplifies arithmetic in
digital systems.

(1 = negative, 0 = positive).

ARITHMETIC OPERATIONS AND CIRCUITS
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Unsigned number: Positive numbers where the MSB is part of the number (not a
sign bit).

WHEN-ELSE: A clause used to direct the operation of a conditional signal assignment.

Problems

Section 1
1. Perform the following decimal additions, convert the original decimal
numbers to binary, and add them. Compare answers.

(a) (b) (c) (d)

(e) (f) (g) (h)

2. Repeat Problem 1 for the following subtractions.

(a) (b) (c) (d)

(e) (f) (g) (h)

3. Repeat Problem 1 for the following multiplications.

(a) (b) (c) (d)

(e) (f) (g) (h)

4. Repeat Problem 1 for the following divisions.

(a) (b) (c) (d)
(e) (f) (g) (h)

Section 2

5. Produce a table of 8-bit two’s-complement numbers from to 

6. Convert the following decimal numbers to 8-bit two’s-complement
notation.

(a) 7 (b) (c) 14 (d) 36 (e)

(f) 66 (g) (h) 112 (i) ( j)

7. Convert the following two’s-complement numbers to decimal.

(a) 0001 0110 (b) 0000 1111

(c) 0101 1100 (d) 1000 0110

(e) 1110 1110 (f) 1000 0001

(g) 0111 1111 (h) 1111 1111

Section 3
8. What is the maximum positive-to-negative range of a two’s-comple-
ment number in each of the following? 

(a) An 8-bit system (b) A 16-bit system

-125-112-48

-36-7

-15.+15

12�22815�19514�2945�125

5�2512�483�154�12

255
* 127

31
* 13

127
*  15

63
* 125

39
*  7

12
*  5

6
* 7

7
* 3

111
- 104

109
-  60

113
-  88

126
-  64

66
- 31

84
- 36

22
- 11

15
-   4

196
+ 156

208
+ 127

254
+    36

134
+    66

29
+ 37

22
+    6

8
+ 7

6
+ 3
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9. Convert the following decimal numbers to two’s-complement form
and perform the operation indicated.

(a) (b)

(c) (d)

(e) (f)

(g) (h) - 36
- 48

36
- 48

125
-  66

- 28
+ 38

32
- 18

32
+ 18

12
-  6

5
+ 7

Section 4
10. Build a table similar to Table 4 for hex digits 0C to 22.

11. Add the following hexadecimal numbers.

(a) (b)

(c) (d)

(e) (f)

(g) (h) 0FFF
+ 9001

A049
+ 0AFC

A7
+ BB

8A
+ 82

23
+ A7

0B
+ 16

7
+ 6

A
+ 4

12. Subtract the following hexadecimal numbers.

(a) (b)

(c) (d)

(e) (f)

(g) (h) 8BB0
- 4AC8

4A2D
- 1A2F

A7
- 1D

2A
- 07

A7
- 18

1B
- 06

8
- 2

A
- 4

13. Memory locations in personal computers are usually given in hexadec-
imal. If a computer programmer writes a program that requires 100 mem-
ory locations, determine the last memory location that is used if the
program starts at location 2C8DH 16 hexadecimal).

14. A particular model of personal computer indicates in its owner’s man-
ual that the following memory locations are used for the storage of operat-
ing system subroutines: 07A4BH to 0BD78H inclusive and 02F80H to
03000H inclusive. Determine the total number of memory locations used
for that purpose (in hex).

(H = base

Section 5
15. Which of the following bit strings cannot be valid BCD numbers?

(a) 0111 1001 (b) 0101 1010

(c) 1110 0010 (d) 0100 1000

(e) 1011 0110 (f) 0100 1001
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18. Reconstruct the half-adder circuit of Figure 7 using only NOR gates.

19. The circuit in Figure P19 is an attempt to build a half-adder. Will the
Cout and function properly? (Hint: Write the Boolean equation at Cout
and ©0.)

©0

A0

Cout

Σ 0

B0

Figure P19

20. Use a Karnaugh map to prove that the Cout function of the full-adder
whose truth table is given in Figure 5(c) can be implemented using the cir-
cuit given in Figure 9.

Section 7
21. Draw the block diagram of a 4-bit full-adder using four full-adders.

22. In Figure 18, the Cin to the first adder is grounded; explain why. Also,
why isn’t the Cin to the second adder grounded?

23. Design and draw a 6-bit binary adder similar to Figure 18 using two
7483 4-bit adders.

24. The 7483 has a fast-look-ahead carry. Explain why that is beneficial in
some adder designs.

25. Design and draw a 16-bit binary adder using four 4008 CMOS 4-bit
adders.

Section 9
26. What changes would have to be made to the adder/subtractor circuit of
Figure 21 if exclusive-NORs are to be used instead of exclusive ORs?

C

C

D

D

16. Convert the following decimal numbers to BCD and add them.
Convert the result back to decimal to check your answer.

(a) (b)

(c) (d)

(e) (f)

(g) (h) 80
+ 23

99
+ 11

36
+ 22

12
+ 89

47
+ 38

43
+ 72

12
+ 16

8
+ 3

Section 6
17. Under what circumstances would you use a half-adder instead of a
full-adder?
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Section 10
28. Figure P28 is supposed to be set up as a one-digit hexadecimal adder.
To test it, the values C and 2 are input to the A and B inputs.
The answer should be (1110), but it is not! The figure is la-
beled with the states observed with a logic probe. Find the problem(s).

C + 2 = E
(1100 + 0010)

1 10 11 0

A4

0

Σ4

0

0

A3

1 0

A2

1 1

A1

1 1

B4 B3 B2 B1

0

1

Σ3

0

Σ2

0

Σ1

0

Cin7483Cout
1

1 (subtract)

0 (add)

Figure P27

1

0

0

0

0

1

0

1

0

0

1

0

0

0

1

1

0

1

0

1

1

0

A0

74181

B0

CN

M

S0

F0

CN + 4

A = B

G

P

A1

A2

A3

B1

B2

B3

S1

S2

S3

F1

F3

F2

Figure P28

T

29. Re-solve Example 23 (a) and (b) for S3 - S0 = 0100.C

T 27. Figure P27 is a 4-bit two’s-complement adder/subtractor. We are at-
tempting to subtract but keep getting the wrong an-
swer of 8 (1000). Each test node in the circuit is labeled with the logic state
observed using a logic probe. Find the two faults in the circuit.

(0111 - 0011)7 - 3
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MultiSIM® Exercises

E1. Load the circuit file for Section 6a. This circuit functions like the full-
adder described in Section 6.

(a) How many inputs and how many outputs does it have?

(b) The bits to be added are input via the A, B, and C switches. On a
piece of paper, produce a truth table by stepping through all eight
possible combinations of switch settings.

(c) Complete the following sentences: “The Sum output goes HIGH
if . . .” “The Cout output goes HIGH if . . .”

E2. Load the circuit file for Section 6b. This circuit is a full-adder. To 
perform an addition of two 4-bit numbers as in Figure 16, we need to du-
plicate the circuit four times to create four full-adder subcircuits. Drag the
four full-adder subcircuits onto the screen and connect them as a 4-bit
adder.

(a) What must be done with the Cin of the first FA?

(b) Test your circuit operation by performing the addition: 
Demonstrate your results to your teacher.

E3. Load the circuit file for Section 7. The 7483s shown are subcircuits,
each containing four full-adders. Make the necessary connections to form
an 8-bit adder similar to Figure 18.

(a) Test your design by adding What is the result of the addition?

(b) Repeat part (a) for the addition 

E4. Load the circuit file for Section 8a. All of the components necessary
to construct a two’s-complement adder/subtractor are provided in the cir-
cuit window. Make the connections similar to those shown in Figure 23.
Demonstrate the operation of your design to your teacher by performing
the following operations:

(a) (Which output summation LEDs are ON?)

(b) (Which output summation LEDs are ON?)

E5. Load the circuit file for Section 8b. All of the components necessary
to construct a BCD adder are provided in the circuit window. Make 

75 - 50 = 25

75 + 50 = 125

67 + 45.

37 + 22.

(0111 + 0110 = 1101).
7 + 6 = 13

ARITHMETIC OPERATIONS AND CIRCUITS

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

30. Find U9 and U10 of the Watchdog Timer schematic. These are counter
ICs that output their 4-bit binary count to On a separate piece of
paper, draw the connections that you would make to add the output of U9
to the output of U10 using a 74HC283 4-bit adder IC.

31. Find Port E (PE0–PE7) of U1 in the HC11D0 schematic. Assume that
the low-order bits (PE0–PE3) contain the 4-bit binary number A and the
high-order bits (PE4–PE7) contain the 4-bit binary number B. On a sepa-
rate piece of paper, make the connections necessary to subtract A minus B
using a two’s-complement adder/subtractor circuit design. The result of the
subtraction is to be read by Port A, bits PA4–PA7.

32. Repeat Problem 31 using a 74181 ALU.

Q0 - Q3.
S D

S DC

S DC

C D

D

C D

D
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the connections similar to those shown in Figure 25. Demonstrate the op-
eration of you design to your teacher by performing the following addi-
tions:

(a) (Which output summation LEDs are ON?)

(b) (Which output summation LEDs are ON?)

FPGA Problems

C1. The VHDL full-adder equations given in Figure 12 were based on the
sum equation derived in Figure 8 and the Cout equation derived from Figure
9. Figure 10 combines the two into one circuit.

(a) Use the same equation for sum1 that was given in Figure 12, but
rewrite the VHDL equation for Cout to match the circuit in Figure 10.
Save this program as prob_c7_1.vhd.

(b) Test the new VHDL design by simulating all possible inputs at a1,
b1, and cin.

(c) Download your design to an FPGA IC. Discuss your observations of
the sum1 and Cout LEDs with your instructor as you use the switches to
step through all eight input combinations.

C2. The VHDL program in Figure 20 is the implementation of a 4-bit
adder.

(a) Make the necessary changes to make it an 8-bit adder. Save this
program as prob_c7_2.vhd.

(b) Test its operation by performing the following hex additions with
then 

(c) Use the RTL Viewer to view the generation of all inputs and outputs.

C3. Figure 29 uses a 74283 macrofunction to form a 4-bit adder.

(a) Use a second 74283 to form an 8-bit adder similar to Figure 18. Save
this program as prob_c7_3.bdf.

(b) Test its operation by performing the following hex additions:

C4. Figure 23 shows an 8-bit adder/subtractor built with adder ICs and
XOR gates.

(a) Use the Block Editor to design a 4-bit adder/subtractor using a 74283
macrofunction and four XOR gates. Save this program as prob_c7_4.bdf.

(b) Test its operation by simulating its 4-bit result as you perform the
following hex arithmetic: 

(c) Download your design to an FPGA IC. Discuss your observations of
its 4-bit result LEDs with your instructor as you use the switches to step
through the four additions and four subtractions.

C5. Figure 31 shows a VHDL implementation of an 8-bit adder/
subtractor using std_logic vectors and the WHEN-ELSE conditional signal
assignment.

(a) Rewrite the program to implement a 4-bit adder/subtractor. Save this
program as prob_c7_5.vhd.

F - 7; 6 - 8.
2 + 6; 7 + 6; A + 2; 1 + 7; 9 - 6; C - 1;

33 + 14; 17 + 03; 7A + 22; BB + 16; FF + 01; DD + 66.

cin = 1: 44 + 22; 20 + 4D; AA + 22; FF + 01.cin = 0,

9 + 8

7 + 6
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(b) Test its operation by simulating its 4-bit result as you perform the
following hex arithmetic: 

(c) Download your design to an FPGA IC. Discuss your observations of
its 4-bit result LEDs with your instructor as you use the switches to step
through the four additions and four subtractions.

C6. Figure 33 (Example 27) shows the VHDL implementation of a BCD
correction adder using the IF-THEN-ELSE statement.

(a) Use Windows Explorer to copy the subdirectory ex7_27 over to the
Quartus® II subdirectory on the hard drive assigned for your projects.
Then in the Quartus® II program, open that project by choosing: File
Open Project, then navigate to the project file and press Open.

(b) Modify the simulation file to test the following BCD additions:
Check that the 8-bit BCD

results are correct.

(c) Download your design to an FPGA IC. Discuss your observations of
its 8-bit BCD result displayed on the LEDs with your instructor as you
use the switches to step through the six additions.

C7. Figure 36 (Example 28) uses an LPM module to perform additions and
subtractions.

(a) Create a file called prob_c7_7.bdf using the LPM_ADD_SUB to
perform 16-bit additions.

(b) Test its operation by simulating the following hex additions:

C8. Quartus® II software provides an LPM module called LPM_MULT
that can be used to multiply two numbers.

(a) Enter the LPM_MULT module into a new Block Editor window. Set
it up to multiply two 4-bit numbers called a[3..0] and b[3..0] to form a
product called p[7..0].

(b) Create a simulation file that demonstrates the multiplication of the
following decimal numbers (set all radixes to decimal): 

(c) Download your design to an FPGA IC. Discuss your observations of
its 8-bit product displayed on the LEDs with your instructor as you use
the switches to step through the six multiplications.

4 * 4; 9 * 9; 12 * 8; 15 * 15.
2 * 2; 2 * 8;

20A7 + 1111; 00BB + 2012; 4AFC + 1322; 7FFF + 0001.

4 + 4; 4 + 7; 3 + 7; 9 + 9; 7 + 7; 9 + 4.

+

F - 7; 6 - 8.
2 + 6; 7 + 6; A + 2; 1 + 7; 9 - 6; C - 1;

ARITHMETIC OPERATIONS AND CIRCUITS

Answers to Review Questions

1. 2 inputs, 2 outputs

2. True

3. True

4. D7

5. (a) Negative

(b) Positive

(c) Negative

6. b, d

7. True

8. True

9. Because it simplifies the
documentation and use of
the equipment

10. 15

11. 16

12. Greater than 9; there is a carry-
out of the MSB

320



ARITHMETIC OPERATIONS AND CIRCUITS

13. Add 6 (0110).

14. Inputs: A0, B0; outputs: Cout

15. Because it needs a carry-in
from the previous adder

16. Odd

17. When any two of the inputs are
HIGH

18. Connect it to zero.

19. To speed up the arithmetic
process

©0,

20. It provides a Cin, and it puts a l
on the inputs of the X-OR
gates, which inverts B.

21. They check for a sum greater
than 9 and provide a Cout.

22. It sets the mode of operation
for either logic or arithmetic.

23. True

24. means logical OR; plus
means arithmetic sum
+
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A Ci

Σ
FA

B

A3 B3

Σ3Σ4

A Ci

Σ
FA

B

A2 B2

Σ2

A Ci

Σ
FA

B

A1 B1

Σ1

A Ci

Σ
FA

Co

B

A0 B0

Σ0

CoCoCo

+15 0000 1111 -1 1111 1111
+14 0000 1110 -2 1111 1110
+13 0000 1101 -3 1111 1101
+12 0000 1100 -4 1111 1100
+11 0000 1011 -5 1111 1011
+10 0000 1010 -6 1111 1010
+9 0000 1001 -7 1111 1001
+8 0000 1000 -8 1111 1000
+7 0000 0111 -9 1111 0111
+6 0000 0110 -10 1111 0110
+5 0000 0101 -11 1111 0101
+4 0000 0100 -12 1111 0100
+3 0000 0011 -13 1111 0011
+2 0000 0010 -14 1111 0010
+1 0000 0001 -15 1111 0001

0 0000 0000

1. (a) 1001 (b) 1111 (c) 1 1100
(d) 100 0010 (e) 1100 1000 (f) 10010
0010 (g) 10100 1111 (h) 10110 0000

3. (a) 1 0101 (b) 10 1010 (c) 11 1100
(d) 1 0001 0001 (e) 1 1110 1100 0011
(f) 111 0111 0001 (g) 1 1001 0011
(h) 111 1110 1000 0001

5.

7. (a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

9. (a) 0000 1100 (b) 0000 0110
(c) 0011 0010 (d) 0000 1110
(e) 0000 1010 (f) 0011 1011
(g) 1111 0100 (h) 1010 1100

1111 1111 = -1
0111 1111 = +127
1000 0001 = -127
1110 1110 = -18
1000 0110 = -122
0101 1100 = +92
0000 1111 = +15
0001 0110 = +22

11. (a) E (b) D (c) 21 (d) CA (e) 10C
(f) 162 (g) AB45 (h) A000

13. 2CF0H

15. b, c, e

17. For the LSB addition of two binary num-
bers

19.

21.
Co = NO
©o = OK

23.

25.

27. The Ex-OR gate third from right is bad.
Also, the full-adder fourth from right is
bad.

29.
(a) 1110 (b) 0001

S3 - S0 = 0100

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin7483Cout

NC A5 A4B5 B4

Σ6 Σ5 Σ4

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin7483Cout

A3 A2 A1 A0B3 B2 B1 B0

Σ3 Σ2 Σ1 Σ0

NC

NC

NC

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin4008Cout

A5 A4B5 B4

Σ7 Σ6 Σ5 Σ4

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin4008Cout

A3 A2 A1 A0B3 B2 B1 B0

Σ3 Σ2 Σ1 Σ0

B6A6B7A7

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin4008Cout

Σ15 Σ14 Σ13 Σ12

A4

Σ4

A3 A2 A1B4 B3 B2 B1

Σ3 Σ2 Σ1

Cin4008Cout

A9 A8B9 B8

Σ11 Σ10 Σ9 Σ8

A15 B15 A14 B14 A13 B13 A12 B12 A11B11 A10 B10

Σ16

31.

E1. (a) Three inputs, two outputs
(b) Full adder TT
(c) The number of HIGH inputs is odd.

The number of HIGH inputs is two or
more.

E3. (a) 0011 1011 (b) 0111 0000

E5. (a) (b) 1 0111 (1 = ON)1 0011 (1 = ON)

PE4

PE0 45
PE1 13
PE2 1314
PE3

PA4
74HC283

PA5
PA6
PA7

A1
A2
A3
A4

B1
B2
B3
B4

C0 C4 N/C+5V

S1
S2
S3
S4 1012

97

11
15

2
6

+5

PE5

PE6

PE7

Answers to Odd-Numbered Problems
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Code Converters, Multiplexers,
and Demultiplexers

OUTLINE

1 Comparators
2 VHDL Comparator Using IF-THEN-ELSE
3 Decoding
4 Decoders Implemented in the VHDL Language
5 Encoding
6 Code Converters
7 Multiplexers
8 Demultiplexers
9 System Design Applications

10 FPGA Design Applications Using LPMs

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Utilize an IC magnitude comparator to perform binary comparisons.
• Describe the function of a decoder and an encoder.
• Design the internal circuitry for encoding and decoding.
• Utilize manufacturers’ data sheets to determine the operation of IC decoder 

and encoder chips.
• Explain the procedure involved in binary, BCD, and Gray code converting.
• Explain the operation of code-converter circuits built from SSI and MSI ICs.
• Describe the function and uses of multiplexers and demultiplexers.
• Design circuits that employ multiplexer and demultiplexer ICs.

INTRODUCTION

Information, or data, that is used by digital devices comes in many formats. The mech-
anisms for the conversion, transfer, and selection of data are handled by combinational
logic ICs.

In this chapter, we first take a general approach to the understanding of data-
handling circuits and then deal with the specific operation and application of practical
data-handling MSI chips. The MSI chips covered include comparators, decoders, 
encoders, code converters, multiplexers, and demultiplexers.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 8 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 Comparators

Often in the evaluation of digital information, it is important to compare two binary
strings (or binary words) to determine if they are exactly equal. This comparison
process is performed by a digital comparator.

The basic comparator evaluates two binary strings bit by bit and outputs a 1 if
they are exactly equal. An exclusive-NOR gate is the easiest way to compare the equality
of bits. If both bits are equal or the ex-NOR puts out a 1.

To compare more than just 2 bits, we need additional ex-NORs, and the output of
all of them must be 1. For example, to design a comparator to evaluate two 4-bit num-
bers, we need four ex-NORs. To determine total equality, connect all four outputs into
an AND gate. That way, if all four outputs are 1s, the AND gate puts out a 1. Figure 1
shows a comparator circuit built from exclusive-NORs and an AND gate.

1-1),(0-0

A1

Out = 1 if

B1

A0

B0

A3

B3

A2

B2

A0 = B0

A1 = B1

A2 = B2

A3 = B3

Each ex-NOR
checks for
equality.

Figure 1 Binary comparator for comparing two 4-bit binary strings.

Studying Figure 1, you should realize that if equals or , the top ex-
NOR will output a 1. The same holds true for the second, third, and fourth 
ex-NOR gates. If all of them output a 1, the AND gate outputs a 1, indicating equality.

0-01-1A0-B0

E X A M P L E  1

Referring to Figure 1, determine if the following pairs of input binary num-
bers will output a 1.

(a)

(b)

Solution:

(a) When the A and B numbers are applied to the inputs, each of the four ex-
NORs will output 1s, so the output of the AND gate will be 1 (equality).

(b) For this case, the first three ex-NORs will output 1s, but the last 
ex-NOR will output a 0 because its inputs are not equal. The AND
gate will output a 0 (inequality).

B3B2B1B0 = 0 1 1 1
 A3A2A1A0 = 0 1 1 0

B3B2B1B0 = 1 0 1 1
 A3A2A1A0 = 1 0 1 1

Integrated-circuit magnitude comparators are available in both the TTL and
CMOS families. A magnitude comparator not only determines if A equals B but also if
A is greater than B or A is less than B.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS
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IA < B

VCC161

152

143

134

125

116

107

98GND

B3

IA = B

IA > B

A > B

A = B

A < B

A3

B2

A2

A1

B1

A0

B0

(a)

(b)

A3

A2

A1

A0

A input

B3

B2

B1

B0

B input

IA < B

Expansion
inputs

A < B

A = B

A > B

Outputs

IA = B

IA > B

Figure 2 The 7485 4-bit magnitude comparator: (a) pin configuration and (b) logic symbol.

The 7485 is a TTL 4-bit magnitude comparator. The pin configuration and logic
symbol for the 7485 are given in Figure 2. The 7485 can be used just like the basic
comparator of Figure 1 by using the A inputs, B inputs, and the equality output

The 7485 has the additional feature of telling you which number is larger if
the equality is not met. The output is 1 if A is larger than B, and the output
is 1 if B is larger than A.

A 6 BA 7 B
(A = B).

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Common
Misconception

Students often think that
the I inputs have a priority
over the A and B inputs.
However, the I inputs are
used by the 7485 only if the
A inputs are equal to the 
B inputs. (To illustrate, try
A � 1100 0111 and 
B � 1100 0011 in 
Figure 3.)

The expansion inputs and are used for expansion to a sys-
tem capable of comparisons greater than 4 bits. For example, to set up a circuit capable
of comparing two 8-bit words, two 7485s are required. The and 
outputs of the low-order (least significant) comparator are connected to the expansion in-
puts of the high-order comparator. That way, the comparators act together, comparing 
two entire 8-bit words and outputting the result from the high-order comparator outputs.
For proper operation, the expansion inputs to the low-order comparator should be tied as

A 6 BA 7 B, A = B,

IA 7 BIA 6 B, IA = B,
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A3

A2

A1

A0Low-order
inputs A < B

A = B

A > B

8-Bit
comparison

outputs

A3

A2

A1

A0

B3

B2

B1

B0

B3

B2

B1

B0

1

7485

A3

A2

A1

A0High-order
inputs

IA < B

A < B

A = B

A > B

A7

A6

A5

A4

B3

B2

B1

B0

B7

B6

B5

B4

7485

IA = B

IA > B

IA < B

IA = B

IA > B

0

0

There is no
lower-order
tie breaker.

Used as tie
breaker if
high-order
inputs are
equal

Figure 3 Magnitude comparison of two 8-bit binary strings (or binary words).

follows: and Expansion to
greater than 8 bits using multiple 7485s is also possible. Figure 3 shows the connec-
tions for magnitude comparison of two 8-bit binary strings. If the high-order A inputs are
equal to the high-order B inputs, then the expansion inputs are used as a tie breaker.

IA 6 B = LOW.IA 7 B = LOW, IA = B = HIGH,

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

E X A M P L E  2

Refer to the 8-bit comparator of Figure 3. If the following input wave-
forms are applied at A7 through A0 and B7 through B0, sketch the resultant 
waveforms at the three outputs of each 7485.

7C C2 82 4600

D6 A0 82 A604

A < B

A < B

A = B

A = B

A > B

A > B

B7 •• B0

A7 •• A0

High
order

Low
order

Solution:

Figure 4 Resulting waveforms from the comparator of Figure 3.

Explanation: The designation A7 .. A0 and B7 .. B0 is a shortcut notation
used instead of showing all 8 A-waveforms and all 8 B-waveforms. For
example, when A7 .. A0 is shown as a hexadecimal 7C, this actually means
that A7 through A0 equal 0111 1100.
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Review Questions

1. More than one output of the 7485 comparator can be simultaneously
HIGH. True or false?

2. If all inputs to a 7485 comparator are LOW except for the 
input, what will the output be?

2 VHDL Comparator Using IF-THEN-ELSE

In this section we’ll see how easy it is to design the 8-bit comparator system of Figure
3 using VHDL. The program listing is shown in Figure 5(a). To get the block symbol
file (bsf ) in Figure 5(b), choose File Create/Update Create Symbol Files. Then
to view the file, choose File Open and select the bsf file.+

++

IA 6 B

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Assign vector elements  
to outputs

alb

aeb

agb

3-bit internal  
SIGNAL result

Sensitivity list

(a)

Figure 5 An 8-bit comparator similar to Figure 3: (a) VHDL listing; (b) block symbol file.

(b)

The entity section declares the a and b inputs as 8-bit vectors. During the sim-
ulation stage, we will enter several 2-digit hex numbers into those a and b inputs to
compare their magnitude. Three separate outputs are declared to signify magnitude: 
a greater than b (agb); a equal b (aeb); and a less than b (alb).

V
H

D
L

In the first column the low-order is HIGH because 0 is less
than 4 and the final is also HIGH because even though the high-
order inputs (0–0) are equal, the tie-breaker inputs make the final 
HIGH. In the second column, even though the low-order is HIGH,
the final is HIGH because 7 is less than D.A 6 B

A 7 B
A 6 B

A 6 B
A 6 B
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a < b

IF

Yes

PROCESS (a, b)
BEGIN

No

result < = "001"

“Process” the following statements
sequentially if a change is sensed
in a or b.

a = b

ELSIF

Yes

No

result < = "010"

a > b

ELSIF

Yes

No

result < = "100"

result < = "000"

ENDIF

ELSE

agb < = result (2)

END PROCESS

aeb < = result (1)

alb < = result (0)

Figure 6 Flowchart showing the sequential execution within the PROCESS.

In the beginning of the architecture section a vector called result is declared as an
internal signal. This 3-bit vector will receive the result of the IF-THEN-ELSE com-
parisons. After the comparisons load this result vector, three individual assignments
must be made to output the vector elements to their associated outputs at agb, aeb, and
alb. The IF comparison statements need to be incorporated into a PROCESS. The
PROCESS needs the sensitivity list (a, b). This sensitivity list tells VHDL to execute
the statements inside of this process only when there is a change in a or b.

As soon as there is a change in the sensitivity list items, all of the statements in
the process will be executed sequentially, as shown in the flowchart in Figure 6.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

The first IF statement determines if a is less than b. If it is, then the three bits
“001” are moved to the result vector and program execution passes to the END IF
clause. The 1 in the rightmost position corresponds to result element number 0
result(0), which will later be moved to output pin alb (a less than b). If the answer to
the first IF is NO, then control passes to the ELSIF statement, where a YES/NO
determination is made, and so on for the ELSIF As you can see in the flow-
chart, if the answer is NO for all three IF statements, then the result is set to 000. This
may happen because, as mentioned before, std_logic has many other states besides just
1 and 0. (HIGH impedance and FLOAT are two other common states.)

After the END IF statement, each individual result element is assigned to its 
corresponding output pin.

a 7 b.
a = b
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The simulation in Figure 7 shows the results of several comparisons between a
and b. For example, the first comparison results in making the aeb (a
equals b) output HIGH and all others LOW. The next comparison 
produces a HIGH at agb, and so on. Check over the other six comparisons to be sure
that they make sense to you.

(a = AA, b = A7)
(a = 05, b = 05)

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

3 Decoding

Decoding is the process of converting some code (such as binary, BCD, or hex) into a
singular active output representing its numeric value. Take, for example, a system that
reads a 4-bit BCD code and converts it to its appropriate decimal number by turning on
a decimal indicating lamp. Figure 8 illustrates such a system. This decoder is made up

a>b a<ba=b

Figure 7 Simulation of the 8-bit comparator of Figure 4.

BCD
input

1

Decoder
1

1

0

LSB

MSB

4

3

2

1

0

9

8

7

6

5

Selected
decimal

output (0111=7)

Figure 8 A BCD decoder selects the correct decimal-indicating lamp based 
on the BCD input.
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of a combination of logic gates that produces a HIGH at one of the 10 outputs, based
on the levels at the four inputs.

In this section, we learn how to use decoder ICs by first looking at the combina-
tional logic that makes them work and then by selecting the actual decoder IC and
making the appropriate pin connections.

3-Bit Binary-to-Octal Decoding
To design a decoder, it is useful first to make a truth table of all possible input/output
combinations. An octal decoder must provide eight outputs, one for each of the eight
different combinations of inputs, as shown in Table 1.

Note: The selected
output goes LOW.

Note: The selected
output goes HIGH.

TABLE 1 Truth Tables for an Octal Decoder

(a) Active-HIGH Outputs

Input Output

22 21 20 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

(b) Active-LOW Outputs

Input Output

22 21 20 0 1 2 3 4 5 6 7

0 0 0 0 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

Before the design is made, we must decide if we want an active-HIGH-level out-
put or an active-LOW-level output to indicate the value selected. For example, the
active-HIGH truth table in Table 1(a) shows us that, for an input of 011 (3), output 3 is
HIGH, and all other outputs are LOW. The active-LOW truth table is just the opposite
(output 3 is LOW, and all other outputs are HIGH).

Therefore, we have to know whether the indicating lamp (or other receiving de-
vice) requires a HIGH level to activate or a LOW level. Most devices used in digital
electronics are designed to activate from a LOW-level signal, so most decoder designs
use active-LOW outputs, as shown in Table 1(b). The combinational logic requirements
to produce a LOW at output 3 for an input of 011 are shown in Figure 9.

➤
➤
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To design the complete octal decoder, we need a separate NAND gate for each of
the eight outputs. The input connections for each of the NAND gates can be determined
by referring to Table 1(b). For example, the NAND gate 5 inputs are connected to the

input lines, NAND gate 6 is connected to the input lines, and so
on. The complete circuit is shown in Figure 7. Each NAND gate in Figure 10 is wired
so that its output goes LOW when the correct combination of input levels is present at
its input. BCD and hexadecimal decoders can be designed in a similar manner.

22-21-2022-21-20

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

21 3 Output = 22 21 20

(active LOW)

22

20

21

22

20

1

1

1
1

1

0

Figure 9 Logic requirements to produce a LOW at output 3 for a 011 input.

22

20

1

2

3

4

5

6

7

21

22

21

20

22 21 20 22 21 20— — —

0

Figure 10 Complete circuit for an active-LOW output octal (1-of-8) decoder.

The octal decoder is sometimes referred to as a 1-of-8 decoder because, based on
the input code, one of the eight outputs will be active. It is also known as a 3-line-to-8-
line decoder because it has three input lines and eight output lines.

Integrated-circuit decoder chips provide basic decoding as well as several other
useful functions. Manufacturers’ data books list several decoders and give function ta-
bles illustrating the input/output operation and special functions. Rather than design-
ing decoders using combinational logic, it is much more important to be able to use a
data book to find the decoder that you need and to determine the proper pin connec-
tions and operating procedure to perform a specific decoding task. Table 2 lists some
of the more popular TTL decoder ICs. (Equivalent CMOS ICs are also available.)
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TABLE 2 Decoder ICs

Device Number* Function

74138 1-of-8 octal decoder (3-line-to-8-line)
7442 1-of-10 BCD decoder (4-line-to-10-line)
74154 1-of-16 hex decoder (4-line-to-16-line)
7447 BCD-to-seven-segment decoder 

*Most devices will be members of the LS or HC families (e.g., 74LS138 or 74HC138).

Octal Decoder IC
The 74138 is an octal decoder capable of decoding the eight possible octal codes into
eight separate active-LOW outputs, just like our combinational logic design. It also has
three enable inputs for additional flexibility. Figure 11 shows information presented in
a data book for the 74138.

VCC161

152

143

134

125

116

107

98GND

A0

(a)

A1

A2

E1

E2

E3

7

0

1

2

3

4

5

6

Figure 11 The 74138 octal decoder: (a) pin configuration; (b) logic symbol; 
(c) logic diagram; (d) function table. (Used with permission from NXP Semiconductors.)

(b)
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6
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H
H
H
H
H
H
L

7

(d)

Notes
H = HIGH voltage level
L = LOW voltage level
X = Don’t care

A2 = MSB

Enables 20 21 22
Active-LOW

outputs

Helpful 
Hint

Decoding the A inputs in
Figure 11(c) could have
been done using just three
inverters, similar to Figure
10. This is a good time to
start thinking about gate
loading. (Using six inverters
ensures that each A input
drives only one gate load.)
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Just by looking at the logic symbol [Figure 11(b)] and function table [Figure
11(d)], we can figure out the complete operation of the chip. First, the inversion bub-
bles on the decoded outputs indicate active-LOW operation. The three inputs 
and are used to enable the chip. The function table shows that the chip is disabled
(all outputs HIGH) unless and and The enables
are useful for go/no-go operation of the chip based on some external control signal. 

When the chip is disabled, the �’s in the binary input columns A0, A1, and A2 in-
dicate don’t-care levels, meaning the outputs will all be HIGH no matter at what level
A0, A1, and A2 are. When the chip is enabled, the binary inputs A0, A1, and A2 are used
to select which output goes LOW. In this case, A0 is the least significant bit (LSB) in-
put. Be aware that some manufacturers label the inputs A, B, C instead of A0, A1, A2 and
assume that A is the LSB.

The logic diagram in Figure 11(c) shows the actual internal combinational logic
required to perform the decoding. The extra inverters on the inputs are required to pre-
vent excessive loading of the driving source(s). These internal inverters supply the
driving current to the eight NAND gates instead of the driving source(s) having to do
it. The three enable inputs and are connected to an AND gate, which can
disable all the output NANDs by sending them a LOW input level if and are
not 001. Example 4 shows a waveform analysis of the 74138, and Section 9 discusses
its use in a microcomputer application. 

E3E1, E2,
E3(E1, E2,

E3 = HIGH.E2 = LOWE1 = LOW
E3

E1, E2,

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Helpful 
Hint

This is a good time to begin
realizing the meaning of
overbars in schematics.
Don’t develop the bad habit
of thinking that and 
are inverted as they enter
the IC. Instead, realize that

and require a LOW
to be satisfied. Also, the
eight outputs each become
active by going LOW.

E2E1

E2E1

E X A M P L E  3

List the outputs at given the inputs shown in Figures
12(a) and (b).

0, 1, 2, 3, 4, 5, 6, 7

Solution:

(a) (b)

7 = 17 = 1
6 = 16 = 1
5 = 15 = 1
4 = 14 = 1
3 = 13 = 0
2 = 12 = 1
1 = 11 = 1
0 = 1 (E2 = disabled)0 = 1

(a)

A0 A1 A2 E1 E2 E3 A0 A1 A2 E1 E2 E3

1 1 0 0 0 1

7

7

6

6

543

74138

210

0 1 2 3 4 5

(b)

1 1 1 0 1 1

7

7

6

6

543

74138

210

0 1 2 3 4 5

Figure 12 74138 octal decoder applications.

E X A M P L E  4

Sketch the output waveforms of the 74138 in Figure 13(a). Figure 13(b)
shows the input waveforms to the 74138. 
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VCC161

152

143

134

125

116

107

98GND

E1

0

1

7

A2

A1

A0

E2

E3

2

3

4

5

6

74138

+5 V

+5 V

(a)

Figure 13 Example 4: (a) circuit connections and (b) solution.

E1

0

A0

A1

A2

Inputs

1

2

3

4

5

6

7

Outputs

This HIGH makes
all outputs inactive (HIGH)

These select
which output
goes LOW.

(b)

7 4 1 3 8  O C TA L  D E C O D E R  S I M U L AT I O N

Figure 14 shows the MultiSIM® software simulation of the 74138 octal 
decoder. LED displays were added on the outputs to indicate their logic 
levels. (Because the outputs are active-LOW, the selected output is signified
by the LED that is OFF.) The enable inputs use the letter G instead of E and 

Solution:
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the A0, A1, A2 inputs are labeled A, B, C, where A is the LSB. In this simu-
lation, notice that the input switches are in position for decoding 101,
which is the number 5, and the single enable input that is not hard-wired
goes to a switch that is in the LOW position (enabled). Because the chip is
enabled and the inputs are set at 101, then the #5 output is selected as shown.

MultiSIM® exercise: Use MultiSIM® to open the file fig8_14 from the
text companion website.

(a) Turn on the power simulation switch to perform the simulation shown
in Figure 14.

(b) Press the G key on your keyboard to repeatedly move the enable switch.
Determine what logic level G� must be for the #5 output to be active.

(c) With the G� switch down (enabled), determine the state of the ABC
switches required to enable the #3 output. Try it.

VCC

VCC

5 V

5 V

1
2
3

15
14
13
12
11
10
9
7

0

1

2

3

4

5

6

7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

A
B
C

G1
~G2A
~G2B

74LS138D

6
4
5

U2

A (2^0)

B (2^1)

C (2^2)

G′ (Enable)

1

GND 0

Figure 14 Simulation of the 74138 octal decoder using input switches and output LEDs.

BCD Decoder IC
The 7442 is a BCD-to-decimal (1-of-10) decoder. It has four pins for the BCD input bits
(0000 to 1001) and 10 active-LOW outputs for the decoded decimal numbers. Figure 15
gives the operational information for the 7442 from a manufacturer’s data sheet.

Hexadecimal 1-of-16 Decoder IC
The 74154 is a 1-of-16 decoder. It accepts a 4-bit binary input (0000 to 1111), decodes
it, and provides an active-LOW output to one of the 16 output pins. It also has a two-
input active-LOW enable gate for disabling the outputs. If either enable input or

is made HIGH, the outputs are forced HIGH regardless of the A0 to A3 inputs. The
operational information for the 74154 is given in Figure 16.

The logic diagram in Figure 16(c) shows the actual combinational logic circuit
that is used to provide the decoding. The inverted-input AND gate is used in the circuit
to disable all output NAND gates if either or is made HIGH. Follow the logic
levels through the circuit for several combinations of inputs to A0 through A3 to prove
its operation. 

E1E0

E1)
(E0
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Review Questions

3. A BCD-to-decimal decoder has how many inputs and how many out-
puts?

4. An octal decoder with active-LOW outputs will output seven LOWs and
one HIGH for each combination of inputs. True or false?

5. A hexadecimal decoder is sometimes called a 4-line-to-10-line 
decoder. True or false?

6. Only one of the three enable inputs must be satisfied to enable the
74138 decoder IC. True or false?

7. The 7442 BCD decoder has active-___________ (LOW/HIGH) inputs
and active-___________ (LOW/HIGH) outputs. 
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Figure 15 The 7442 BCD-to-DEC decoder: (a) pin configuration; (b) logic symbol; 
(c) logic diagram; (d) function table. (Used with permission from NXP Semiconductors.) Team 

Discussion

What happens when you
enter an invalid BCD string
[see Figure 15(d)]?
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4 Decoders Implemented in the VHDL Language

The decoders described in the previous section can all be described using the VHDL 
language. More importantly, they can be customized to meet specific needs instead of
having to work around the fixed-function characteristics of the 7400-series of ICs. In
this section we will use an octal decoder to illustrate the flexibility VHDL provides.
Figure 17(a) shows the block diagram of a basic octal decoder, also known as a 
3-line-to-8-line decoder. Figure 17(b) shows the addition of an enable signal to enable/
disable the outputs. As discussed previously, the inputs, outputs, and enable could be
active-HIGH or active-LOW. Figure 17 shows all active-HIGH signals.
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Why are the A inputs listed
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first three entries of the
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Figure 16 The 74154 1-of-16 decoder: (a) pin configuration; (b) logic symbol; 
(c) logic diagram; (d) function table. (Used with permission from NXP Semiconductors.)
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The first VHDL method, shown in Figure 18(a), implements the function table
for a decoder as a series of Boolean equations. The first equation states that y0 will be
HIGH if AND AND Notice that the Boolean equations form
a binary counter that specifies all combinations on the a-inputs from 000 up to 111. (To
make the y-outputs active-LOW use parentheses to NOT the whole quantity to the right
of the equal sign.) The simulation waveforms in Figure 17(c) show the HIGH outputs
at y that correspond to each combination of a-inputs.

Figure 19 shows an alternate method that produces the same results. In this
method, the inputs and outputs are each grouped as vectors and a selected signal as-
signment statement is used to set the appropriate y-output HIGH based on the 3-bit
code at the a-inputs.

The next two VHDL listings include an enable feature like the one shown in
Figure 17(b). In Figure 20 you can see that the enable input (en) is included as 
an additional entity port declaration. The program is written so that en must be 

a0 = 0.a1 = 0a2 = 0

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

y0=a2 a1 a0
_ _ _

(a)

etc.

...

Figure 18 Octal decoder: (a) VHDL program using Boolean equations; (b) block symbol
file; (c) simulation of the decoded waveforms.

(b)

(a) (b)

y0

y3
y4
y5
y6
y7

y1
y2

a0

a1

a2

en

y0

y3
y4
y5
y6
y7

y1
y2

a0

a1

a2

Figure 17 Decoder block diagrams: (a) octal decoder; (b) octal decoder with an active-
HIGH enable control input.
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y7
y0

a2 a0

(a)

Figure 19 Octal decoder implemented with vectors and the selected signal assignment: (a)
VHDL listing; (b) block symbol file.

(c)

(b)

Figure 18 Continued
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CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Internal  
signal
(4-element 
vector)

concatenate en
a2
a1
a0

(a)

Figure 20 Octal decoder with an enable input: (a) VHDL listing; 
(b) block symbol file.

(b)

HIGH for any output to be selected to go HIGH. For the program to check the en bit,
it is first combined with the 3-bit a input forming a new 4-bit string. This is called
concatenation. This takes two new statements. First, an internal SIGNAL named
inputs is declared as a 4-bit vector. The signal inputs is then loaded with the con-
catenation of en with the three a-input bits forming the 4-bit vector (& is the symbol
used to concatenate). This 4-bit vector is now used in the selected signal assignment
statements to select the appropriate y output to go HIGH. Notice that whenever en
(the leftmost bit) is LOW, control drops to the “others” clause, setting all outputs
LOW.

The octal decoder shown in Figure 21(a) uses an IF-THEN-ELSE clause and a
CASE statement to select the appropriate y output to go HIGH. In some ways this
makes the most sense logically because it asks “IF en equals ‘1’ THEN perform the
CASE assignments, ELSE set output vector y to all zeros”. IF statements are sequen-
tial in nature and therefore must be placed within a PROCESS. Also, the CASE
method of assignment is chosen because the selected signal assignment method is not
allowed with IF statements. The PROCESS sensitivity list consists of a and en.
Whenever either of these changes, the PROCESS is executed.

The waveform simulation in Figure 21(c) shows how the a-input vector dictates
which y output goes HIGH as long as en is HIGH. When en is LOW all outputs are
made LOW. (To list the least significant bit first as we did here, choose Tools
Options Waveform Editor Show LSB First).++

+
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CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

all LOW outputs 
if en is not HIGH

when  a = 000,
y = 00000001

Enable must be HIGH to  
execute the THEN clause

sensitivity list

(a) (b)

Outputs
disabled

(c)

Figure 21 Octal decoder: (a) VHDL program using the IF-THEN-ELSE and CASE statements;
(b) block symbol file; (c) simulation waveforms of the octal decoder with enable control.
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5 Encoding

Encoding is the opposite process from decoding. Encoding is used to generate a coded
output (such as BCD or binary) from a singular active numeric input line. For exam-
ple, Figure 22 shows a typical block diagram for a decimal-to-BCD encoder and an
octal-to-binary encoder.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

BCD
output

0
1
2
3
4
5
6
7
8
9

Decimal
input

A LSB

B

C

D
MSB

(a)

Binary
output

0
1
2
3
4
5
6
7

Octal
input

A LSB

B

C MSB

(b)

Figure 22 Typical block diagrams for encoders: (a) decimal-to-BCD encoder and 
(b) octal-to-binary encoder.

The design of encoders using combinational logic can be done by reviewing the
truth table (see Table 3) for the operation to determine the relationship each output has
with the inputs. For example, by studying Table 3 for a decimal-to-BCD 
encoder, we can see that the A output (20) is HIGH for all odd decimal input numbers
(1, 3, 5, 7, and 9). The B output (21) is HIGH for decimal inputs 2, 3, 6, and 7. The C
output (22) is HIGH for decimal inputs 4, 5, 6, and 7, and the D output (23) is HIGH for
decimal inputs 8 and 9.

TABLE 3 Decimal-to-BCD Encoder Truth Table

BCD Output

Decimal Input D C B A

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Now, from what we have just observed, it seems that we can design a decimal-to-
BCD encoder with just four OR gates; the A output OR gate goes HIGH for any odd
decimal input, the B output goes HIGH for 2 or 3 or 6 or 7, and so on, for the C output
and D output. The complete design of a basic decimal-to-BCD encoder is given in
Figure 23. The design for an octal-to-binary encoder uses the same procedure, but, of
course, these encoders are available in IC form: the 74147 decimal to BCD and the
74148 octal to binary.
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The 74147 Decimal-to-BCD Encoder
The 74147 operates similarly to our basic design from Figure 23 except for two ma-
jor differences:

1. The inputs and outputs are all active-LOW [see the bubbles on the logic
symbol, Figure 24(a)].

2. The 74147 is a priority encoder, which means that if more than one decimal
number is input, the highest numeric input has priority and will be encoded
to the output [see the function table, Figure 24(b)]. For example, looking at
the second line in the function table, if is LOW (decimal 9), all other in-
puts are don’t care (could be HIGH or LOW), and the BCD output is 0110
(active-LOW BCD-9). 

I9

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS
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MSB8
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1 Note: The LSB
is HIGH for
any odd input
(1, 3, 5, 7, 9).

Figure 23 Basic decimal-to-BCD encoder.
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Figure 24 The 74147 decimal-to-BCD (10-line-to-4-line) encoder: (a) logic symbol and (b)
function table.

Team
Discussion

Discuss how you would 
use the function table to 
determine when the 74147
would encode a decimal
zero output.

Helpful 
Hint

Once you have seen this 
encoder design, it should be
a confidence booster for you
to sketch an octal encoder
circuit with the book closed.
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E X A M P L E  5

List the outputs at given the inputs shown in Figure 25(a) and
(b).

A3, A2, A1, A0

(a)

1 1 111 1 0 1 1

74147

I1 I2

A3

A3

A2

A2

A1

A1

A0

A0

I3 I4 I5 I6 I7 I8 I9

(b)

0 1 110 0 1 1 1

74147

I1 I2

A3

A3

A2

A2

A1

A1

A0

A0

I3 I4 I5 I6 I7 I8 I9

Figure 25 74147 BCD encoder applications.

Solution:

(a) (b)

A0 = 0A0 = 1

A1 = 0A1 = 1

A2 = 1A2 = 0

A3 = 1A3 = 1

active-Low 4u active-Low 3
(priority)u

E X A M P L E  6

For simplicity, the 74147 IC shown in Figure 26(a) is set up for encoding
just three of its inputs (7, 8, and 9). Using the function table from Figure
24(b), sketch the outputs at and as the and inputs are
switching as shown in Figure 26(b). 87

I9I7, I8,A3A0, A1, A2,

Figure 26 Example 6: (a) circuit connections and (b) wave forms.
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Solution:

I7

A0

Decimal inputs
with I1 to I6=HIGH

BCD outputs

I8

I9

A1

A2

A3

t1t0 t2 t3 t4 t5 t6

0  7  9  8  9  8

(b)

Figure 26 Continued

Explanation: The to inputs are all tied HIGH and have no effect on
the output.

Decimal inputs are all HIGH; BCD outputs represent a 0.

is LOW; BCD outputs represent a 7. 

is LOW; BCD outputs represent a 9.

is LOW; BCD outputs represent an 8.

and are LOW; has priority; BCD outputs represent a 9.

and are LOW; has priority; BCD outputs represent an 8.I8I8I7t5- t6:

I9I9I8t4- t5:

I8t3- t4:

I9t2- t3:

(Active@LOW 7 = 1000.)I7t1- t2:

t0- t1:

I6I1

7 4 1 4 7  D E C I M A L - TO - B C D  E N C O D E R  S I M U L AT I O N

Figure 27 shows the MultiSIM® software simulation of the 74147 encoder.
LED displays were added on the BCD outputs to indicate their logic levels.
(Because the outputs are active-LOW, the active outputs are signified by
LEDs that are OFF.) The LOW-order decimal inputs (1 through 6) are hard-
wired to to simplify the simulation. (Because the inputs are active-
LOW, will make them inactive for this simulation.) In this simulation,
notice that the input switches are in position for encoding the decimal num-
ber 7 (1112). The simulation shows that the 20, 21, and 22 LEDs are OFF
which is the correct output for an active-LOW BCD #7.

MultiSIM® exercise: Use MultiSIM® to open the file fig8_27.

(a) Turn on the power simulation switch to perform the simulation shown
in Figure 27.

(b) Predict the state of the four output LEDs if the decimal input is
changed to #9. Try it by pressing the appropriate numbers on your key-
board corresponding to the decimal input desired.

(c) What do you expect will happen if more than one decimal input is
made active? Try it by making both #8 and #9 LOW. Which number
got encoded?

VCC

VCC
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Figure 28 The 74148 octal-to-binary (8-line-to-3-line) encoder: (a) logic symbol; 
(b) functional table. (Used with permission from NXP Semiconductors.)
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Figure 27 Simulation of the 74147 encoder using input switches and output LEDs.

The 74148 Octal-to-Binary Encoder
The 74148 encoder accepts data from eight active-LOW inputs and provides a 
binary representation on three active-LOW outputs. It is also a priority encoder, so
when two or more inputs are active simultaneously, the input with the highest 
priority is represented on the output, with input line having the highest priority.
The logic symbol and function table in Figure 28 give us some other information as
well.

I7
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The 74148 can be expanded to any number of inputs by using several 74148s and
their and pins. These special pins are defined as follows:

Active-LOW enable input: a HIGH on this input forces all outputs to
to their inactive (HIGH) state.

Active-LOW enable output: this output pin goes LOW when all inputs to
are inactive (HIGH) and is LOW.

Active-LOW group signal output: this output pin goes LOW whenever any
of the inputs to are active (LOW) and is LOW.

The following examples illustrate the use of these pins.

EII7)(I0

GS

EII7)
(I0EO

A2, EO, GS)
(A0EI

GSEI, EO,

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

(a)

1 1 011 0 0 0 1

74148

I0 I1

EO

EO A0

A0

A1

A1

A2

A2 GS

GS

I2 I3 I4 I5 I6 I7 EI

(b)

1 1 011 1 1 1 1

74148

I0 I1

EO

EO A0

A0

A1

A1

A2

A2 GS

GS

I2 I3 I4 I5 I6 I7 EI

Figure 29 74148 octal encoder applications.

E X A M P L E  7

List the outputs at and, given the inputs shown in Figures
29(a) and (b).

GSEO, A0, A1, A2

Solution:

(a) (b)

GS = 1GS = 0

A2 = 1A2 = 0

A1 = 1A1 = 1

A0 = 1A0 = 1

EO = 0EO = 1

LOW because there
are active inputs and

is lowEI

LOW because there
are no active inputs
and is lowEI

active-low 4s

E X A M P L E  8

Sketch the output waveforms for the 74148 connected as shown in Figure
30. The input waveforms to and are given in Figure 31. (Inputs 
to are tied HIGH for simplicity.)I5

I0EII6, I7,
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EI

A0

Inputs

Outputs

I6

I7

A1

A2

EO

t1t0 t2 t3 t4 t5 t6

GS

Figure 31

VCC161

152

143

134

125

116

107

98GND

I7

I6

I5

I4

EI

A2

74148

+5 V +5 V

A1

+5 VI2

I3

GS

EO

I1

I0

A0

Figure 30 The 74148 connections for Example 8.

Solution:

All outputs are forced HIGH by the HIGH on 

is LOW to enable the inputs, but to are all HIGH (inactive),
so goes LOW.

goes LOW because one of the inputs is active; the active-
LOW binary output is equal to 6.

and are LOW; has priority; 

is LOW; 

All outputs are forced HIGH by the HIGH on EI.t5- t6:

output = 7.I7t4- t5:

output = 7.I7I6I7t3- t4:

(I6)GSt2- t3:

EO
I7I0EIt1- t2:

EI.t0- t1:
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E X A M P L E  9

VHDL Octal Priority Encoder

Use VHDL to design an active-HIGH input, active-HIGH output, octal pri-
ority encoder. Create a waveform simulation file to test that both individual
and multiple active inputs are encoded correctly.

Solution: The program listing is given in Figure 32. The Conditional
Signal Assignment statement was used instead of a Selected Signal
Assignment because it operates on a priority basis. For example, the first
line checks for i(7) � ‘1’. [i(7) is the leftmost bit in the i input vector.] If
it is TRUE then “111” is moved to output vector a and control passes to
the end because all ELSE clauses will be skipped. If i(7) � ‘1’ is FALSE,
then the next line is executed for i(6) � ‘1’, and so on. This imposes a pri-
ority, guaranteeing that the highest input will be encoded if multiple inputs
are HIGH.

Figure 32 The octal encoder of Example 9: (a) VHDL listing; 
(b) block symbol file.

The first clause that is
true has priority, all
others are skipped.

(a) (b)

Proof that the encoder is working properly is shown in Figure 33. Notice
that at the 2.0 ms mark, i(5) AND i(4) are both HIGH. Since 5 
is larger than 4, it gets encoded at the a output as shown. Carefully re-
view the remainder of the waveform to convince yourself that all results
are valid.

V
H

D
L
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Review Questions

8. How does an encoder differ from a decoder?

9. If more than one input to a priority encoder is active, which input will
be encoded?

10. (a) If all inputs to a 74147 encoder are HIGH, what will the 
outputs be?

(b) Repeat part (a) for all inputs being LOW.

11. What are the five outputs of the 74148? Are they active-LOW or
active-HIGH?

6 Code Converters

Often it is important to convert a coded number into another form that is more usable
by a computer or digital system. The prime example of this is with binary-coded deci-
mal (BCD). We have seen that BCD is very important for visual display communica-
tion between a computer and human beings. But BCD is very difficult to deal with
arithmetically. Algorithms, or procedures, have been developed for the conversion of
BCD to binary by computer programs (software) so that the computer is able to per-
form all arithmetic operations in binary.

Another way to convert BCD to binary, the hardware approach, is with MSI ICs.
Additional circuitry is involved, but it is much faster to convert using hardware rather
than software. We look at both methods for the conversion of BCD to binary.

A3 - A0
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Encode the #5 at the output because it
has priority over #4.

Figure 33 Simulated waveforms for the octal encoder of Example 9.
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BCD-to-Binary Conversion
If you were going to convert BCD to binary using software program statements, you
would first have to develop a procedure, or algorithm, for the conversion. Take, for ex-
ample, the number 2610 in BCD.

If you simply apply regular binary weighting to each bit, you would come up with 38
You must realize that the second group of BCD positions has a

new progression of powers of 2 but with a weighting factor of 10, as shown in Figure
34. Now, if we go back and apply the proper weighting factors to 2610 in CD, we
should get the correct binary equivalent.

(21
+ 22

+ 25
= 38).

    2
0010

     6
0110
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MSD

20 × 100

21 × 100

22 × 100

23 × 100

l  k  j  i

20 × 10

21 × 10

22 × 10

23 × 10

h g f e

Second digit

20 × 1

21 × 1

22 × 1

23 × 1

d  c  b  a

LSD

3-Digit BCD a
b
c
d
e
f
g
h
i
j
k
l

1
2
4
8

10
20
40
80

100
200
400
800

1
10

100
1000
1010

10100
101000

1010000
1100100

11001000
110010000

1100100000

Weighting factor

DecimalBit position Binary

Figure 34 Weighting factors for BCD bit positions.
rr

E X A M P L E  1 1

Convert the BCD equivalent of 34810 to binary.

Solution:

1000
101000

1100100
11001000

1010111002

   3
0011

          4 
0100

          8 
1000

E X A M P L E  1 0

Using the weighting factors given in Figure 34, convert the BCD equivalent
of 2610 to binary.

Solution:

0010
0100

+ 10100
110102

   2
0010

     6
0110

s s

➤

➤

➤

Answer
Check: 110102 = 2610 U

s s s

➤

➤

➤

➤

Answer
Check: 1010111002 = 34810 U
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Y5

E

Y4

D

Y3

C

Y2

2425

B0 A3 A2 A1 A0B1

23 22 21 20

B

Y1

A

74184

MSD LSD

BCD

Binary output

Figure 36 Six-bit BCD-to-binary converter.

Conversion of BCD to Binary Using the 74184
Examples 10 and 11 illustrate one procedure of conversion that can be used as an al-
gorithm for a computer program (software). The hardware approach using the 74184
IC is another way to accomplish BCD-to-binary conversion.

The logic symbol in Figure 35 shows eight active-HIGH binary outputs. Y1 to Y5
are outputs for regular BCD-to-binary conversion. Y6 to Y8 are used for a special BCD
code called nine’s-complement and ten’s-complement.
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Inputs

15

G

14

E

13

D

12

C

11

B

10

A

74184

1

Y1

2

Y2

3

Y3

4

Y4

5

Y5

6

Y6

7

Y7

9

Y8

Outputs

VCC = pin 16
GND = pin 8

Figure 35 Logic symbol for the 74184 BCD-to-binary converter.

The active-HIGH BCD bits are input on A through E. The is an active-LOW
enable input. When is HIGH, all outputs are forced HIGH.

Figure 36 shows the connections to form a 6-bit BCD converter. Because the
LSB of the BCD input is always equal to the LSB of the binary output, the connection
is made straight from input to output. The other BCD bits are connected to the A to E
inputs. They have the weighting of and 
Because only 2 bits are available for the MSD BCD input, the largest BCD digit in that
position will be 3 (11). More useful setups, providing for the input of two or three com-
plete BCD digits, are shown in Figure 37(a) and 37(b).

A companion chip, the 74185, is used to work the opposite way, binary to
BCD. Figure 37(c) and 37(d) shows the 74185 used to perform binary-to-BCD con-
versions.

E = 20.A = 2, B = 4, C = 8, D = 10,

G
G
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Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

b6 b5 b4 b3 b2 b1 b0

B

Y1

A
74184

Open

(a)

MSD LSD

BCD

Binary

Y5Y5

E

Y4

D

Y3

C

Y2

B5 B3B4 B1 B0B2

B

Y1

A
74185

(c)

Binary

MSD LSD

BCD

Y6

E

Y5

D

Y4

C

Y3

B7 B6 B5 B4 B3 B2 B1 B0

B

Y2 Y1

A

74185

(d)

Binary

MSD LSD

BCD

Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

b3b9 b8 b7 b6 b5 b4 b0b2 b1

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Open

Open

(b)

MSD LSD

BCD

Binary

Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

B

Y1

A
74184

Y5

E

Y4

D

Y3

C

Y2

B A

Y1

74185

Y5

E

Y4

D

Y3

C

Y2

B A

Y1

74185

Figure 37 BCD-to-binary conversions using the 74184 and binary-to-BCD conversions us-
ing the 74185: (a) BCD-to-binary converter for two BCD decades; (b) BCD-to-binary
converter for three BCD decades; (c) 6-bit binary-to-BCD converter; (d) 8-bit binary-to-BCD
converter. (Courtesy of Texas Instruments, Inc.)

E X A M P L E  1 2

Show how the BCD code of the number 65 is converted by the circuit of
Figure 37(a) by placing 1s and 0s at the inputs and outputs.

Solution: The BCD-to-binary conversion is shown in Figure 38. The up-
per 74184 is used to convert the least significant 6 bits, which are 100101.
Using the proper binary weighting, 100101 becomes 011001.

100101

1
100

10100
011001

➤

➤

➤
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BCD-to-Seven-Segment Converters
Calculators and other devices with numeric displays use another form of code conver-
sion involving BCD-to-seven-segment conversion. The term seven segment comes
from the fact that these displays utilize seven different illuminating segments to make
up each of the 10 possible numeric digits. A code converter must be employed to con-
vert the 4-bit BCD into a 7-bit code to drive each digit. A commonly used BCD to-
seven-segment converter is the 7447 IC. An in-depth discussion of displays and
display converter/drivers will be given in Section 12–6 after you have a better under-
standing of the circuitry used to create the numeric data to be displayed.

Gray Code
The Gray code is another useful code used in digital systems. It is used primarily for
indicating the angular position of a shaft on rotating machinery, such as automated
lathes and drill presses. This code is like binary in that it can have as many bits as
necessary, and the more bits, the more possible combinations of output codes

A 4-bit Gray code, for example, has differ-
ent representations, giving a resolution of 1 of 16 possible angular positions at 
each 

The difference between the Gray code and the regular binary code is illustrated 
in Table 4. Notice in the table that the Gray code varies by only 1 bit from one entry to

(360>16 = 22.5).
22.5 �

24
= 16(number of combinations = 2N).
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The lower 74184 is used to convert the most significant 2 bits plus 4
bits from the upper 74184, which are 010110. Using proper binary weight-
ing, 010110 becomes 010000.

010110

The final binary result is 01000001, which checks out to be equal to 6510.

10
100

1010
010000

Binary

b3

BCD

b2 b1 b0b6 b5 b4

E D C B A

74184

Y5 Y4 Y3 Y2 Y1

Open

LSD = 5

E D C B A

74184

Y5 Y4 Y3 Y2 Y1

(20) (10) (8) (4) (2)

0  1  0  1  1  0  0  1

0  1  0  0  0  0  0  1

MSD = 6

0  1  1  0  0  1  0  1

(20) (10) (8) (4) (2)

Figure 38 Solution to Example 12.

➤

➤

➤

355



the next and from the last entry (15) back to the beginning (0). Now, if each Gray code
represents a different position on a rotating wheel, as the wheel turns, the code read
from one position to the next will vary by only 1 bit (see Figure 39).

If the same wheel were labeled in binary, as the wheel turned from 7 to 8, the code
would change from 0111 to 1000. If the digital machine happened to be reading the
shaft position just as the code was changing, it might see 0111 or 1000, but because all
4 bits are changing (0 to 1 or 1 to 0), the code that it reads may be anything from 0000
to 1111. Therefore, the potential for an error using the regular binary system is great.

With the Gray code wheel, on the other hand, when the position changes from
7 to 8, the code changes from 0100 to 1100. The MSB is the only bit that changes, so
if a read is taken right on the border between the two numbers, either a 0100 is read or
a 1100 is read (no problem).

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Gray Code Conversions
The determination of the Gray code equivalents and the conversions between Gray
code and binary code are done very simply with exclusive-OR gates, as shown in
Figures 40 and 41.

TABLE 4 Four-Bit Gray Code

Decimal Binary Gray

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Note: Only one
bit changes from
one position to
the next.

1011

1001
1000 0000

0001

0011

00101010

01101110

1111 0111

1101 0101
1100 0100

Figure 39 Gray code wheel.
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Figure 42

G2 G1 G0

B2 B1 B0B3

G3

Binary input

Gray code output

Figure 40 Binary-to-Gray-code
converter.

B2 B1 B0

G2 G1 G0G3

B3

Binary output

Gray code input

Figure 41 Gray-code-to-binary
converter.

E X A M P L E  1 3

Test the operation of the binary-to-Gray-code converter of Figure 40 by
labeling the inputs and outputs with the conversion of binary 0110 to
Gray code.

Solution: The operation of the converter is shown in Figure 42.

G2 G1 G0

B2 B1 B0B3

G3

1 1 00

1 0 10

E X A M P L E  1 4

Repeat Example 13 for the Gray-code-to-binary converter of Figure 41 by
converting a Gray code 0011 to binary.

Solution: The operation of the converter is shown in Figure 43.

B2 B1 B0

G2 G1 G0G3

B3

0 1 10

0 1 00

Figure 43
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Review Questions

12. What is the binary weighting factor of the MSB of a two-digit (8-bit)
BCD number?

13. How many 74184 ICs are required to convert a three-digit BCD num-
ber to binary?

14. Why is Gray code used for indicating the shaft position of rotating ma-
chinery rather than regular binary code?

7 Multiplexers

A multiplexer is a device capable of funneling several data lines into a single line
for transmission to another point. The multiplexer has two or more digital input
signals connected to its input. Control signals are also input to tell which data-input
line to select for transmission (data selection). Figure 44 illustrates the function of a
multiplexer. 
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D0

D1

D2

D3

S1

Data
inputs Data

output

S0

Y

Data select control
input determines

which data input is
connected to the

output

Figure 44 Functional diagram of a four-line multiplexer.

Team
Discussion

Discuss some of the
applications of multiplexers
in data-acquisition systems.
How many data select
control inputs would be
required if you want to
sample data at 16 different
inputs?

TABLE 5 Data Select Input Codes 
for Figure 44

Data Select 
Control Inputs

Data Input
S1 S0 Selected

0 0 D0
0 1 D1
1 0 D2
1 1 D3

The multiplexer is also known as a data selector. Figure 44 shows that the data
select control inputs (S1, S0) are responsible for determining which data input (D0 to
D3) is selected to be transmitted to the data-output line (Y). The S1, S0 inputs will be a
binary code that corresponds to the data-input line that you want to select. If

then D0 is selected; if then D1 is selected; and so on.
Table 5 lists the codes for input data selection.

S1 = 0, S0 = 1,S1 = 0, S0 = 0,
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D0

D3

D1

D2

1

1

1

0

1
0

0

1

0
S0 (2

0)

3

2

1

0

Data
output

t0 t1 t2 t3 t4 t5

t0 t1 t2 t3 t4

(Gate 1 is enabled, so
data input D1 passes to

the output)

21 20 21 20

0

S1 (2
1)

0

1

0 1 1 0

Figure 45 Logic diagram for a four-line multiplexer.

TABLE 6 TTL and CMOS Multiplexers

Function Device Logic Family

Quad two-input 74157 TTL
74HC157 H-CMOS
4019 CMOS

Dual eight-input 74153 TTL
74HC153 H-CMOS
4539 CMOS

Eight-input 74151 TTL
74HC151 H-CMOS
4512 CMOS

Sixteen-input 74150 TTL

A sample four-line multiplexer built from SSI logic gates is shown in Figure
45. The control inputs (S1, S0) take care of enabling the correct AND gate to pass just
one of the data inputs through to the output. In Figure 45, 1s and 0s were placed on
the diagram to show the levels that occur when selecting data input D1. Notice that
AND gate 1 is enabled, passing D1 to the output, whereas all other AND gates are
disabled.

Two-, 4-, 8-, and 16-input multiplexers are readily available in MSI packages.
Table 6 lists some popular TTL and CMOS multiplexers.
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The 74151 Eight-Line Multiplexer
The logic symbol and logic diagram for the 74151 are given in Figure 46. Because the
74151 has eight lines to select from (I0 to I7), it requires three data select inputs (S2, S1,
S0) to determine which input to choose True (Y) and complemented out-
puts are provided. The active-LOW enable input disables all inputs when it is
HIGH and forces Y LOW regardless of all other inputs. 

(E)
(Y)(23

= 8).
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4 3 2 1 15 14 13 12

E

Y

7

6

Y

5

I0 I1 I2 I3 I4 I5 I6 I7

S011

S110

S29

VCC = Pin 16
GND = Pin 8 

(a)

Data select
control

Data output 
(and complement)

Data inputs

Figure 46 The 74151 eight-line multiplexer: (a) logic symbol; (b) logic diagram. (Used with
permission from NXP Semiconductors.)

I0
(4)

I1
(3)

I2
(2)

I3
(1)

I4
(15)

I5
(14)

I6
(13)

I7
(12)

S2

(9)

S1

(10)

S0

(11)

E
(7)

Y

(5)

Y

(6)
VCC

GND
(    )

= Pin 16
= Pin 8
= Pin numbers

(b)

True and complement
outputs available

Note: A HIGH E
disables all AND
gates.

Common
Misconception

Students often question the
operation of the Y outputs.
The trial of several differ-
ent inputs on the logic dia-
gram [Figure 46(b)] will
reinforce your understand-
ing of the IC. Use the logic
diagram to determine the
output at Y when is
HIGH.

E
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E X A M P L E  1 6

Sketch the output waveforms at Y for the 74151 shown in Figure 47(a). For
this example, the eight input lines (I0 to I7) are each connected to a constant
level, and the data select lines (S0 to S2) and input enable are given as
input waveforms.

(E)

E X A M P L E  1 5

Refer to the 74151 eight-line multiplexer in Figure 46. What levels must be
put on S0, S1, S2 to:

(a) Route the data on I5 to the output at Y.

(b) Route the data on I7 to the output at Y.

Solution:

(a) (b)

S2 = 1S2 = 1
S1 = 1S1 = 0
S0 = 1S0 = 1
E = 0E = 0

E,

GND

I30

8

1

I21 2

I11 3

I00 4

Y 5

Y 6

E 7

1

1

0

VCC

9

16

I415

I514

I613

12

11

10

+5 V

1I7

S0

S1

S2

74151

(a)

Figure 47 Example 16: (a) 74151 pin connections and (b) wave forms.

See Figure 47(b). From t0 to t8, the waveforms at S0, S1, and S2 form a bi-
nary counter from 000 to 111. Therefore, the output at Y will 
be selected from I0, then I1, then I2, and so on, up to I7. From t8 to t9, the
S0, S1, and S2 inputs are back to 000, so I0 will be selected for output.
From t9 to t11, the enable line goes HIGH, disabling all inputs and
forcing Y LOW. 8

E
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Figure 47 Continued

t0

E

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Input
control

t11

S0

S1

S2

Output Y

Note: The output corresponds to
the level on the selected I-input.

(b)

I1 I2
I3 I4 I5

I6 I7
I0

7 4 1 5 1  M U LT I P L E X E R  S I M U L AT I O N

Figure 48 shows the MultiSIM® software simulation of the 74151 multi-
plexer. The object is to provide the capability to select one of the square
wave signal sources (V0, V1, or V2) and route it to output terminal Y,
which is monitored by the oscilloscope. The data selection lines A, B, and C
are used to select the desired input to be routed to Y. In this simulation the
data selection lines are set to 0-0-0, which chooses signal source V0.
Notice that signal source V0 is a 1-kHz waveform. The oscilloscope is
displaying a waveform with a period of 1 ms. This proves to be correct be-
cause Also remember that the enable control input 
must be at the 0 level to enable the multiplexer to work.

MultiSIM® exercise: Use MultiSIM® to open the file fig8_48 from the
text companion website.

(a) Double-click the oscilloscope to expand its size and then turn on the
power simulation switch to perform the simulation shown in Figure 48.

(b) Determine the state of the A–B–C selection switches to route the V1
waveform to the output. Try it and make sure that the time period on
the oscilloscope is correct for a 2-kHz signal.

(c) Repeat step (b) for V2.

(d) While V2 is still being displayed, toggle the G� enable switch and
describe what happens at Y.

G¿1>1 kHz = 1 ms.

Solution:
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4
3 
2 
1 
15 
14 
13 
12

5

6

D0
D1 
D2 
D3 
D4 
D5 
D6 
D7

A
B
C

~G

~W

Y G

A B

T

XSC1

11 
10 
9

74151
7

+
+

+

A (2^0)

B (2^1)

1

C (2^2)

G′ (Enable)

GND 0

V0

1 kHz
5 V

VCC  5 V

V1

2 kHz
5 V

V2

4 kHz
5 V

Figure 48 Simulation of the 74151 multiplexer routing three signals to an oscilloscope.

E X A M P L E  1 7

Using two 74151s, design a 16-line multiplexer controlled by four data se-
lect control inputs.

Solution: The multiplexer is shown in Figure 49. Because there are 16
data input lines, we must use four data select inputs (A is the
LSB data select line, and D is the MSB.)

When the data select is in the range from 0000 to 0111, the D line is
0, which enables the low-order (left) multiplexer selecting the D0 to D7 in-
puts and disables the high-order (right) multiplexer.

When the data select inputs are in the range from 1000 to 1111, the D
line is 1, which disables the low-order multiplexer and enables the high-
order multiplexer, allowing D8 to D15 to be selected. Because the Y output
of a disabled multiplexer is 0, an OR gate is used to combine the two out-
puts, allowing the output from the enabled multiplexer to pass through.

(24
= 16).
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Providing Combination Logic Functions with a Multiplexer
Multiplexers have many other uses in addition to functioning as data selectors. Another
important role of a multiplexer is for implementing combinational logic circuits. One
multiplexer can take the place of several small-scale integration (SSI) logic gates, as
shown in the following example.
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E
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S2
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A

Data
select

B

C

D

Enables second multiplexer(D8−D15)
when D = 1

Data
out

Figure 49 Design solution for Example 17.
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Use a multiplexer to implement the function

Solution: The equation is in the sum-of-products form. Each term in the
equation, when fulfilled, will make For example, when 

and X will receive a 1. Also, if 
and X will receive a 1, and so on.

If the A, B, C, and D variables are used as the data input selectors of
a 16-line multiplexer (four input variables can have 16 possible combina-
tions) and the appropriate digital levels are placed at the multiplexer data
inputs, we can implement the function for X. We will use the 74150 16-line
multiplexer. A 1 must be placed at each data input that satisfies any term in
the Boolean equation. The truth table and the 74150 connections to imple-
ment the function are given in Figure 50.

The logic symbol for the 74150 is similar to the 74151 except that it has
16 input data lines, four data select lines, and only the complemented output. 
To test the operation of the circuit, let’s try some entries from the truth table 

(AB CD),D = 1C = 0,B = 0,
A = 1,(A B CD),D = 1C = 0,B = 0,
A = 0,X = 1.

X = A B CD + AB CD + ABC D + ABC + A BC
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B C XD

(ABC)
(ABC)

(ABCD)
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Figure 50 Truth table and solution for the implementation of the Boolean equation
using a 16-line multiplexer.X = A B CD + AB CD + ABC D + ABC + A BC

to see that X is valid. For example, if and 
the multiplexer will select which is 1. It gets inverted twice be-

fore reaching X, so X receives a 1, which is correct. Work through the rest of
them yourself, and you will see that the Boolean function is fulfilled.

D1,(A B CD),
D = 1A = 0, B = 0, C = 0,

E X A M P L E  1 9

VHDL 4-Line Multiplexer

Use VHDL to design a 4-line multiplexer similar to Figure 44. Test its op-
eration by creating a waveform simulation file that alternately routes each
of the inputs to the y output.

Solution: The program listing is given in Figure 51. The individual d in-
puts are grouped together as a 4-bit vector. The data selector bits (s) are
grouped as a 2-bit vector, and y is a scalar (individual) quantity. A Selected
Signal Assignment statement is used to route the appropriate d input to the
y output.

Proof that the multiplexer is working properly is shown in Figure 52.
During the first the data select inputs (s1 and s0) are set to 0-0, caus-
ing waveform d0 to be routed to y. From to the data select in-
puts are set to 0-1, causing waveform d1 to be routed to y, and so on.

32 ms,16 ms
16 ms

V
H

D
L
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8 Demultiplexers

Demultiplexing is the opposite procedure from multiplexing. We can think of a
demultiplexer as a data distributor. It takes a single input data value and routes it to
one of several outputs, as illustrated in Figure 53(a).

Data select bits
d[3]d[2]d[1]d[0]

Figure 52 Simulated waveforms for the 4-line multiplexer of Example 19.

(a)

Figure 51 The 4-line multiplexer of Example 19: (a) VHDL listing; 
(b) block symbol file.

(b)
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The results of a simulation are shown in Figure 53(b). The object of this demul-
tiplexer simulation is to route the D waveform to one of the Y outputs selected by the
two data select inputs, S0 and S1. Notice that during the first D is routed to Y0
because the data select inputs are set to 0-0. From 8.0 to D is routed to Y1
because the data select inputs are 0-1, and so on.

Integrated-circuit demultiplexers come in several configurations of inputs/out-
puts. The two that we discuss in this section are the 74139 dual 4-line demultiplexer
and the 74154 16-line demultiplexer.

The logic diagram and logic symbol for the 74139 are given in Figure 54. 
Notice that the 74139 is divided into two equal sections. By looking at the logic dia-
gram, you will see that the schematic is the same as that of a 2-line-to-4-line decoder.
Decoders and demultiplexers are the same, except with a decoder you hold the E

16 ms
8.0 ms,

D1 Data
ouputsD2

D3

D0

S0S1

Data select (determines
the destination of the

data input)

A
Data
input

(a)

*

*d is routed to y[0] because S[0] − S[1] = 0 − 0 

(b)

Figure 53 4-line demultiplexer: (a) functional diagram; (b) waveform simulation.

367



CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

enable line LOW and enter a code at the A0 A1 inputs. As a demultiplexer, the A0 A1
inputs are used to select the destination of input data. The input data are brought in via
the line. The 74138 3-line-to-8-line decoder that we covered earlier in this chapter
can also function as an 8-line demultiplexer.

To use the 74139 as a demultiplexer to route some input data signal to, let’s say,
the output, the connections shown in Figure 55 would be made. In the figure, the
destination is selected by making and The input signal is brought
into the enable line When goes LOW, the selected output line goes LOW;
when goes HIGH, the selected output line goes HIGH. (Because the outputs are
active-LOW, all nonselected lines remain HIGH continuously.)

Ea

Ea(Ea).
A0a = 0.A1a = 12a

2a

E

2 31

7

A0a A1a

VCC
GND

= Pin 16
= Pin 8

(a)

Ea

3a

6

2a

5

1a

4

0a

9

3b

10

2b

11

1b

12

0b

14 1315

A0b A1bEb

(6)

2a

(5)

1a 3a

(4)

0a

(7)

A1a

(3)
A0a

(2)
Ea

(1)

VCC
GND

(    )

= Pin 16
= Pin 8
= Pin numbers

(b)

(10)

2b

(11)

1b 3b

(12)

0b

(9)

A1b

(13)
A0b

(14)
Eb

(15)

Figure 54 The 74139 dual 4-line demultiplexer: (a) logic symbol; (b) logic diagram. (Used
with permission from NXP Semiconductors.)

0a

Output
signal

A1aA0a

Output
destination

select

Input
data

signal

0a

1a1a

2a2a

3

1

1

1a3a

0 1

Ea
Ea

741391
2

Figure 55 Connections to route an input data signal to the output of a 74139
demultiplexer.

2a

Common
Misconception

Students are sometimes
confused when we use a
decoder IC as a demulti-
plexer. For example, in
Figure 55, the 74139 is de-
scribed as a demultiplexer,
but it could also function as
a decoder if we use as an
enable and A0, A1 as binary
inputs. Discuss how a 74138
could also be used as a dual-
purpose chip.

Ea

The 74154 was used earlier in the chapter as a 4-line-to-16-line hexadecimal
decoder. It can also be used as a 16-line demultiplexer. Figure 56 shows how it can be
connected to route an input data signal to the output. 5
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Output
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Output
destination

select

Input
data

signal

0

1

2

3E0

74154
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6

7

8

9

10

11

12

13

14

15

A01

A10

A21

A30

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 56 The 74154 demultiplexer connections to route an input signal to the output.5

E X A M P L E  2 0

Refer to the 74154 16-line demultiplexer in Figure 56. What levels must be
put on A0, A1, A2, A3 to:

(a) Route the input on to the #12 output.

(b) Block the input on from going to any output.

Solution:

(a) (b)

A3 = XA3 = 1

A2 = XA2 = 1

A1 = XA1 = 0

A0 = XA0 = 0

E1 = 1E1 = 0

E0

E0

E1,

All don’t-care
because chip is
disabled

u

Analog Multiplexer/Demultiplexer
Several analog multiplexers/demultiplexers are available in the CMOS family. The
4051, 4052, and 4053 are combination multiplexer and demultiplexer CMOS ICs.
(High-speed CMOS versions, such as the 74HCT4051, are also available.) They can
function in either configuration because their inputs and outputs are bidirectional,
meaning that the flow can go in either direction. Also, they are analog, meaning that
they can input and output levels other than just 1 and 0. The input/output levels can be
any analog voltage between the positive and negative supply levels.

The functional diagram for the 4051 eight-channel multiplexer/demultiplexer is
given in Figure 57. The eight square boxes in the functional diagram represent the bidi-
rectional I/O lines. Used as a multiplexer, the analog levels come in on the Y0 to Y7
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lines, and the decoder selects which of these inputs are output to the Z line. As a
demultiplexer, the connections are reversed, with the input coming into the Z line and
the output going out on one of the Y0 to Y7 lines.

Review Questions

15. Why is a multiplexer sometimes called a data selector?

16. Why is a demultiplexer sometimes called a data distributor?

17. What is the function of the S0, S1, and S2 pins on the 74151 multi-
plexer?

18. What is the function of the A0, A1, A2, and A3 pins on the 74154
demultiplexer?

A0

Logic level
conversion

VSS

11

A110

A29

E6

Eight-line
analog

I/O

Chip
enable

8

16

VDD

Logic level
conversion

VEE

7

13Y0

14Y1

15Y2

12Y3

1Y4

5Y5

2Y6

4Y7

3Z One-line
analog

I/O

1-of-8
Decoder

Negative supply
or ground

I/O
address
select

Figure 57 The 4051 CMOS analog multiplexer/demultiplexer. (Used with permission from
NXP Semiconductors.)
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9 System Design Applications

Microprocessor Address Decoding
The 74138 and its CMOS version, the 74HCT138, are popular choices for decoding the
address lines in microprocessor circuits. A typical 8-bit microprocessor such as the Intel
8085A or the Motorola 6809 has 16 address lines for designating unique
addresses (locations) for all the peripheral devices and memory connected to it. When a
microprocessor-based system has a large amount of memory connected to it, a designer
often chooses to set the memory up in groups, called memory banks. For example, Figure
58 shows a decoding scheme that can be used to select one of eight separate memory
banks within a microprocessor-based system. The high-order bits of the address

are output by the microprocessor to designate which memory bank is to be
accessed. In this design, A15 must be LOW for the decoder IC to be enabled. The three
other high-order bits, are then used to select the designated memory bank. A12–A14,

(A129A15)

(A09A15)
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To
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Must be zero to
satisfy E1

IO/M = LOW
for memory access

A LOW RD or WR
satisfies E3.

Figure 58 Using the 74HCT138 for a memory address decoder in an 8085A microprocessor
system.

The 8085A also outputs control signals that are used to enable/disable memory op-
erations. First, if we are performing a memory operation, we must be doing a read 
or a write The inverted-input OR gate (NAND) provides the HIGH to the en-
able if it receives a LOW or a LOW The other control signal, is used by
the 8085A to distinguish between input/output (IO) to peripheral devices versus memory
operations. If is HIGH, an IO operation is to take place, and if it is LOW, a mem-
ory operation is to occur. Therefore, one of the memory banks will be selected if is
LOW and address line is LOW while either is LOW or is LOW.WRRDA15

IO/M
IO>M

IO>M,WR.RD
E3(WR).
(RD)

Helpful 
Hint

The applications that follow
demonstrate how the MSI
chips covered in this chapter
interface with practical 
microprocessor-based 
systems. They are meant to
provide a positive experience
for you by showing that you
can comprehend circuits of
higher complexity now that
you have mastered some of
the building blocks.
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Alarm Encoder for a Microcontroller
This design application uses a 74148 encoder to monitor the fluid level of eight
chemical tanks. If any level exceeds a predetermined height, a sensor outputs a LOW
level to the input of the encoder. The encoder encodes the active input into a 3-bit 
binary code to be read by a microcontroller. This way, the microcontroller needs to
use only three input lines to monitor eight separate points. Figure 59 shows the cir-
cuit connections.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

SY S T E M  D E S I G N  1

What is the range of addresses that can be specified by the 8085A in Figure
58 to access memory within bank 2?

Solution: Referring to the chart in Figure 58, address bit must be
HIGH to make A1 in the decoder HIGH to select bank 2. The other address
bits, are not used by the decoder IC and can be any value. Therefore,
any address within the range of 2000H through 2FFFH will select memory
bank 2.

A09A11,

A13

I0

T0

Intel
8051

microcontroller

P
o
r
t

1

0
1
2
3
4
5
6
7

Ground to
enable inputs
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for any
active input

Inverse binary
code equal to
tank number
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Responds to
LOW signal
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Figure 59 Using a 74148 to encode an active alarm to be monitored by a microcontroller.
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A microcontroller differs from a microprocessor in that it has several input/out-
put ports and memory built into its architecture, making it better suited for monitoring
and control applications. The microcontroller used here is the Intel 8051.* We use one
of its 8-bit ports to read the encoded alarm code and its interrupt input, to receive
notification that an alarm has occurred. The 8051 is programmed to be in a HALT
mode (or, in some versions, a low-power SLEEP mode) until it receives an interrupt
signal to take a specific action. In this case, it performs the desired response to the
alarm when it receives a LOW at This LOW interrupt signal is provided by 
which goes LOW whenever any of the 74148 inputs becomes active.

Serial Data Multiplexing for a Microcontroller
Multiplexing and demultiplexing are very useful for data communication between a
computer system and serial data terminals. The advantage is that only one serial
receive line and one serial transmit line are required by the computer to communicate
with several data terminals. A typical configuration is shown in Figure 60.

GS,INT0.

INT0,
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Port 1 controls the
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Figure 60 Using a multiplexer, demultiplexer, and microcontroller to provide communication
capability to several serial data terminals.

*For an in-depth study of the 8085A microprocessor and the 8051 microcontroller, refer to William Kleitz, Digital and
Microprocessor Fundamentals, fourth edition, Prentice Hall, Upper Saddle River, NJ, 2003.
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Again, the 8051 is used because of its built-in control and communication 
capability. Its RXD and TXD pins are designed to receive (RXD) and transmit
(TXD) serial data at a speed and in a format dictated by a computer program written
by the user.

The selected data terminal to be read from is routed through the 74HCT151 mul-
tiplexer to the microcontroller’s serial input terminal, RXD. First, the computer pro-
gram writes the appropriate hex code to Port 1 to enable the 74HCT151 to route the
serial data stream from the selected data terminal through to its Y output. The 8051
then reads the serial data at its RXD input and performs the desired action.

To output to one of the data terminals, the 8051 must first output the appropriate
hex code to Port 1 to select the correct data terminal; then, it outputs serial data on its
TXD pin. The 74HCT238 is used as a demultiplexer (data distributor) in this applica-
tion. The 74HCT238 is identical to the 74138 decoder/demultiplexer except the
74HCT238 has noninverting outputs. The HCT versions are used to match the high
speed of the 8051 and keep the power requirements to a minimum. The hex code out-
put at Port 1 must provide a LOW to and the proper data-routing select code 
to The selected Y output then duplicates the HIGH/LOW levels presented at the
E3 pin.

A29A0.
E2
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SY S T E M  D E S I G N  2

Determine the correct hex codes that must be output to Port 1 in Figure 60
to accomplish the following action: (a) read from data terminal 3 (DT3)
and (b) write to data terminal 6 (DT6).

Solution: The 0, 1, and 2 outputs of Port 1 are used to control the S0,
S1, and S2 input-select pins of the 74HCT151 and the A0, A1, and A2
output-select pins of the 74HCT238. Output 7 of Port 1 is used to de-
termine which IC is enabled; 0 enables the 74HCT151 multiplexer, and
1 enables the 74HCT238 demultiplexer. (a) Assuming that the NC (no
connection) lines are zeros, the hex code to read from data terminal 3
is 03H (0000 0011). (b) The hex code to write to data terminal 6 is 86H
(1000 0110).

Analog Multiplexer Application
The 4051 is very versatile for controlling analog voltages with digital signals. One use
is in the design of multitrace oscilloscope displays for displaying as many as eight
traces on the same display screen. To do that, each input signal to be displayed must be
superimposed on (added to) a different voltage level so that each trace will be at a dif-
ferent Y-axis level on the display screen.

The 4051 (and its high-speed version, the 74HCT4051) can be set up to sequen-
tially output eight different voltage levels repeatedly if connected as shown in Figure
61. The resistor voltage-divider network in Figure 61 is set up to drop 0.5 V across
each resistor. This will put 0.5 V at Y0, 1.0 V at Y1, and so on. The binary
counter is a device that outputs a binary progression from 000 up to 111 at its 20, 21,
and 22 outputs, which causes each of the Y0 to Y7 inputs to be successively selected for
Z out, one at a time, in order. The result is the staircase waveform shown in Figure 61,
which can superimpose a different voltage level on each of eight separate digital input
signals that are brought in via the 74151 8-line digital multiplexer (not shown) driven
by the same binary counter.

100@�
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Multiplexed Display Application
Figure 62 shows a common method of using multiplexing to reduce the cost of pro-
ducing a multidigit display in a computer or digital device such as a calculator or wrist-
watch. Multiplexing multidigit displays reduces circuit cost and failure rate by sharing
common ICs, components, and conductors. For now, we need to know that a decoding
process must take place to convert the BCD digit information to a recognizable digit
display. We will also assume that the “arithmetic circuitry” takes care of loading the
four digit registers with the proper data.

The digit bus and display bus are each just a common set of conductors shared
by the digit storage registers and display segments. The four digit-registers are, there-
fore, multiplexed into a single-digit bus, and the display bus is demultiplexed into the
four-digit displays.
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Figure 61 The 74HCT4051 analog multiplexer used as a staircase generator.
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The 74139 four-line demultiplexer takes care of sequentially accessing each of
the four digits. It first outputs a LOW on the line. This enables the LS digit register
and the LS digit display. The LS BCD information travels down the digit bus to the
decoder/driver, which decodes the BCD into the special seven-segment code used by
the LS digit display and drives the LS digit display. 

Next, the second digit register and display are enabled, then the third, and then
the fourth. This process continues repeatedly, each digit being on one-fourth of the
time. The circulation is set up fast enough (1 kHz or more) that it appears that all four
digits are on at the same time. The external arithmetic circuitry is free to change the
display at any time simply by reloading the temporary digit registers.

Review Questions

19. In the address decoding circuit of Figure 58, the A15 address bit must
be HIGH to access memory bank 7. True or false?

20. What IC would be used to implement the inverted-input OR gate in
Figure 58: a 7400, a 7402, a 7408, or a 7432?

21. To read from memory bank 0 in Figure 58, the microprocessor will
output ___________, ___________, and ___________ on the and

lines.IO>M
RD, WR,

0

EEE

74139

E

A1

0

1

2

3

A0

MS digit
registerE

Digit
registerE

Digit
registerE

LS digit
registerE

Arithmetic circuitry
loads four BCD digits

into temporary registers

BCD digit bus

Digit decoder
and driver
circuitry

Decodes BCD into
seven-segment

and drives display
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MSD

E

LSD

Four-digit
display,

each digit
on 1/4 of
the time

Demultiplexer
sequentially
enables each
of four digits

0 1 2 3 0 1 2 3 0
Counter waveforms

Figure 62 Multiplexed four-digit display block diagram.
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22. In Figure 59, how is the microcontroller notified of a high fluid level at
one of the chemical tanks?

23. The circuit of Figure 59 would work properly but have inverted outputs
at if the level sensor outputs were active-HIGH instead of active-
LOW. True or false?

24. The circuit of Figure 60 does not allow for both transmitting and re-
ceiving serial data simultaneously. True or false?

25. In Figure 60, the 74HCT151 could be switched with the 74HCT238 and
still work properly. True or false?

26. What is the purpose of the binary counter in Figure 61?

27. Describe the circuit operation required to display the number 5 in the
MSD position of the display in Figure 62.

10 FPGA Design Applications Using LPMs

The Library of Parameterized Modules provides design solutions to many of the func-
tions covered in this chapter. The next three examples will illustrate the power of these
LPMs and firm up your understanding of comparators, decoders, and multiplexers.

A09A2
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E X A M P L E  2 1

LPM Comparator

Create a graphic design file that uses an LPM module to compare two 8-bit strings.

Solution: The module named lpm_compare is found in the /megafunctions/arithmetic subdirectory.
To get there, choose: File New Block Diagram. Then right-click in the work area and insert
symbol lpm_compare. Use the MegaWizard manager as explained in Example 7–28 to define the LPM.
Specify 8-bit inputs and the following three outputs: and Also
on page 2 check No and unsigned and on page 3 check No. Your block diagram generated by the
MegaWizard will look like Figure 63.

a * b (alb).a + b (agb),a � b (aeb),

++

Figure 63 LPM module for an 8-bit comparator.

The waveform simulation file is shown in Figure 64. Carefully check all three outputs for each
combination of inputs to verify the correct comparator operation.

V
H

D
L
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22 > 00 so alb is HIGH

Figure 64 Simulation waveforms for the LPM comparator.

3-line-to-8-line decoder

E X A M P L E  2 2

LPM Decoder

Create a block design file that uses an LPM module to form a 3-line-to-8-
line (octal) decoder.

Solution: The module named lpm_decode is found in the /megafunctions/
arithmetic subdirectory. To get there, choose: File New Block Diagram.
Then right-click in the work area and insert symbol lpm_decode. Use the

++

Figure 65 LPM module for an octal decoder.
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MegaWizard manager as explained in Example 7–28 to define the LPM.
Specify a 3-bit input bus with an Enable input. Press Add all to select all
eight ‘eq’ outputs to decode. Your block diagram generated by the
MegaWizard will look like Figure 65.

The waveform simulation file is shown in Figure 66. Notice that as
long as en is HIGH, the 3-bit number on the a inputs will determine which
y output goes HIGH. Also, when en is LOW, all outputs are kept LOW.
Carefully check all seven outputs for each combination of inputs to verify
proper operation.

LOW en disables outputs

a[2..0] = 101 is decoded to
a HIGH on y5

Figure 66 Simulation waveforms for the LPM decoder.

E X A M P L E  2 3

LPM Multiplexer

Create a block design file that uses an LPM module to form an 8-line
multiplexer.

Solution: The module named lpm_mux is found in the /megafunctions/
arithmetic subdirectory. To get there, choose: File New Block
Diagram. Then right-click in the work area and insert symbol lpm_mux.
Use the MegaWizard manager as explained in Example 28 from the 
chapter, Arithmetic Operations and Circuits, to define the LPM. Specify 
8 data inputs, 1-bit input and output busses and No pipelining. Your block
diagram generated by the MegaWizard will look like Figure 67.

The waveform simulation file is shown in Figure 68. Several irregu-
lar waveforms were arbitrarily drawn to test the operation. For each new

++
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value of the selection bits (s), the corresponding d is routed to the y output.
Carefully check y to verify that it duplicates the corresponding section of
the d waveform for all eight values of s.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

3-bit code to select one of the eight d inputs to route to y

Figure 67 LPM module for an 8-line multiplexer.

d0 is routed to y when s[2..0] is 000

*

Figure 68 Simulation waveforms for the LPM multiplexer.
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Summary

In this chapter, we have learned the following:

1. Comparators can be used to determine equality or which of two binary
strings is larger.

2. Decoders can be used to convert a binary code into a singular active
output representing its numeric value.

3. Encoders can be used to generate a coded output from a singular active
numeric input line.

4. ICs are available to convert BCD to binary and binary to BCD.

5. The Gray code is useful for indicating the angular position of a shaft on
a rotating device, such as a motor.

6. Multiplexers are capable of funneling several data lines into a single line
for transmission to another point.

7. Demultiplexers are used to take a single data value or waveform and
route it to one of several outputs.

Glossary

Address: A unique binary value that is used to distinguish the location of individual
memory bytes or peripheral devices.

Bidirectional: A device capable of functioning in either of two directions, thus being
able to reverse its input/output functions.

Bus: A group of conductors that have a common purpose and are shared by several
devices or ICs.

Code Converter: A device that converts one type of binary representation to another,
such as BCD to binary or binary to Gray code.

Comparator: A device used to compare the magnitude or size of two binary bit
strings or words.

Concatenation: Combining two or more binary strings into one string.

Decoder: A device that converts a digital code such as hex or octal into a single output
representing its numeric value.

Demultiplexer: A device or circuit capable of routing a single data-input line to one
of several data-output lines; sometimes referred to as a data distributor.

Don’t Care (�): A variable that is signified in a function table as a don’t care, or �,
can take on either value, HIGH or LOW, without having any effect on the
output.

Encoder: A device that converts a weighted numeric input line to an equivalent digital
code, such as hex or octal.

Glitch: False switching seen on a waveform due to internal FPGA circuit switching
delays.

Gray Code: A binary coding system used primarily in rotating machinery to indicate
a shaft position. Each successive binary string within the code changes by
only 1 bit.
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Hardware/Software: Sometimes solutions to digital applications can be done using
hardware or software. The software approach uses computer program
statements to solve the application, whereas the hardware approach uses
digital electronic devices and ICs.

Magnitude comparator: A circuit used to compare the value of two binary strings.

Microcontroller: Sometimes referred to as “a computer on a chip,” it is especially
well suited for data acquisition and control applications. In a single IC
package, it will contain a microprocessor, memory, I/O ports, and commu-
nication capability, among other features.

Microprocessor: A large-scale integration (LSI) IC that is the fundamental building
block of a digital computer. It is controlled by software programs that 
allow it to do all digital arithmetic, logic, and I/O operations. It does not
have the I/O control capability of a microcontroller but is better suited 
for executing complex software programs, such as word processing or
spreadsheets.

Multiplexer: A device or circuit capable of selecting one of several data input lines
for output to a single line; sometimes referred to as a data selector.

Priority: When more than one input to a device is active and only one can be acted on,
the one with the highest priority will be acted on.

Scalar: VHDL variable types that are used to represent singular quantities usually 
declared as std_logic.

Superimpose: Combining two waveforms together such that the result is the sum of
their levels at each point in time.

Weighting Factor: The digit within a numeric string of data is worth more or less
depending on which position it is in. A weighting factor is applied to
determine its worth.

Problems

Section 1
1. Design a binary comparator circuit using exclusive-ORs and a NOR
gate that will compare two 8-bit binary strings. (Hint: Convert the AND in
Figure 1 to an inverted-input NOR by bubble-pushing it. Then cancel mul-
tiple bubbles.) Label all the lines in your design with the digital levels that
will occur when comparing:

(a)
(b)

2. Label the digital levels on all the lines in Figure 3 that would occur
when comparing the two 8-bit strings:

(a)
(b)

3. Re-sketch all eight waveforms in Figure 4 for the following inputs:

(a)

(b)
B7 .. B0 = A5, A7, 2D, 00, 2A
A7 .. A0 = A4, 77, 2D, FF, 1D

B7 .. B0 = 20, 4E, D2, AA, 46
A7 .. A0 = 00, 7C, C2, 82, 46

B = 1011  0111A = 1011  0101

B = 1100  0011A = 1011  0101

B = 0011  0011A = 1101  1001

B = 1101  1001A = 1101  1001
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Section 3
4. Write a two-sentence description of the function of a decoder.

5. Construct a truth table similar to Table 1 for an active-LOW output
BCD (1-of-10) decoder.

6. What state must the inputs, and be in to enable the 74138
decoder? What does the signify in the function table for the 74138?

7. Describe the difference between active-LOW outputs and active-HIGH
outputs.

8. Determine the eight output levels in Figure 12 given the following in-
puts:

(a)
(b)

9. Sketch the output waveforms to given the inputs shown in
Figure P9(b) to the 74138 of Figure P9(a).

7)(0

A0 = 1, A1 = 1, A2 = 1, E1 = 1, E2 = 1, E3 = 1

A0 = 1, A1 = 0, A2 = 0, E1 = 0, E2 = 0, E3 = 1

*

E3E1, E2,
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GND

A0

8

1

A1 2

A2 3

E1 4

5

6

7 7

VCC

9

16

15

14

13

12

11

10

+5 V

74138

E2

E3

5

4

6

3

2

1

0

t0

E3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Inputs

Binary
input

Enable
input

Outputs

Output

(a)

t11 t12 t13

A0

A1

A2

(b)

E2 = E1 = LOW

Figure P9
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10. Repeat Problem 9 for the input waveforms shown in Figure P10.

A1

t0

A2

A0

E3

E2

E1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Inputs

Figure P10

11. What state do the outputs of a 7442 BCD decoder go to when an in-
valid BCD number (10 to 15) is input to A0 to A3?

12. Design a circuit, based on a 74154 4-line-to-16-line decoder, 
that will output a HIGH whenever the 4-bit binary input is greater than
12. (When the binary input is less than or equal to 12, it will output 
a LOW.)

Section 5
13. Determine the four output levels in Figure 25(a) given the following in-
puts:

(a)
(b)
(c)

14. Determine the five output levels in Figure 29(a) given the following in-
puts:

(a)
(b)
(c)

15. Sketch the waveforms given the inputs shown in
Figure P15(b) to the 74148 of Figure P15(a).

16. Repeat Problem 15 for the waveforms shown in Figure P16.

17. Two 74148s are connected in Figure P17 to form an active-LOW in-
put, active-LOW output hexadecimal (16-line-to-4-line) priority en-
coder. Show the logic levels on each line in Figure P17 for encoding an
input hexadecimal C (12) to an output binary 1100 (active-LOW 0011).

18. Repeat Problem 17 for encoding an input hexadecimal 6 to an output
binary six (active-LOW 1001).

(A0, A1, A2, EO, GS)

I0–I7 = 11111111, EI = 1

I0–I7 = 00000000, EI = 0

I0–I7 = 11111101, EI = 0

I1–I9 = 111111111

I1–I9 = 111011111

I1–I9 = 000111111

D

C

C
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(a) (b)

I2

GND

I4

8

1

I5 2

I6 3

I7 4

5

6

7

VCC

9

16

15

14

13

12

11

10

+5 V

74148
EI

A2

A1

1

1

1

EO

GS

I3

I1

I0

1

1

A0

1
t0 t1 t2 t3 t4 t5 t6

Inputs

EI

I4

I3

Figure P15

EI

I3
Inputs

t0 t1 t2 t3 t4 t5

I4

Figure P16

I0

EO A0

74148

Four-line active-LOW
encoded output

20

0

NC

A1 A2 GS

NC

I1

1

I2

2

I3

3

I4

4

I5

5

I6

6

I7

7

EI

21 22

I0

EO A0

74148

8

A1 A2 GS

I1

9

I2

10

I3

11

I4

12

I5

13

I6

14

I7

15

EI

23

16-Line active-LOW input

AND
gates

Figure P17
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Section 6
19. Using the weighting factors given in Figure 34, convert the following
decimal numbers to BCD and then to binary.

(a) 32

(b) 46

(c) 55

(d) 68

20. Figure P20 is a two-digit BCD-to-binary converter. Show how the
number 49 (0100 1001BCD) is converted to binary by placing 1s and 0s at
the inputs and outputs.
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C

C

26

BCD

E

74184

D

Y4

C

Y3

B

Y2

A

Y1Y5

E

74184

D

Y4

C

Y3

B

Y2

A

Y1Y5

MSD LSD

Binary

NC 25 24 23 22 21 20

Figure P20

21. Repeat Problem 20 for the number 73.

22. Convert the following Gray codes to binary using the circuit of Figure
41.

(a) 1100

(b) 0101

(c) 1110

(d) 0111

23. Convert the following binary numbers to Gray code using the circuit of
Figure 40.

(a) 1010

(b) 1111

(c) 0011

(d) 0001
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Section 7
24. The connections shown in Figure P24 are made to the 74151 
8-line multiplexer.

(a) Determine Y and 

(b) What levels must be placed on S0, S1, S2 to route the input on I6 to the
output?

Y.
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GND

I31

8

1

I20 2

I11 3

I01 4

Y 5

Y 6

E 7

1

1

0

VCC

9

16

I415

I514

I613

12

11

10

+5 V

0I7

S0

S1

S2

74151

Y

Y 1

0

1

Figure P24

25. Using a technique similar to that presented in Figure 49, design a 32-
bit multiplexer using four 74151s.

26. Design a circuit that will output a LOW whenever a month has 31
days. The month number (1 to 12) is input as a 4-bit binary number

and so on). (Hint: Use a 74150.)

Section 8
27. Determine what levels must be placed on A0, A1, A2, A3 of the 
demultiplexer in Figure 56 to:

(a) Route the input on to the #7 output.

(b) Route the input on to the #13 output.

28.

(a) Design an 8-bit demultiplexer using one 74139.

(b) Design a 16-bit demultiplexer using two 74138s.

29. There is a malfunction in a digital system that contains several multi-
plexer and demultiplexer ICs. A reading was taken at each pin with a logic
probe, and the results were recorded in Table 7. Which IC or ICs are not
working correctly?

E0

E0

E1,

(January = 0001,

DC

DC

DC

T
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Section 9
30. Which memory bank is accessed in Figure 58 for each of the 
following hex addresses output by the microprocessor?

(a) 3000H

(b) 6000H

(c) 507CH

(d) 8001H

31. A logic analyzer was used to monitor the 19 microprocessor lines
shown in Figure 58. Describe the operation that was taking place if the fol-
lowing levels were observed from top to bottom.

(a) 100 0101 0000 0000 0011

(b) 010 0110 0000 1100 0111

32. What hex number will be read by port 1 of the 8051 microcontroller in
Figure 59 if the fluid level is high in the following chemical tanks?

(a) Tank 1

(b) Tank 6

(c) Tanks 2 and 7

(d) All tanks at a high fluid level

(e) No tanks at a high fluid level

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

TABLE 7 IC Logic States for Troubleshooting Problem 29

74150 74151 74139 74154

Pin Level Pin Level Pin Level Pin Level

1 0 1 1 1 0 1 1
2 1 2 0 2 1 1 1
3 1 3 0 3 0 3 1
4 0 4 1 4 0 4 1
5 1 5 1 5 1 5 1
6 0 6 0 6 1 6 1
7 1 7 0 7 1 7 1
8 1 8 0 8 0 8 1
9 0 9 0 9 0 9 1

10 0 10 0 10 0 10 1
11 0 11 0 11 1 11 1
12 0 12 0 12 0 12 0
13 1 13 1 13 1 13 1
14 1 14 0 14 0 14 1
15 1 15 0 15 1 15 1
16 0 16 1 16 1 16 1
17 1 17 1
18 0 18 1
19 1 19 0
20 1 20 0
21 1 21 0
22 0 22 1
23 1 23 1
24 1 24 1
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33. What hex code must be output by port 1 of the 8051 in Figure 60 to
perform the following operations?

(a) Read from data terminal 5

(b) Read from data terminal 7

(c) Write to data terminal 2

(d) Write to data terminals 1 and 2 at the same time

34. Determine the voltage level of the output voltage signal in Figure 61
when the binary count reaches 110 (610).

35. What are the output levels at and of the demultiplexer 
in Figure 62 when the circuit is displaying the number 3 in the LSD 
position?

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

36. Find the two 4-bit-magnitude comparators, U7 and U8, in the
Watchdog Timer schematic. Which IC receives the high-order binary data,
U7 or U8? (Hint: The bold lines in that schematic represent a bus, which is
a group of conductors that are shared by several ICs. It simplifies the dia-
gram by showing a single bold line instead of several separate lines. When
the individual lines are taken off the bus they are labeled, appropriately,
0–1–2–3 and 4–5–6–7 in this application.)

37. Where is the final output of the comparison made by U7, U8 used in
the Watchdog Timer schematic?

38. Find the octal decoder U5 in the HC11D0 schematic. Determine the
levels on AS, AD13, AD14, and AD15 required to provide an active-LOW
signal on the line labeled MON_SL.

39. Locate the address decoder section (U3: C, U5, and U9) in the
HC11D0 schematic. The octal decoder (U9) is used to determine if the
LCD (LCD_SL) or the keyboard (KEY_SL) is to be active.

(a) Determine the levels on AD3-5, AD11-15, and AS required to select
the LCD.

(b) Repeat for selecting the keyboard.

40. Find the decoders U28 and U29 on sheet 2 of the 4096/4196
schematic. They are cascaded together to form a 1-of-18 decoder for the
lines labeled ICS1–ICS18.

(a) Determine the levels on pins 2, 5, 6, 9, and 12 of U31 to provide an 
active-LOW output at ICS5.

(b) Repeat for ICS18.

30, 1, 2,
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MultiSIM® Exercises

E1. Load the circuit file for Section 1a. This is a binary comparator simi-
lar to Figure 1. Test its operation by observing the Equality Indicator status
for various 4-bit inputs at the A-inputs and B-inputs.

(a) What input conditions are required for the indicator to come ON?

(b) Redesign the circuit using ex-ORs instead of ex-NORs. What must
the AND gate be changed to to get the same output result? Test your
design with several different input combinations.

E2. Load the circuit file for Section 1b. Design a comparator that 
determines equality and, if not equal, also tells us which input is larger.
This new comparator will have eight inputs (A0–A3 and B0–B3) and three
outputs For example, if the A-inputs equal the
B-inputs, then the output goes HIGH and the other outputs go
LOW, and so on. The key component in your design should be the 7483
connected as a binary subtractor similar to the circuit designed in the file
“sec 7–8a” (or Figure 23 from the chapter, Arithmetic Operations and Cir-

(a)
(b)
(c) ?

Now you should realize what external gating is required to implement your
design. Build the circuit on the screen, and test your design. Demonstrate
your working design to your teacher.

E3. Load the circuit file for Section 1c. This circuit simulates a control cir-
cuit that is used to fill a chemical tank. Design a circuit using a 
binary comparator to turn on a buzzer when the tank reaches level 5.
Demonstrate your design to your teacher.

E4. Load the circuit file for Section 2a. The 74138 shown is a 3-line-to-8-
line decoder. The Word Generator is used to exercise the chip by outputting
a binary count from 000 to 111 repeatedly to the A, B, C inputs

The two active-LOW enables are grounded, but the active-
HIGH enable (G1) is connected to a switch.

(a) What position (up, down) must the switch be in for the chip to be 
enabled?

(b) If the binary input to A, B, C is 101(5), what is the level of the eight
output LEDs if the enable switch is up?

(c) Repeat (b) for the enable switch down. Turn the power switch ON,
and check your answers.

E5. Load the circuit file for Section 2b. In this exercise the Logic 
Analyzer is used to observe the output waveforms of the 74138 similar to
those seen in Figure 13.

(a) The HIGH-order bit of the Word Generator is used to create the
waveform that is used for the G2A� enable input on the 74138. That
active-LOW enable input is displayed as the top trace. Describe the
state of the outputs when it is HIGH.

(b) Describe what you would expect to observe if that signal was used to
drive the active-HIGH enable input (G1) instead. Try it.

(A = LSB).

A = 5, B = 7

A = 7, B = 5

A = 7, B = 7

A = B
(A = B, A 7 B, A 6 B).
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cuits). Before attempting to complete the design determine the levels at the
outputs of a binary subtractor for inputs where then and
then What is the level of the five outputs of the subtractor for the
following three conditions:

A 6 B.
A 7 B,A = B,
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(c) Expand the Word Generator, and study the four-digit hex words that
are to be output at the 16 binary output pins. Five of the entries begin
with an 8 instead of 0. Why?

(d) How would you modify the four-digit hex words in the Word Generator
to disable the chip whenever the #7 is to be output? Test your answer.

E6. Load the circuit file for Section 2c. This circuit simulates a control cir-
cuit that is used to fill a chemical tank. Design a circuit using the 7442 BCD-
to-decimal decoder and other logic gates to turn on a buzzer when:

(a) The tank is filled to the middle levels 4 or 5 or 6.

(b) The tank exceeds level 6 or drops below level 3.

(c) The tank overflows (beyond level 9). Demonstrate your design to your
teacher.

E7. Load the circuit file for Section 3a. The circuit shown is a decimal
counter. Connect a 74147 decimal-to-BCD encoder so that it displays on
LEDs the corresponding BCD code of the selected decimal LED. Connect
a seven-segment display to the BCD LEDs to observe the ten decimal dig-
its. Demonstrate the working design to your teacher.

E8. Load the circuit file for Section 3b. This circuit simulates a chemical
processing plant. To add chemicals to a tank, press the corresponding key.
For example, to increase the level in Tank 0, press 0 repeatedly. When it
reaches a dangerous level near the top, a warning LED comes on.

(a) Design a circuit that sounds a warning buzzer if any of the tanks are
too full.

(b) Add a seven-segment display to your design of part (a) that displays
the decimal number of the tank whose level went too high. (Hint: You
will need an encoder to achieve this.) Demonstrate your design to your
teacher.

E9. Load the circuit file for Section 5a. This is a four-line multiplexer sim-
ilar to Figure 45. By moving switches S1 and S0 you can pick which square
wave frequency is to be routed to the output.

(a) The Output Data LED will flash fastest for S1 � _____, S0 � ____?

(b) The Output Data LED will flash slowest for S1 � _____, S0 � _____?
Try it.

E10. Load the circuit file for Section 5b. This is a four-line multiplexer sim-
ilar to Figure 45. By moving switches S1 and S0, you can pick which
square-wave frequency is to be routed to the output. As you test the four
different combinations of switch settings, there should be four different
LED flashing speeds, but there are not.

(a) Describe the problem that you observe when you test the four combi-
nations of switch settings.

(b) Troubleshoot the circuit with a logic probe, and list the fault that you
find. Fix it, and test your corrected circuit.

E11. Load the circuit file for Section 5c. This is a four-line multiplexer
similar to Figure 45. By moving switches S1 and S0, you can pick which
square wave frequency is to be routed to the output. As you test the four
different combinations of switch settings, there should be four different
LED flashing speeds, but there are not.

(a) Describe the problem that you observe when you test the four combi-
nations of switch settings.
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(b) Troubleshoot the circuit with a logic probe, and list the fault that you
find. Fix it, and test your corrected circuit.

E12. Load the circuit file for Section 6a. The demultiplexer is capable of
distributing the input data signal to one of the eight possible output desti-
nation LEDs shown by selecting the proper settings on the data select
switches.

(a) The switches 2, 1, 0 should be set to ____, ____, ____ to route the in-
put data signal to the 6� output. Make the necessary connections, and
test your answer.

(b) The input data signal has a 25% duty cycle, which means that it is
HIGH for 25% of the period. Do you think that the signal coming out
of the 6� terminal will still be a 25% duty cycle (yes or no)? Check
your answer by connecting Channel-1 of the oscilloscope to the input
data signal and Channel-2 to the 6� output of the DeMux to observe
the two signals.

MultiSIM® Troubleshooting Exercises

E13. The following circuit files all have faults in them. Study the circuit
operation of the 74LS138 decoder IC in Section 3 before attempting to find
the faults.

(a) Decoder_t-shoot_a

(b) Decoder_t-shoot_b

(c) Decoder_t-shoot_c

(d) Decoder_t-shoot_d

(1) Describe the problem that you observe when you test the various input
combinations. (2) Troubleshoot the circuit with a digital probe or voltmeter
and list the fault that you find. (3) Delete the bad component, replace it, and
validate the circuit operation.

E14. The following circuit files all have faults in them. Study the circuit
operation of the 74147 encoder IC in Section 5 before attempting to find
the faults.

(a) Encoder_t-shoot_a

(b) Encoder_t-shoot_b

(c) Encoder_t-shoot_c

(d) Encoder_t-shoot_d

(1) Describe the problem that you observe when you test the various input
combinations. (2) Troubleshoot the circuit with a digital probe or voltmeter
and list the fault that you find. (3) Delete the bad component, replace it, and
validate the circuit operation.

E15. The following circuit files all have faults in them. Study the circuit
operation of the 74151 multiplexer IC in Section 7 before attempting to
find the faults.

(a) Multiplexer_t-shoot_a

(b) Multiplexer_t-shoot_b

(c) Multiplexer_t-shoot_c

(d) Multiplexer_t-shoot_d
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(1) Describe the problem that you observe when you test the various input
combinations. (2) Troubleshoot the circuit with a digital probe or voltmeter
and list the fault that you find. (3) Delete the bad component, replace it, and
validate the circuit operation.

FPGA Problems

C1. The VHDL program in Figure 5(a) is the implementation of an 
8-bit comparator.

(a) Make the necessary changes to make it a 4-bit comparator. Save this
program as prob_c8_1.vhd.

(b) Test its operation by creating waveform simulations comparing the
magnitude of the following hex numbers: 
compared to: 

(c) Download your design to an FPGA IC. Discuss your observations of
the alb, aeb, and agb output LEDs with your instructor as you use the
switches to step through all eight input combinations.

C2. The VHDL program in Figure 18(a) is an octal decoder implemented
with Boolean equations. It has active-HIGH inputs and outputs.

(a) Make the necessary changes to make it an active-LOW output decoder.
Save this program as prob_c8_2.vhd.

(b) Test its operation by creating waveform simulations that monitor all
eight outputs as the a inputs count from 000 up to 111.

(c) Download your design to an FPGA IC. Discuss your observations of
the eight output LEDs with your instructor as you use the switches to step
through all eight input combinations.

C3. The VHDL program in Figure 19(a) is an octal decoder implemented
with selected signal assignments. It has active-HIGH inputs and outputs.

(a) Make the necessary changes to make it an active-LOW output decoder.
Save this program as prob_c8_3.vhd.

(b) Test its operation by creating waveform simulations that monitor all
eight outputs as the a inputs count from 000 up to 111.

(c) Download your design to an FPGA IC. Discuss your observations of
the eight output LEDs with your instructor as you use the switches to step
through all eight input combinations.

C4. The VHDL program in Figure 20(a) is an octal decoder with 
an active-HIGH enable (en) input. It has active-HIGH a-inputs and 
y-outputs.

(a) Make the necessary changes to make the enable input active-LOW.
Save this program as prob_c8_4.vhd.

(b) Test its operation by creating waveform simulations that monitor all
eight outputs as the a inputs count from 000 up to 111 with en LOW.
Repeat for en HIGH.

(c) Download your design to an FPGA IC. Discuss your observations of
the eight output LEDs with your instructor as you use the switches to step
through all 16 input combinations.

C5. The VHDL program in Figure 21(a) is an octal decoder with an 
active-HIGH enable (en) input. It has active-HIGH a-inputs and y-outputs

b = D, F, A, 2, 0, 9, 6, 2.
a = F, A, 8, 2, 0, D, 5, 1
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and uses an IF-THEN-ELSE statement to determine if the enable input is
satisfied.

(a) Make the necessary changes to make it function exactly like a 74138
fixed-function IC (three enables and eight active-LOW outputs). Save this
program as prob_c8_5.vhd.

(b) Test its operation by creating waveform simulations that monitor 
all eight outputs as the a inputs count from 000 up to 111 with various
combinations of en1, en2, and en3.

(c) Download your design to an FPGA IC. Discuss your observations of
the eight output LEDs with your instructor as you use the switches to step
through all eight input combinations with the enables satisfied (001). Then
with the y7 output active, demonstrate various ways to disable/enable it
with the three en lines.

C6. The VHDL program in Figure 32(a) is an octal priority encoder im-
plemented with conditional signal assignments. It has active-HIGH i-inputs
and a-outputs.

(a) Make the necessary changes to make the inputs active-LOW. Save this
program as prob_c8_6.vhd.

(b) Test its operation by creating waveform simulations that monitor the
three a outputs as individual, then multiple, i inputs go LOW.

(c) Download your design to an FPGA IC. Discuss your observations of
the three output LEDs with your instructor as you use the switches to step
through several combinations of individual and multiple active inputs.

C7. The VHDL program in Figure 51(a) is a 4-line multiplexer 
implemented with selected signal assignments.

(a) Make the necessary changes to make it an 8-line multiplexer. Save
this program as prob_c8_7.vhd.

(b) A waveform simulator for an 8-bit multiplexer was developed in
Figure 68 for Example 23. This simulator file is on the text companion
website named ex8_23.vwf. Test your 8-bit multiplexer design using those
waveforms. (Hint: After loading ex8_23.vwf, it must be saved as
prob_c8_7.vwf to match up with the name of your vhd file.)

C8. The block design file in Figure 63 is an 8-bit comparator implemented
with an LPM.

(a) Add additional gating to the circuit to provide a HIGH output if the
two input strings are equal and both odd. Call this new output oddeq. Do
the same for equal and even (called eveneq). Save this program as
prob_c8_8.bdf. (Hint: the LSB member of the a-input bus can be identified
as a0 in the Block Editor and is HIGH for odd numbers. Figure 6–19
shows how a node can be labeled as an individual member of a bus.)

(b) Test its operation by creating waveform simulations that monitor all
five outputs as you compare the following eight pairs of numbers. 

C9. The graphic design file in Figure 65 is an octal decoder implemented
with an LPM.

(a) Add additional gating to the circuit to make it function exactly like 
a 74138 fixed-function IC with active-LOW outputs and a triple-enable
input. The outputs can be made active-LOW on the highlighted LPM by
choosing Edit Properties Ports. Then specify Inversion All for
eq0–eq7. Save this program as prob_c8_9.bdf.

++

99, AA, 25, A7, 2A, 24, 88; b = 11, 88, AA, 26,  A7, 2F, 22, 88.
a = 11,
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(b) Test its operation by creating waveform simulations that monitor 
all eight outputs as the a inputs count from 000 up to 111 with various
combinations of en1, en2, and en3.

(c) Download your design to an FPGA IC. Discuss your observations of
the eight output LEDs with your instructor as you use the switches to step
through all eight input combinations with the enables satisfied (001). Then
with the y7 output active, demonstrate various ways to disable/enable it
with the three en lines.

C10. The block design file in Figure 67 is an 8-line multiplexer implemented
with an LPM.

(a) Make the necessary changes to make it a 4-line multiplexer. Save this
program as prob_c8_10.bdf.

(b) Test its operation by creating waveform simulations that alternately
route each of the four d inputs to the y output.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

Answers to Review Questions

1. False

2.
3. 4 inputs, 10 outputs

4. False

5. False

6. False

7. HIGH, LOW

8. An encoder creates a coded
output from a singular active
numeric input line. A decoder is
the opposite, creating a single
output from a numeric input
code.

9. The highest numeric input

10. (a) All HIGH (b)

11. A0, A1, A2: binary outputs; EO:
enable output; GS: group signal
output. All outputs are active
LOW.

12. 80

13. 6

14. Because it varies by only 1 bit
when the shaft is rotated from
one position to the next

15. Because it selects which data
input is to be sent to the data
output

A2 = H, A1 = H, A0 = L
A3 = L,

A 6 B = 1

16. Because it takes a single input
data line and routes in to one
of several outputs

17. They select which one of the
input lines is sent to the output

18. They select which one of the
output lines the input data are
sent to

19. False

20. 7400

21. 0, 1, 0

22. goes LOW

23. False

24. True

25. False

26. It outputs a binary progression,
allowing each of the Y0 to Y7
inputs to appear at the Z output
in a staircase fashion

27. The number 5 is loaded into
the MSD register. When the A0
and A1 lines of the 74139 reach
1–1, the number 3 line outputs
a LOW, enabling the MSD 
register and the MSD of the
display. The number 5 is then
transferred to the display by
the decoder/driver circuitry.

GS
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Answers to Odd-Numbered Problems

1. (a) See top numbers.
(b) See lower numbers.

5.

3. (a)

A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1 A0B0

1 1 1 1 0 0 0 0 0 01 1 1 1 1 1

1 1 1 1 0

0 1 1 00

0

0 0 0 0 0 0

1 0 000 0

1 1

1

0 0 1

1 0 1 1 1

OUT = 1 if A = B

7C C2 82 4600

4E D2 AA 4620

A < B

A < B

A = B

A = B

A > B

A > B

B7 •• B0

A7 •• A0

High
order

Low
order

Solution:

3. (b)

7C C2 82 4600

4E D2 AA 4620

A < B

A < B

A = B

A = B

A > B

A > B

B7 •• B0

A7 •• A0

High
order

Low
order

Solution:

7. Active LOW outputs are 0 when selected.
Active HIGH outputs are 1 when selected.

9.

23 22 21 20

0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1 1 1
0 1 1 0 1 1 1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0

9876543210

11. All HIGH

13. (a)
(b)
(c)

15.
A3-A0 = 1111
A3-A0 = 1011
A3-A0 = 1100

Time Low Output 
Interval Pulse At:

None (E3 disabled)
None (E3 disabled)

None (E3 disabled)
None (E3 disabled)t12- t13

t11- t12

5t10- t11

6t9- t10

7t8- t9

0t7- t8

1t6- t7

2t5- t6

3t4- t5

4t3- t4

5t2- t3

t1- t2

t0- t1

EI

t1t0

EO

GS

I3

I4

A0

A1

A2

t2 t3 t4 t5 t6

396



17.

CODE CONVERTERS, MULTIPLEXERS, AND DEMULTIPLEXERS

0
10

I0

74148

0
1

1

I1

1
1

1

I2

2
1

1

I3

3
1

1

I4

4
1

1

I5

5
1

1

I6

6
1

0

I7

7
1

1

EI

A2

1
0

A1

1
0

A0

1
1

EO

NC

GS

NC

1

I0

74148

8
1

1

I1

9
1

1

I2

10
1

1

I3

11
1

1

I4

12
0

1

I5

13
1

1

I6

14
1

1

I7

15
1

1

EI

A2

0
1

A1

1
1

A0

1
1

EO GS

1
0

21

0
0

22

1
1

20

0
1

23

To S1’s
To S2’s

D
E

C
B
A To S0’s

Data
Select

To E0

To E1

To E2

To E3

(Low-order
multiplexer)

Data out

Y0
Y1

Y2

Y3

19. (a) 1000002 (b) 1011102 (c) 1101112
(d) 10001002

21. See #20 (lower numbers).

23. (a) (b)
(c) (d)

25.
00012 = 000100112 = 0010
11112 = 100010102 = 1111

27. (a) 0, 1, 1, 1, 0
(b) 0, 1, 0, 1, 1

29. (a) The 74150 is not working. The data select is
set for input D7, which is 0. Therefore, 
should be 1 but it is not.

(b) The 74151 is OK. The data select is set for
input I0, which is 1. Y should equal 1 and 
should equal 0, which they do.

(c) The 74139 has two bad decoders. Decoder A
is enabled and should output 1011 but does
not. Decoder B is disabled and should output
1111 but does not.

Y

Y

(d) The 74154 is OK. The chip is dis-
abled, so all outputs should be
HIGH, which they are.

31. (a) Write to memory bank 5, location
3H.
(b) Read from memory bank 6, location

C7H.

33. (a) 05H (b) 07H (c) 82H
(d) Impossible

35.
37. The D input of U1:B

39.

0 = 0, 1 = 1, 2 = 1, 3 = 1

74151
PD I0 Z 5 PD5

6 N/CZ
I1
I2
I3
I4
I5
I6
I7

4

TD 3

PC 2

TC 1

PB 15

TB 14

PA 13

TA 12

PD2 11

PD3 10

PD4 9
7

A
B
C
E

LCD_SL KEY_SL

AD3 0 1
AD4 0 0
AD5 0 0
AD11 1 1
AD12 1 1
AD13 0 0
AD14 0 0
AD15 0 0
AS 0 0

41.

E1. (a) A0 to A3 B0 to B3
(b) NOR

E3.

=

0 A3
1 A2
0 A1
1 A0

0 A<B
1 A=B

A=B Buzzer

0 A>B

B3D3
B2D2
B1D1
B0D0

E5. (a) All HIGH (b) All outputs HIGH
when G1 LOW (c) The 8 (1000)
is used to make the top Logic Analyzer

=
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trace HIGH. (d) Put an 8 in the MS hex
digit whenever a 7 is in the LS digit.

E7.

E9. (a) 00 (b) 11

E11. (a) Switch S1 has no effect on flashing
speed.

(b) Vcc at S1 is open.

E13. (a) LED2
(b) SWC
(c) SWG
(d) 74LS138

E15. (a) SWA
(b) SWG
(c) V0
(d) 74151
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0
1
2
3
4
5
6
7
8
9

A

B

74147

2^0

2^1

2^2

2^3

C

D
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Logic Families and Their
Characteristics

OUTLINE

1 The TTL Family
2 TTL Voltage and Current Ratings
3 Other TTL Considerations
4 Improved TTL Series
5 The CMOS Family
6 Emitter-Coupled Logic
7 Comparing Logic Families
8 Interfacing Logic Families
9 FPGA Electrical Characteristics

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Analyze the internal circuitry of a TTL NAND gate for both the HIGH and LOW
output states.

• Determine IC input and output voltage and current ratings from the manufacturer’s
data manual.

• Explain gate loading, fan-out, noise margin, and time parameters.
• Design wired-output circuits using open-collector TTL gates.
• Discuss the differences and proper use of the various subfamilies within both the

TTL and CMOS lines of ICs.
• Describe the reasoning and various techniques for interfacing among the TTL,

CMOS, and ECL families of ICs.

INTRODUCTION

Integrated-circuit logic gates (small-scale integration, SSI), combinational logic circuits
(medium-scale integration, MSI), and microprocessor systems (large-scale integration
and very large-scale integration, LSI and VLSI) are readily available from several manu-
facturers through distributors and electronic parts suppliers. Basically, there are three
commonly used families of digital IC logic: TTL (transistor–transistor logic), CMOS
(complementary metal oxide semiconductor), and ECL (emitter-coupled logic). Within
each family, several subfamilies (or series) of logic types are available, with different rat-
ings for speed, power consumption, temperature range, voltage levels, and current levels.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 9 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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Fortunately, the different manufacturers of digital logic ICs have standardized a
numbering scheme so that basic part numbers are the same regardless of the manufac-
turer. The prefix of the part number, however, will differ because it is the manufac-
turer’s abbreviation. For example, a typical TTL part number might be S74F08N. The
7408 is the basic number used by all manufacturers for a quad AND gate. The F stands
for the FAST TTL subfamily, and the S prefix is the manufacturer’s code for Signetics.
National Semiconductor uses the prefix DM, and Texas Instruments uses the prefix
SN. The N suffix at the end of the part number is used to specify the package type. N
is used for the plastic dual-in-line (DIP), W is used for the ceramic flatpack, and D is
used for the surface-mounted SO plastic package. The best sources of information on
available package styles and their dimensions are the manufacturers’ data manuals.
Most data manuals list the 7408 as 5408/7408. The 54XX series is the military version,
which has less stringent power supply requirements and an extended temperature
range of to whereas the 74XX is the commercial version, with a tem-
perature range of to and strict power supply requirements.

For the purposes of this text, reference is usually made to the 74XX commercial
version, and the manufacturer’s prefix code and package-style suffix code are ignored.
The XX is used in this text to fill the space normally occupied by the actual part number.
For example, the part number for an inverter in the 74XX series is 7404.

1 The TTL Family

The standard 74XX TTL IC family has evolved through several stages since the late
1960s. Along the way, improvements have been made to reduce the internal time de-
lays and power consumption. At the same time, each manufacturer has introduced
chips with new functions and applications.

The fundamental operation of a TTL chip can be explained by studying the
internal circuitry of the basic two-input 7400 NAND gate shown in Figure 1. (The
NAND is the simplest of the gates, requiring the least amount of circuitry to implement.)

+70�C0�
+125�C,-55�

Output = AB
1 = 3.4 V (typically)
0 = 0.2 V (typically)

D2D1

Input B
Input A

Q1

4 kΩ
1.6 kΩ

1 kΩ

Q2

130 Ω

Q4

Q3

D3

Multiemitter
input

Control Totem-pole
output

VCC = +5 V

Input B
Input A

Output = AB

Figure 1 Internal circuitry of a 7400 two-input NAND gate.

LOGIC FAMILIES AND THEIR CHARACTERISTICS
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B

C

E

B

C

E

N

P

N

(a) (b)

B

C

(c)

E

Figure 2 NPN transistor: (a) physical layout; (b) symbol; (c) diode equivalent.

Output
≈ 3.4 V

B = 0 V
A = 0 V

4 kΩ 1.6 kΩ

1 kΩ

130 Ω

Q3
(ON)

D3

(a)

VCC = +5 V

0.3 V Q2
(OFF)Q1

(ON)

I

Q4
(OFF)

To input of
following gates0 V 0 V

I

≈ 4.8 V

Next gates

0
0

1NAND

Figure 3 Equivalent circuits for a TTL NAND in the (a) HIGH output state; 

The diodes D1 and D2 are negative clamping diodes used to protect the inputs from any
short-term negative input voltages. The input transistor, Q1, acts like an AND gate and
is usually fabricated with a multiemitter transistor, which characterizes TTL technol-
ogy. (To produce two-, three-, four-, and eight-input NAND gates, the manufacturer
uses two-, three-, four-, and eight-emitter transistors.) Q2 provides control and current
boosting to the totem-pole output stage.

The reasoning for the totem-pole setup is that, basically, when the output is
HIGH (1), Q4 is OFF (open) and Q3 is ON (short). When the output is LOW (0), Q4 is
ON and Q3 is OFF. Because one or the other transistor is always OFF, the current flow
from VCC to ground in that section of the circuit is minimized.

To study the operation of the circuit in more detail, let’s first review some basic
electronics. An NPN transistor is basically two diodes: a P to N from base to emitter, and
another P to N from base to collector, as shown in Figure 2. The base-to-emitter diode is
forward biased by applying a positive voltage on the base with respect to the emitter. A
forward-biased base-to-emitter diode will have 0.7 V across it and cause the collector-to-
emitter junction to become almost a short circuit, with approximately 0.3 V across it.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Now, referring to Figure 3, we see the circuit conditions for the 0 output state
and 1 output state. In Figure 3(a) with or 
or both equal to 0, the base-to-emitter diode of Q1 is forward biased, saturating (turn-
ing on) Q1 and placing 0.3 V with respect to ground at the base of Q2. The 0.3 V is not

B = 0A = 0(A = 0, B = 0, output = 1),

Team 
Discussion

Discuss why Vout drops as
gate loads are added to the
output of Figure 3(a).

Common 
Misconception

You have probably never
seen a transistor on its side,
like Q1. Just realize that it 
is still turned ON the same
way, by applying a positive
current flow from base to
emitter.
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enough to turn Q2 on, so no current flows through Q2; instead, a small current flows
through the resistor to the base of Q3, turning Q3 on. (Note: The dashed lines
in Figure 3 indicate the direction of conventional current flow. Electron flow is in the
opposite direction.) The HIGH-level output voltage is typically 3.4 V, which is the 4.8
V at the base of Q3 minus the 0.7-V diode drop at the base-to-emitter diode of Q3 and
the 0.7-V drop across D3. (Note: These voltages are approximations used 
to illustrate circuit operation. Actual voltages will vary depending on the connected
output load.) 

1.6@k�

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Figure 3 (Continued ) (b) LOW output state 
(c) LOW state MultiSIM simulation.

(I = conventional current flow);

Team 
Discussion

Think about what happens
to the voltage level and 
current demand on the VCC

supply at the switching
point if both Q3 and Q4 are
momentarily ON at the
same time.Output

≈ 0.3 V
B = 5 V
A = 5 V

4 kΩ 1.6 kΩ

1 kΩ

130 Ω

Q3
(OFF)

D3

(b)

VCC = 5 V

1.4 V Q2
(ON)Q1

(OFF)
(B-to-C forward

biased)

I

Q4
(ON)

To input of
following gates0.7 V

I

Next gates

0.3 V

2.1 V 1.0 V

1
1

0NAND

1.462

Output = (AB)′

0.023

VCC  5 V (1)

VCC  5 V

4 kΩ
R1

1.6 kΩ
R2

130 Ω
R3

1 kΩ
GND (0)

A Q1

Q3

Q2

Q4

Q1B

V
+
−

V
+
−

(c)
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In Figure 3(b) with and the base-to-
emitter diode of Q1 is reverse biased, but the base-to-collector diode [see Figure 2(c)]
of Q1 is forward biased. Current will flow down through the base to collector of Q1,
turning Q2 on with a positive base voltage and turning Q4 on with a positive base volt-
age. The output voltage will be approximately 0.3 V. Q3 is kept off because there is not
enough voltage between the base of Q3 (1.0 V) to the cathode of D3 (0.3 V) to over-
come the two 0.7-V diode drops required to allow current flow.

Figure 3(c) shows the MultiSIM software simulation of the TTL NAND in the
LOW output state. Transistor Q1 is drawn as two transistors in order to function as a
multiemitter NPN. The simulation depicts voltages at the base of Q2 and the collector
of Q4 that are close to the approximations in Figure 3(b). 

B = 1,A = 1(A = 1, B = 1, output = 0),

LOGIC FAMILIES AND THEIR CHARACTERISTICS

T T L  N A N D

Figure 3(c) shows the MultiSim® software simulation of the TTL NAND in
the LOW output state. The inputs at A and B are shown in their 1 position,
which yields a LOW at the output. The input logic levels can be changed by
pressing the A key or the B key on the keyboard.

MultiSIM Exercise: Use MultiSIM to open the file fig9_3c from the text
companion website. Turn ON the power switch and step through all four
 possible combinations for the inputs  A and B as you monitor the output LED
 and output voltage. Does it match the truth table for a NAND?

Review Questions

1. The part number for a basic logic gate varies from manufacturer to man-
ufacturer. True or false?

2. The input signal to a TTL NAND gate travels through three stages of in-
ternal circuitry: input, control, and _________.

3. A forward-biased NPN transistor will have approximately _________
volts across its base–emitter junction and _________ volts across its
collector–emitter junction.

2 TTL Voltage and Current Ratings

Basically, we like to think of TTL circuits as operating at 0- and 5-V levels, but, as
you can see in Figure 3, that just is not true. As we draw more and more current out
of the HIGH-level output, the output voltage drops lower and lower, until finally, it
will not be recognized as a HIGH level anymore by the other TTL gates that it is
feeding.

Input/Output Current and Fan-Out
The fan-out of a subfamily is defined as the number of gate inputs of the same sub-
family that can be connected to a single output without exceeding the current ratings
of the gate. (A typical fan-out for most TTL subfamilies is 10.) Figure 4 shows an ex-
ample of fan-out with 10 gates driven from a single gate. 
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To determine fan-out, you must know how much input current a gate load draws
(II) and how much output current the driving gate can supply (IO). In Figure 4, the sin-
gle 7400 is the driving gate, supplying current to 10 other gate loads. The output cur-
rent capability for the HIGH condition is abbreviated IOH and is called a source
current. IOH for the 7400 is maximum. (The minus sign signifies conven-
tional current leaving the gate.)

The input current requirement for the HIGH condition is abbreviated IIH and for
the 74XX subfamily is equal to maximum. To find the fan-out, divide the source
current by the input requirements for a gate The fan-out is

For the LOW condition, the maximum output current for the 74XX subfamily is
16 mA, and the input requirement for each 74XX gate is maximum, also for
a fan-out of 10. The fan-out is usually the same for both the HIGH and LOW condi-
tions for the 74XX gates; if not, we use the lower of the two.

Because a LOW output level is close to 0 V, the current actually flows into the out-
put terminal and sinks down to ground. This is called a sink current and is illustrated in
Figure 5. In the figure, two gates are connected to the output of gate 1. The total current
that gate 1 must sink in this case is Because the maximum cur-
rent a gate can sink in the LOW condition (IOL) is 16 mA, gate 1 is well within its maxi-
mum rating of IOL. (Gate 1 could sink the current from as many as 10 gate inputs.) As

2 * 1.6 mA = 3.2 mA.

-1.6 mA

400 mA>40 mA = 10.
(40 mA).(-400 mA)

40 mA

-400 mA
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Note: The IOH rating
must be ≥ the sum
of all IIHs.

IIH

1

7408

IIH

1IIH

0

7432

IIH

7402

7404

IIH

0

7400

IIH

1

7432

7404IIH

IIH

0

7402

IIH

1

7432

IIH

1

7408

IOH

0

7400
1

1

VCC

GND

Figure 4 Ten gates driven from a single source.

Team 
Discussion

Describe the difference 
between the Iout of a 7400
that is feeding five inverter
inputs versus one that is
feeding five inverters 
connected end to end.

Common 
Misconception

Students often think that
IOL (or IOH) is the actual
output current, when really
it is the maximum limit not
to be exceeded.

IIL= −1.6 mA

1
1

(a)

1
1

2

1
3

IIL= −1.6 mAIOL= 16 mA (max)

Note: Gate 1's 
output is sinking 
3.2 mA.

Figure 5 Totem-pole LOW output of a TTL gate sinking the input currents from two gate in-
puts: (a) logic gate symbols; 
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gates are added to the output of gate 1, its output voltage will rise above its 0 V level. It
will still register as a LOW, however, as long as the number of gates is less than 10. 

For the HIGH-output condition, the circuitry is the same, but the current flow is
reversed, as shown in Figure 6. In the figure, you can see that the going into each40 mA

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Team 
Discussion

Why does the sink current
in Q4 of gate 1 remain 
unchanged if both inputs 
of Q1 gate 3 are connected
together, as they are when
forming an inverter from a
NAND?

130 Ω

Sink current:
2 × 1.6 mA = 3.2 mA
3.2 mA < 16 mA

5 V

Q3
(OFF)

Gate 1s output

(LOW
output)

LOW-output
stage of
gate 1

Q4
(ON)

1

4 kΩ

5 V
Gate 2s input

IIL = 1.6 mA

Q1
(gate 2)

1

4 kΩ

5 V
Gate 3s input

IIL = 1.6 mA

Q1
(gate 3)

(b)

Figure 5 (Continued ) (b) logic gate internal circuitry.

IIH = 40 μA

IIH = 40 μA
1

(a)

1
1

2

1
3

130 Ω

Source current:
2 ×  40 μA = 80 μA

5 V

Q3
(ON)

Gate 1s output

HIGH-output
stage of
gate 1

Q4
(OFF)

1

4 kΩ

5 V
Gate 2s input

IIH = 40 μA
Q1

(gate 2)

1

4 kΩ

5 V

Gate 3s input

IIH = 40 μA
Q1

(gate 3)

(b)

(HIGH
output)

0

IOH = −400 μA (max)

Note: Gate 1's 
output is sourcing 
80 μA.

Figure 6 Totem-pole HIGH output of a TTL gate sourcing current to two gate inputs: 
(a) logic gate symbols and (b) logic gate internal circuitry.
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input is actually a small reverse leakage current flowing against the emitter arrow. In
this case, the output of gate 1 is sourcing to the inputs of gates 2 and 3. The

is well below the maximum allowed HIGH-output current rating of 

Summary of Input/Output Current and Fan-Out
1. The maximum current that an input to a standard (that is, a 74XX) TTL gate

can sink or source is

(The minus sign signifies current leaving the gate.)

2. The maximum current that the output of a standard TTL gate can sink or
source is

(Note: This is not the actual amount of current leaving or entering a gate’s
output; rather, it is the maximum capability of the gate to sink or source cur-
rent. The actual output current that flows depends on the number and type of
loads connected.)

3. The maximum number of gate inputs that can be connected to a standard
TTL gate output is Fan-out is determined by taking the
smaller result of IOL IIL or IOH IIH.

Input/Output Voltages and Noise Margin
We must also concern ourselves with the specifications for the acceptable input and
output voltage levels. For the LOW output condition, the lower transistor (Q4) in the
totem-pole output stage is saturated (ON), and the upper one (Q3) is cut off (OFF). Vout
for the LOW condition (VOL) is the voltage across the saturated Q4, which has a typi-
cal value of 0.2 V and a maximum value of 0.4 V, as specified in the manufacturer’s
data manual.

For the HIGH output condition, the upper transistor (Q3) is saturated, and the
lower transistor (Q4) is cut off. The voltage that reaches the output (VOH) is VCC minus
the drop across the resistor, minus the C-E drop, minus the diode drop.
Manufacturers’ data sheets specify that the HIGH-level output is typically 3.4 V, and
they guarantee that the worst-case minimum value will be 2.4 V. This means that the
next gate input must interpret any voltage from 2.4 V up to 5.0 V as a HIGH level.
Therefore, we must also consider the input voltage-level specifications (VIH, VIL).

Manufacturers guarantee that any voltage between a minimum of 2.0 V up to 5.0 V
will be interpreted as a HIGH (VIH). Also, any voltage from a maximum of 0.8 V down
to 0 V will be interpreted as a LOW (VIL).

These values leave us a little margin for error, what is called the noise margin.
For example, VOL is guaranteed not to exceed 0.4 V, and VIL can be as high as 0.8 V
and still be interpreted as a LOW. Therefore, we have 0.4 V of leeway
(noise margin), as illustrated in Figures 7(a) and (b). Input voltages that fall within the
“uncertain region” in Figure 7(b) will produce unpredictable results.

Table 1 is a summary of input/output voltage levels and noise margins for the
standard family of TTL ICs. These numbers are the most common, but be sure that you

10.8 V - 0.4 V2

130@�

>>
10 (fan@out = 10).

Inverters and -800 mA for AND and OR
IOH:high@level output current = -400 mA for NAND, NOR, and

IOL:low@level output current = 16 mA (16,000 mA)

IH:high@level input current = 40 mA

IIL:low@level input current = -1.6 mA (-1600 mA)

-400 mA.-80 mA
-80 mA

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Helpful 
Hint

When the output current is
too high, the gate could fail
for two reasons: (1) Excessive
current will damage
internal components, or 
(2) the output voltage will
rise or drop beyond its
recognizable HIGH or
LOW limits.

Helpful 
Hint

Specifications for other
logic families are given in
Table 4. For the most 
up-to-date specifications,
visit the IC manufacturers’
Web sites.

Team
Discussion

Download the data sheet for
a 74LS00 NAND gate from
one of the manufacturer's
Web sites. Find all of its I/O
current and voltage ratings.
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can locate these values on a data sheet. The data sheet for a 7400 NAND gate is given
in Figure 8. Study the data sheet to be sure that you can locate all of the voltage and cur-
rent ratings covered so far. The prudent designer will always assume worst-case values to
ensure that his or her design will always work for any conditions that may arise.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

1

VOL = 0.4 V (max.)

1

±0.3 V of
noise

+0.3 V and –0.3 V
of noise is added to that

LOW gate output
=  0.4 V (max.)

The input to a standard TTL
gate will accept any level
between 0.0 and 0.8 V as a
LOW level. Therefore, the
±0.3 V of noise is acceptable.

Acceptable
LOW

Noise
margin

0.8 V = VIL (max.)

0.0 V

0.8
0.7

0.1
0

0.4

1

(a)

VOH (min.) = 2.4 V

5.0 V

4.0 V

3.0 V

2.4 V

2.0 V

1.0 V
0.8 V

0.4 V

0 V

VIH (min.) = 2.0 V

VIL (max.) = 0.8 V

VOL (max.) = 0.4 V

Guaranteed
HIGH-level
output (1)

Outputs

Recognizable
HIGH-level

input (1)

Inputs

Uncertain
region

Noise margin

Noise margin

Guaranteed LOW-level output (0)

Recognizable
LOW-level
input (0)

(b)

2.0 V to 5.0 V
will look like
a 1 input.

Not HIGH or LOW

0 V to 0.8 V
will look like
a 0 input.

Figure 7 (a) Adding noise to a LOW-level output; (b) graphical illustration of the input/out-
put voltage levels for the standard 74XX TTL series.

TABLE 1 Standard 74XX Series Voltage Levels

Parameter Minimum Typical Maximum

VOL 0.2 V 0.4 V Noise margin
VIL 0.8 V
VOH 2.4 V 3.4 V Noise margin
VIH 2.0 V

Noise margin (LOW) = VIL (max) - VOL (max)
Noise margin (HIGH) = VOH (min) - VIH (min)

= 0.4 V

= 0.4 V
s

s
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Shows every
input/output
combination

Typical switching speed

Gives part numbers for
various package styles

Means that the output
can drive 10 unit load
inputs of the same
family (fan-out = 10)

Dependency Notation symbol

Traditional Logic symbolGives IC wiring
information

Typical power supply
requirements

Figure 8 The 7400 data sheet. (Used with permission from NXP Semiconductors.)
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Range not to be exceeded

Stay
within
this range
but use
5.0 V
nominal

Normal range
to be used

Shows the
results of
an input
pulse
applied to a
7400 Device
Under Test
(DUT)

Specs for each
7400 series

Input
voltage
specs

Output
current
specs

Figure 8 Continued
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Figure 8 Continued

Output
voltage
specs

Input
current
specs

Waveform shows
definitions for
propagation time
specs

Propagation
delay specs

The Min and Max are guaranteed
limits but you can expect the typ (typical)
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The following examples illustrate the use of the current and voltage ratings for
establishing acceptable operating conditions for TTL logic gates.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

E X A M P L E  1

Find the voltages and currents that are asked for in Figure 9 if the gates are
all standard (74XX) TTLs.

(a) Find Va and Ia for Figure 9(a).

(b) Find Va, Vb, and Ib for Figure 9(b).

(c) Find Va, Vb, and Ib for Figure 9(c).

Figure 9 Voltage and current ratings.

Va
53

2

1
1

1

0

0

(a)

Ia

Vb

Ib

10 kΩ

5 V

4.7 kΩ

Va

(c)

Vb

Ib

1 kΩ

Va

(b)

+5 V

100 Ω

1

1

0

1
6

4

5

Solution:

(a) The input to gate 3 is a , so the output will be LOW. Using the typical
value, Because gate 3 is LOW, it will be sinking current
from the three other gates: 4, 5, and 6. The typical value for each IIL is

therefore, 

(b) The resistor to ground will place a LOW level at that input. IIL
typically is which flows down through the resistor,
making . The 0.16 V at Va will be
recognized as a LOW level so the AND gate will
output a LOW level; (typ.). The AND gate will sink cur-
rent from the resistor; The
4.8 mA is well below the maximum allowed current of 16 mA (IOL), so
the AND gate will not burn out.

(c) IIH into the OR gate is therefore, the voltage at 
The output level of the OR gate will be

HIGH (VOH), making and 
The is below the maximum rating of the OR gate 

Therefore, the OR gate will not burn out.for OR gates.).-800 mA max.
(IOH =723 mA

Ib = 3.4 V/4.7 k� = 723 mA.Vb = 3.4 V
[5 V - (10 k� * 40 mA)].

Va = 4.6 V40 mA;

�].Ib = 4.8 mA[(5 V - 0.2 V)>1 k1@k�
Vb = 0.2 V

(VIL = 0.8 V max.),
Va = 0.16 V (1.6 mA * 100 �)

100@�-1.6 mA,
100@�

Ia = -4.8 mA (-1.6 mA - 1.6 mA - 1.6 mA).-1.6 mA;

Va = 0.2 V.
1-1
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Review Questions

4. Why aren’t the HIGH/LOW output levels of a TTL gate exactly 5.0 and
0 V?

5. Describe what is meant by fan-out.

6. List the names and abbreviations of the four input and output currents of
a digital IC.

7. Describe the difference between sink and source output current.

8. Determine if the following input voltages will be interpreted as HIGH,
LOW, or undetermined logic levels in a standard TTL IC.

(a) 3.0 V (c) 1.0 V

(b) 2.2 V (d) 0.6 V

3 Other TTL Considerations

Pulse-Time Parameters: Rise Time, Fall Time, 
and Propagation Delay
We have been using ideal pulses for the input and output waveforms up until now.
Actually, however, the pulse is not perfectly square; it takes time for the digital level to
rise from 0 up to 1 and to fall from 1 down to 0.

As shown in Figure 10(a), the rise time (tr) is the length of time it takes for a
pulse to rise from its 10% point up to its 90% point. For a 5-V pulse, the 10% point is
0.5 V and the 90% point is 4.5 V The fall time (tf) is the
length of time it takes to fall from the 90% point to the 10% point.

(90% * 5 V).(10% * 5 V),

LOGIC FAMILIES AND THEIR CHARACTERISTICS

0.5 V
0  V

(10%)
(0-Level)

5.0 V
4.5 V

(1-Level)
(90%)

tr
tr = 0.8 div. × 5 ns/div.
Tr= 4 ns

tf
tf = 1.0 div. × 5 ns/div.

 = 5 ns

Vertical scale (voltage amplitude) = 1 V/div.
Horizontal scale (time base) = 5 ns/div.

(a)

Figure 10 Oscilloscope displays: (a) pulse rise and fall times;

Not only are input and output waveforms sloped on their rising and falling edges,
but there is also a delay time for an input wave to propagate through an IC to the
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output, called the propagation delay (tPLH and tPHL). The propagation delay is due to
limitations in transistor switching speeds caused by undesirable internal capacitive
stored charges.

Figure 10(b) shows that it takes a certain length of time for an input pulse to
reach the output of an IC gate. A specific measurement point (1.5 V for the standard
TTL series) is used as a reference. The propagation delay time for the output to
respond in the LOW-to-HIGH direction is labeled tPLH, and in the HIGH-to-LOW
direction, it is labeled tPHL.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

(b)

tPHL = 1.0 div. × 20 ns/div.

 = 20 ns

1.5 V

0 V

Input
pulse

tPLH = 0.6 div. × 20 ns/div.

 = 12 ns

Vertical scale (voltage amplitude) = 2 V/div.
Horizontal scale (time base) = 20 ns/div.

1.5 V

0  V

Output
pulse

tPHLtPLH

Input
pulse

Output
pulse (delayed)

1

Figure 10 (Continued) (b) propagation delay times.

E X A M P L E  2

(A) The propagation delay times for the 7402 NOR gate shown in Figure
11(a) are listed in a TTL data manual as and 
Sketch and label the input and output pulses to a 7402.

15 ns.tPHL =tPLH = 22 ns

Figure 11(a) 7402 propagation delays.

7402

(a)

Common
Misconception

The subscripts LH and HL
pertain to the output, not
the input.

Solution: The input and output pulses are shown in Figure 11(b).
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1.5 V

0 V

15 ns

Output
pulse

1.5 V

0 V

Input
pulse

22 ns
tPLHtPHL

(b)

Figure 11(b) Solution to Example 2(a).

Helpful 
Hint

It is very important that
you can find these specs, as
well as others, in a data
book. (Data sheets for some
common ICs are provided
in Appendix: Manufactures'

 .)

(B) Sketch the three waveforms (Vin, Va, and Vb) that will be produced 
in Figure 12(a). (The propagation delays for the 74F00 are 

and tPHL = 3.2 ns.)3.7 ns
tPLH =

(a)

1
74F00 7402

0
Vin

2 MHz
TTL-
Level

Va Vb

Figure 12(a) Multi-gate propagation delays.

1.5 V

0 V

500 ms

3.2 ns 3.7 ns

22 ns 15 ns

1.5 V

0 V

1.5 V

0 V

Vin

Va

Vb

(b)

Figure 12(b) Solution to Example 2(b).

Solution: The three waveforms are shown in Figure 12(b).

tp =

1

f
=

1

2 MHz
= 0.5 ms = 500 ms

Data Sheets
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Power Dissipation
Another operating characteristic of ICs that must be considered is the power dissipa-
tion. The power dissipated (or consumed) by an IC is equal to the total power supplied
to the IC power supply terminals (VCC to ground). The current that enters the VCC sup-
ply terminal is called ICC. Two values are given for the supply current: ICCH and ICCL for
use when the outputs are HIGH or when the outputs are LOW. Because the outputs are
usually switching between HIGH and LOW, if we assume a 50% duty cycle (HIGH half
of the time, LOW half of the time), then an average ICC of the typical values can be used
and the power dissipation determined from the formula PD = VCC * ICC (av.).

LOGIC FAMILIES AND THEIR CHARACTERISTICS

E X A M P L E  3

The total supply current for a 7402 NOR IC is given as 
Determine the power dissipation of the IC.

Solution:

 = 5.0 V *

14 mA + 8 mA

2
= 55 mW

 PD = VCC * ICC (av.)

ICCH = 8 mA.
ICCL = 14 mA,

Open-Collector Outputs
Instead of using a totem-pole arrangement in the output stage of a TTL gate, another
arrangement, called the open-collector (OC) output, is available. Remember that,
with the totem-pole output stage, for a LOW output the lower transistor is ON and the
upper transistor is OFF, and vice versa for a HIGH output, whereas with the OC output
the upper transistor is removed, as shown in Figure 13(a). Now the output will be LOW
when Q4 is ON, and the output will float (not HIGH or LOW) when Q4 is OFF. This
means that an OC output can sink current, but it cannot source current. The truth table
comparing a NAND (74LS00) to an open-collector NAND (74LS01) is shown in
Figure 13(b).

Input B
Input A Q1

4 kΩ 1.6 kΩ

Q2

VCC

1 kΩ

Q3

Output

Q4

1 kΩ

130 Ω

Q3 circuitry removed from
original NAND circuit.

D3

(a)

Figure 13 TTL NAND with an open-collector output: (a) circuitry; (b) truth table.

A

0
0
1
1

0
1
0
1

B

Input

X-Output

NAND

X-Output

OC NAND

1
1
1
0

Float
Float
Float

0

(b)
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To get a TTL OC output or a CMOS OD output to produce a HIGH, an external
resistor (called a pull-up resistor) must be used, as shown in Figure 14. Now when Q4
is OFF (open), the output is approximately 5 V (HIGH), and when Q4 is ON (short),
the output is approximately 0 V (LOW). The optimum size for a pull-up resistor de-
pends on the size of the output’s load and the leakage current through Q4 (IOH) when it
is OFF. Usually, a good size for a pull-up resistor is is not too small to
allow excessive current flow when Q4 is ON, and it is not too large to cause an exces-
sive voltage drop across itself when Q4 is OFF.

10 k�: 10 k�

LOGIC FAMILIES AND THEIR CHARACTERISTICS

B
A

OC

Vout ≈ 0 V

10 kΩ

+5 V

Q4
ON

Output

+5 V

Rpull-up

Vout ≈ 5 V

10 kΩ

+5 V

Q4
OFF

The 10-kΩ pull-up
makes the otherwise
floating output
look HIGH.

(a)

(b)

(c)

Figure 14 Using a pull-up resistor with an open-collector output. (a) Adding a pull-up
resistor to a NAND gate. (b) When Q4 inside the NAND is on, (c) When Q4 is
off, the pull-up resistor provides to Vout.� 5 V

Vout � 0 V.

Open-collector buffer/driver ICs are available for output loads requiring large
sink currents, such as displays, relays, or motors. The term buffer/driver signifies
the ability to provide high output currents to drive heavy loads. Typical ICs of this type
are the 7406 OC inverter buffer/driver and the 7407 OC buffer/driver. They are each
capable of sinking up to 40 mA, which is 2.5 times greater than the 16-mA capability
of the standard 7404 inverter.

In CMOS, the equivalent of an open collector is called an open drain. Its output
also produces a LOW or float level.

Wired-Output Operation
The main use of the OC gates is when the outputs from two or more gates or other
devices have to be tied together. Using the regular totem-pole output gates, if a gate
having a HIGH output (5 V) is connected to another gate having a LOW output (0 V),
you would have a direct short circuit, causing either or both gates to burn out.

Using OC gates, outputs can be connected without worrying about the 
conflict. When connected, they form wired-AND logic, as shown in Figure 15. The
7405 IC has six OC inverters in a single package. By tying their outputs together, as
shown in Figure 15(a), we have in effect ANDed all the inverters. The outputs of all six
inverters must be floating (all inputs must be LOW) to get a HIGH output if

AND AND and so on). If any of the inverter output transistors
(Q4) turn on, the output will go LOW. The result of this wired-AND connection is the
six-input NOR function shown in Figure 15(c).

C = 0,B = 0A = 0
(X = 1

5 V - 0 V
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7433

VCC

A

B
X

OC

R

7401
C

D OC

7409
E

F OC

(a)

7433

VCC

A

B
X

OC

R

7401
C

D OC

7409
E
F OC

(b)

Figure 16 Wired-ANDing of open-collector gates for Example 4: 
(a) original circuit and (b) alternative gate representations used for clarity.

A X = A · B · C · D · E · F

7405 Hex OC
inverter

+5 V

R

B

C

D

E

F

(a)

X = A + B + C + D + E + F

A
B
C
D
E
F

X

(c)

A
B
C
D
E
F

(b)

X

NOTE: Outputs cannot be
connected together like this
unless they are OC gates

Figure 15 (a) Wired-AND connections to a hex OC inverter to form a six-input NOR gate;
(b) AND gate representation; (c) alternative NOR gate representation.

E X A M P L E  4

Write the Boolean equation at the output of Figure 16(a).

Solution: The output of all three gates in either circuit must be floating to
get a HIGH output at X. Using Figure 16(b),

X = A B � (C + D) � EF
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Disposition of Unused Inputs and Unused Gates
Electrically, open inputs degrade ac noise immunity as well as the switching speed of
a circuit. For example, if two inputs to a three-input NAND gate are being used and the
third is allowed to float, unpredictable results will occur if the third input picks up elec-
trical noise from surrounding circuitry.

Unused inputs on AND and NAND gates should be tied HIGH, and on OR and
NOR gates, they should be tied to ground. An example of this is a three-input AND
gate that is using only two of its inputs.

Also, the outputs of unused gates on an IC should be forced HIGH to reduce the
ICC supply current and, thus, reduce power dissipation. To do this, tie AND and OR in-
puts HIGH, and tie NAND and NOR inputs LOW. An example of this is a quad NOR
IC, where only three of the NOR gates are being used.

Power Supply Decoupling
In digital systems, there are heavy current demands on the main power supply. TTL
logic tends to create spikes on the main VCC line, especially at the logic-level transition
point (LOW to HIGH or HIGH to LOW). At the logic-level transition, there is a period
of time that the conduction in the upper and lower totem-pole output transistors over-
laps. This drastically changes the demand for ICC current, which causes sharp high-
frequency spikes to occur on the VCC (power supply) line. These spikes cause false
switching of other devices connected to the same power supply line and can also in-
duce magnetic fields that radiate electromagnetic interference (EMI).

Decoupling of IC power supply spikes from the main VCC line can be accom-
plished by placing a 0.01- to capacitor directly across the VCC-to-ground pins
on each IC in the system. The capacitors tend to hold the VCC level at each IC constant,
thus reducing the amount of EMI radiation that is emitted from the system and the like-
lihood of false switching. Locating these small capacitors close to the IC ensures that
the current spike will be kept local to the chip instead of radiating through the entire
system back to the power supply.

Review Questions

9. The rise time is the length of time required for a digital signal to travel
from 0 V to its HIGH level. True or false?

10. The letters L and H in the abbreviation tPLH refer to the transition in the
_________ (input, output) signal.

11. Describe the function of a pull-up resistor when it is used with an
open-collector TTL output.

4 Improved TTL Series

Integrated-circuit design engineers have constantly worked to improve the standard
TTL series. In fact, very few new designs will incorporate the use of the original 74 se-
ries technology. A simple improvement that was made early on was simply reducing all
the internal resistor values of the standard TTL series. This increased the power con-
sumption (or dissipation), which was bad, but it reduced the internal time con-
stants that cause propagation delays. The result was the 74HXX series, which has
almost half the propagation delay time but almost double the power consumption of the
standard TTL series. The product of delay (the speed–power product),
which is a figure of merit for IC families, remained approximately the same, however.

time * power

R * C

0.1@mF

LOGIC FAMILIES AND THEIR CHARACTERISTICS
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Another series, the 74LXX, was developed using just the opposite approach. The
internal resistors were increased, thus reducing power consumption, but the propaga-
tion delay increased, keeping the speed–power product about the same. The 74HXX
and 74LXX series have, for the most part, been replaced now by the Schottky TTL and
CMOS series of ICs.

Schottky TTL
The major speed limitation of the standard TTL series is due to the capacitive charge
in the base region of the transistors. The transistors basically operate at either cutoff or
saturation. When the transistor is saturated, charges build up at the base region, and
when it is time to switch to cutoff, the stored charges must be dissipated, which takes
time, thus causing propagation delay.

Schottky logic overcomes the saturation and stored charges problem by placing a
Schottky diode across the base-to-collector junction, as shown in Figure 17. With the
Schottky diode in place, any excess charge on the base is passed on to the collector, and
the transistor is held just below saturation. The Schottky diode has a special metal
junction that minimizes its own capacitive charge and increases its switching speed.
Using Schottky-clamped transistors and decreased resistor values, the propagation de-
lay is reduced by a factor of 4, and power consumption is only doubled. Therefore, the
speed–power product of the 74SXX TTL series is improved to approximately half that
of the 74XX TTL series (the lower, the better).
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Figure 17 Schottky-clamped transistor: (a) Schottky diode reduces stored 
charges and (b) symbol.

Low-Power Schottky (LS): (See Figure 8 for the 7400/74LS00 data sheet.) By using
different integration techniques and increasing the values of the internal resistors, the
power dissipation of the Schottky TTL is reduced significantly. The speed–power
product of the 74LSXX TTL series is approximately one-third that of the 74SXX
series and one-fifth that of the 74XX series.

Advanced Low-Power Schottky (ALS): Further improvement of the 74LSXX series
reduced the propagation delay time from 9 to 4 ns and the power dissipation from 2 to
1 mW per gate. The 74ALSXX and 74LS series rapidly replaced the standard 74XX
and 74SXX series because of the speed and power improvements. However, as with
any new technology, they were slightly more expensive.

Fast (F)
It was long clear to TTL IC design engineers that new processing technology was
needed to improve the speed of the LS series. A new process of integration, called
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oxide isolation (also used by the ALS series), has reduced the propagation delay in the
74FXX series to below 3 ns. In this process, transistors are isolated from each other not
by a reverse-biased junction, but by an actual channel of oxide. This dramatically re-
duces the size of the devices, which in turn reduces their associated capacitances and,
thus, reduces propagation delay.

5 The CMOS Family

The CMOS family of integrated circuits differs from TTL by using an entirely differ-
ent type of transistor as its basic building block. The TTL family uses bipolar tran-
sistors (NPN and PNP). CMOS (complementary metal oxide semiconductor) uses
complementary pairs of transistors (N type and P type) called MOSFETs (metal oxide
semiconductor field-effect transistors). MOSFETs are also used in other families of
MOS ICs, including PMOS and NMOS, which are most commonly used for large-
scale memories and microprocessors in the LSI and VLSI (large-scale and very large-
scale integration) category. One advantage that MOSFETs have over bipolar
transistors is that the input to a MOSFET is electrically isolated from the rest of the
MOSFET [see Figure 18(b)], giving it a high input impedance, which reduces the in-
put current and power dissipation.
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Figure 18 Simplified diagrams of bipolar and field-effect transistors: (a) NPN bipolar tran-
sistor used in TTL ICs and (b) N-channel MOSFET used in CMOS ICs.

The N-channel MOSFET is similar to the NPN bipolar transistor in that it is two
back-to-back N–P junctions, and current will not flow down through it until a positive
voltage is applied to the gate. The silicon dioxide (SiO2) layer between the gate mate-
rial and the P substrate (base) of the MOSFET prevents any gate current from flow-
ing, which provides a high input impedance and low power consumption.

The MOSFET shown in Figure 18(b) is a normally OFF device because there are
no negative carriers in the P material for current flow to occur. However, conventional
current will flow down from drain to source if a positive voltage is applied to the gate
with respect to the substrate. This voltage induces an electric field across the SiO2
layer, which repels enough of the positive charges in the P material to form a channel
of negative charges on the left side of the P material. This allows electrons to flow from
source to drain (conventional current flows from drain to source). The channel that is
formed is called an N channel because it contains negative carriers.
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P-channel MOSFETs are just the opposite, constructed from P–N–P materials.
The channel is formed by placing a negative voltage at the gate with respect to the
substrate.

There are three major MOS technology families: PMOS (made up of P-channel
MOSFETs), NMOS (made up of N-channel MOSFETs), and CMOS (made up of com-
plementary P-channel and N-channel MOSFETs). MOS technology provides a higher
packing density than bipolar TTL and, therefore, allows IC manufacturers to provide
thousands of logic functions on a single IC chip (VLSI circuitry). For example, it is
common to find computer systems with MOS memory ICs containing millions of
memory cells per chip and MOS microcontroller ICs containing the combined logic of
more than 10 LSI ICs. Between NMOS and PMOS, NMOS was historically more
widely used because of its higher speed and packing density.

Fabricating both P- and N-channel transistors in the same package previously
made CMOS slightly more expensive and limited its use in VLSI circuits. However, re-
cent advances in fabrication techniques and mass production have reduced its price.
Today, CMOS competes very favorably with the best bipolar TTL circuitry in the SSI
and MSI arena and is by far the most popular technology in LSI and VLSI memory and
microprocessor ICs.

Using an N-channel MOSFET with its complement, the P-channel MOSFET, a
simple complementary MOS (CMOS) inverter can be formed, as shown in Figure 19.
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TABLE 2 Basic MOSFET Switching
Characteristics

Gate Levela N-Channel P-Channel

1 ON OFF
0 OFF ON

a1 K VDD (or VCC); 0 K VSS (Gnd).

P-channel

VoutVin
N-channel

VSS

GND

VDD (or VCC)

Figure 19 CMOS inverter formed from complementary N-channel/P-channel transistors.

We can think of MOSFETs as ON/OFF switches, just as we did for bipolar tran-
sistors. Table 2 summarizes the ON/OFF operation of N- and P-channel MOSFETs.
We can use Table 2 to prove that the circuit of Figure 19 operates as an inverter. With

the N-channel transistor is ON and the P-channel transistor is OFF, so
With the N-channel transistor is OFF and the P-channel transistor is

ON, so Therefore, . Notice that this complementary action is very
similar to the TTL totem-pole output stage, but much simpler to understand.

Vout = VinVout = 1.
Vin = 0,Vout = 0.

Vin = 1,
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Handling MOS Devices to Avoid Electrostatic Discharge*
The silicon dioxide layer that isolates the gate from the substrate is so thin that it is very
susceptible to burn-through from electrostatic discharge (ESD). ESD occurs when a
static charge moves from one surface to another, such as from a human finger to an IC.
You must be very careful and use the following guidelines when handling MOS devices:

1. Store the ICs in a conductive foam, or leave them in their original container.

2. Work on a conductive surface (e.g., a metal tabletop) that is properly grounded.

3. Ground all test equipment and soldering irons.

4. Wear a wrist strap to connect your wrist to ground with a length of wire and
a series resistor (see Figure 21).

5. Do not connect signals to the inputs while the device power supply is off.

6. Connect all unused inputs to VDD or ground.

7. Don’t wear electrostatic-prone clothing, such as wool, silk, or synthetic fibers.

8. Don’t remove or insert an IC with the power on.

1@M�
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Figure 20 CMOS gate schematics: (a) NAND and (b) NOR.

*The World Wide Web is the best way to keep current on the latest developments in ESD standards and prevention. The following
are two popular Web sites for this information:
http://www.esda.org (The Electrostatic Discharge Association)
http://www.minicircuits.com/appnote/an40005.pdf (Mini-Circuits Inc.)

The other basic logic gates can also be formed using complementary MOSFET
transistors. The operation of CMOS NAND and NOR gates can easily be understood
by studying the schematics and data tables presented in Figure 20(a) and 20(b).
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CMOS Availability†*
The CMOS family of ICs provides almost all the same functions that are available in
the TTL family, plus CMOS provides several special-purpose functions not provided
by TTL. Like TTL, the CMOS family has evolved into several different subfamilies, or
series, each having better performance specifications than the previous one.

4000 Series: The 4000 series (or the improved 4000B) is the original CMOS line. It
became popular because it offered very low power consumption and could be used in
battery-powered devices. It is much slower than any of the TTL series and has a low
level of electrostatic discharge protection. The power supply voltage to the IC can
range anywhere from to with the minimum 1-level input equal to and
the maximum 0-level input equal to 

40H00 Series: This series was designed to be faster than the 4000 series. It did over-
come some of the speed limitations, but it is still much slower than LSTTL.

74C00 Series: This series was developed to be pin compatible with the TTL family,
making interchangeability easier. It uses the same numbering scheme as TTL, except
that it begins with 74C. It has a low-power advantage over the TTL family, but it is still
much slower.

74HC00 and 74HCT00 Series: The 74HC00 (high-speed CMOS) and 74HCT00
(high-speed CMOS, TTL compatible) offer a vast improvement over the original
74C00 series. The HC/HCT series are as speedy as the LSTTL series and still con-
sume less power, depending on the operating frequency. They are pin compatible
(the HCT is also input/output voltage-level compatible) with the TTL family, yet
they offer greater noise immunity and greater voltage and temperature

1
3VCC.

2
3VCC+15 V,+3

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Figure 21 Wearing a commercially available wrist strap dissipates static charges from the
technician’s body to a ground connection while handling CMOS ICs.

*Upon publication of this text, data sheets for most of the TTL and CMOS logic families were available on the Internet.
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operating ranges. Further improvements to the HC/HCT series have led to the Ad-
vanced CMOS Logic (ACL) and Advanced CMOS Technology (ACT) series, which
have even better operating characteristics.

74-BiCMOS Series: Several IC manufacturers have developed technology that com-
bines the best features of bipolar transistors and CMOS transistors, forming BiCMOS
logic. The high-speed characteristics of bipolar P–N junctions are integrated with the
low-power characteristics of CMOS to form an extremely low-power, high-speed fam-
ily of digital logic. Each manufacturer uses different suffixes to identify their BiCMOS
line. For example, Texas Instruments uses 74BCTXXX, Harris uses 74FCTXXX, and
Signetics (Philips) uses 74ABTXXX.

The product line is especially well suited for and is mostly limited to micro-
processor bus interface logic. This logic is mainly available in octal (8-bit) configura-
tions used to interface 8-, 16-, and 32-bit microprocessors with high-speed peripheral
devices such as memories and displays. An example is the 74ABT244 octal buffer from
Philips. Its logic is equivalent to the 74244 of other families, but it has several advanced
characteristics. It has TTL-compatible input and output voltages, gate input currents
less than and output sink and source current capability of 64 and 
respectively. It is extremely fast, having a typical propagation delay of 2.9 ns.

One of the most desirable features of these bus-interface ICs is the fact that, when
their outputs are inactive or HIGH, the current draw from the power supply
(ICCZ or ICCH) is only Because interface logic spends a great deal of its time in
an inactive (idle) state, this can translate into a power dissipation as low as !
The actual power dissipation depends on how often the IC is inactive and on the
HIGH/LOW duty cycle of its outputs when it is active.

74-Low Voltage Series: A new series of logic using a nominal supply voltage of 3.3
V (and lower) has been developed to meet the extremely low power design require-
ments of battery-powered and handheld devices. These ICs are being designed into the
circuits of notebook computers, mobile radios, handheld video games, telecom equip-
ment, and high-performance workstation computers. Some of the more common Low-
Voltage families are identified by the following suffixes:

LV—Low-voltage HCMOS

LVC—Low-voltage CMOS

LVT—Low-voltage technology

ALVC—Advanced low-voltage CMOS

HLL—High-speed low-power low-voltage

The power consumption of CMOS logic ICs decreases approximately with the square
of power supply voltage. The propagation delay increases slightly at this reduced volt-
age, but the speed is restored, and even increased, by using finer geometry and submi-
cron CMOS technology that is tailored for low-power and low-voltage applications.

The supply voltage of LV logic can range from 1.2 to 3.6 V, which makes it
well suited for battery-powered applications. When operated between 3.0 and 3.6 V,
it can be interfaced directly with TTL levels. The switching speed of LV logic is
extremely fast, ranging from approximately 9 ns for the LV series down to 2.1 ns for
the ALVC. Like BiCMOS logic, the power dissipation of LV logic is negligible in
the idle state or at low frequencies. At higher frequencies, the power dissipation is
down to half as much as BiCMOS, depending on the power supply voltage used on
the LV logic. Another key benefit of LV logic is its high output drive capability. The
highest capability is provided by the LVT series, which can sink up to 64 mA and
source up to 32 mA.

2.5 mW
0.5 mA.

(OE = 1)

-32 mA,0.01 mA,

LOGIC FAMILIES AND THEIR CHARACTERISTICS
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74AHC and 74AHCT Series: The advanced, high-speed CMOS is an enhanced ver-
sion of the 74HC and 74HCT series. Designers who previously upgraded to the
74HC/HCT series can take the next step and migrate to this advanced version. It pro-
vides superior speed and low power consumption, and it has a broad product selection.
74AHC has half the static power consumption, one-third the propagation delay, high-
output drive current, and can operate at a VCC of 3.3 or 5 V.

Two new forms of packaging have emerged with this series: Single-gate logic
and Widebus. Single-gate logic has a lower pin count and takes up less area on a
printed-circuit board by having only a single gate on the IC instead of the two-, four-,
or six-gate versions. For example, the 74AHC1G00 is the single-gate version of the
74AHC00 quad NAND. It is a five-pin IC containing a single NAND gate.

The Widebus version* of logic is an extension of the octal ICs commonly found
in microprocessor applications. They provide 16-bit I/O capability in a single IC pack-
age. For example, the 74AHC16244 is the Widebus version of the 74AHC244 octal
buffer. It provides 16 buffers in a 48-pin IC package.

74AVC (Advanced Very Low-Voltage) CMOS Logic: Most modern internal PC bus
interface circuitry must run at over 100 MHz. That means a clock period of less than
10 ns! The AVC family was developed specifically to meet these faster speed require-
ments. It is designed to operate at the very low voltages (3.3, 2.5, 1.8, 1.5, and 1.2 V)
used in modern electronic circuitry. The maximum propagation delay is less than 2 ns,
which allows a high-speed microprocessor to communicate with peripheral devices
without having to enter wait states for the interface logic to catch up. Another key fea-
ture of the AVC family is called “Dynamic Output Control.” This internal circuitry
automatically adjusts the output impedance during logic-level transitions to minimize
both the overshoot and undershoot that show up on the output as noise in high-speed
switching circuits.

6 Emitter-Coupled Logic

Another family designed for extremely high-speed applications is emitter-coupled
logic (ECL). ECL comes in two series, ECL 10K and ECL 100K. ECL is extremely
fast, with propagation delay times as low as 0.8 ns. This speed makes it well suited for
large mainframe computer systems that require a high number of operations per sec-
ond, but that are not as concerned about an increase in power dissipation.

The high speed of ECL is achieved by never letting the transistors saturate; in
fact, the whole basis for HIGH and LOW levels is determined by which transistor in a
differential amplifier is conducting more.

Figure 22 shows a simplified diagram of the differential amplifier used in ECL
circuits. The HIGH and LOW logic-level voltages and respectively) are
somewhat unusual and cause problems when interfacing to TTL and CMOS logic.

An ECL IC uses a supply voltage of at VEE and 0 V at VCC. The reference
voltage on the base of Q3 is set up by internal circuitry and determines the threshold
between HIGH and LOW logic levels. In Figure 22(a), the base of Q3 is at a more pos-
itive potential with respect to the emitter than Q1 and Q2 are. This causes Q3 to con-
duct, placing a LOW at Vout.

If either input A or B is raised to (HIGH), the base of Q1 or Q2 will be at
a higher potential than the base of Q3, and Q3 will stop conducting, making Vout HIGH.
Figure 22(b) shows what happens when is placed on the A input.

In any case, the transistors never become saturated, so capacitive charges are not
built up on the base of the transistors to limit their switching speed. Figure 23 shows
the logic symbol and truth table for the OR/NOR ECL gate.

-0.8 V

-0.8 V

-5.2 V

-1.7 V,(-0.8

*Widebus is a registered trademark of Texas Instruments, Inc.
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Developing New Digital Logic Technologies*
The quest for logic devices that can operate at even higher frequencies and can be
packed more densely in an IC package is a continuing process. Designers have high
hopes for other new technologies, such as integrated injection logic (I2L), silicon-on-
sapphire (SOS), gallium arsenide (GaAs), and Josephson junction circuits. Eventually,
propagation delays will be measured in picoseconds, and circuit densities will enable
the supercomputer of today to become the desktop computer of tomorrow.

Review Questions

12. What effect did the Schottky-clamped transistor have on the operation
of the standard TTL IC?

13. The earlier 4000 series of CMOS ICs provided what advantage over
earlier TTL ICs? What was their disadvantage?

Q2
OFF

220 Ω

VCC = GND

B
Q1

OFFA

Vout

Q3
ON

220 Ω

Vout

Vref = –1.3 V

I

780 Ω

VEE = –5.2 V

Input A
Input B

Vout

= LOW (≤ –1.7 V)
= LOW (≤ –1.7 V)
= LOW (≤ –1.7 V)

(a)

Q2
OFF

220 Ω

VCC = GND

B
Q1
ONA

Vout

Q3
OFF

220 Ω

Vout

Vref = –1.3 V

I

780 Ω

VEE = –5.2 V

Input A
Input B

Vout

= HIGH (≥ –0.8 V)
= LOW (≤ –1.7 V)
= HIGH (≥ –0.8 V)

(b)

Figure 22 Differential amplifier input stage to an ECL OR/NOR gate: (a) LOW output and
(b) HIGH output.

A

B

Vout 0
1
0
1

A

0
0
1
1

B

Inputs Outputs

0
1
1
1

1
0
0
0

= A + B

Vout = A + B

Vout Vout

Figure 23 ECL OR/NOR symbol and truth table.

*New IC families are introduced every year. To keep up with the latest technology, please visit some manufacturer 's  Web sites 
for the manufacturers of digital logic.
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14. The BiCMOS family of ICs is fabricated using both CMOS transistors
and _________ transistors.

15. The high speed of ECL ICs is achieved by fully saturating the ON tran-
sistor. True or false?

7 Comparing Logic Families

Throughout the years, system designers have been given a wide variety of digital logic
to choose from. The main parameters to consider include speed, power dissipation,
availability, types of functions, noise immunity, operating frequency, output-drive ca-
pability, and interfacing. First and foremost, however, are the basic speed and power
concerns. Table 3 shows the propagation delay, power dissipation, and speed–power
product for the most popular families.

TABLE 3 Typical Single-Gate Performance Specifications

Speed–Power
Propagation Power Product

Family Delay (ns) Dissipation (mW) pW-s (picowatt-seconds)

74 10 10 100
74S 3 20 60
74LS 9 2 18
74ALS 4 1 4
74F 2.7 4 11
4000B (CMOS) 105 1 at 1 MHz 105
74HC (CMOS) 10 1.5 at 1 MHz 15
74BCT (BiCMOS) 2.9 0.0003 to 7.5 0.00087 to 22
100K (ECL) 0.8 40 32

The speed–power product is a type of figure of merit, but it does not neces-
sarily tell the ranking within a specific application. For example, to say that the
speed–power product of 15 pW-s for the 74HC family is better than 32 pW-s for the
100K ECL family totally ignores the fact that ECL is a better choice for ultrahigh-
speed applications.

Another way to view the speed–power relationships is with the graph shown in
Figure 24. From the graph, you can see the wide spectrum of choices available. 4000B
CMOS and 100K ECL are at opposite ends of the spectrum of speed versus power,
whereas 74ALS and 74F seem to offer the best of both worlds.

The operating frequency for CMOS devices is critical for determining power dis-
sipation. At very low frequencies, CMOS devices dissipate very little power, but at
higher switching frequencies, charging and discharging the gate capacitances draws a
heavy current from the power supply (ICC) and, thus, increases the power dissipation

as shown in Figure 25. We see that at high frequencies the power
dissipations of 74HC CMOS and 74LS TTL are comparable. At today’s microproces-
sor clock rates, 74HC CMOS ICs actually dissipate more power than 74LS or 74ALS.
However, in typical systems, only a fraction of the gates are connected to switch as fast
as the clock rate, so significant power savings can be realized by using the 74HC
CMOS series.

(PD = VCC * ICC),
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8 Interfacing Logic Families

Often, the need arises to interface (connect) between the various TTL and CMOS fam-
ilies. You have to make sure that a HIGH out of a TTL gate looks like a HIGH to the
input of a CMOS gate and vice versa. The same holds true for the LOW logic levels.
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Figure 24 Graph of propagation delay versus power. (Used with permission from NXP
Semiconductors.)
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Figure 25 Power supply current versus frequency. (Used with permission from NXP
Semiconductors.)
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You also have to make sure that the driving gate can sink or source enough current to
meet the input current requirements of the gate being driven.

TTL to CMOS
Let’s start by looking at the problems that might arise when interfacing a standard 7400
series TTL to a 4000B series CMOS. Figure 26 shows the input and output voltage
specifications for both, assuming that the 4000B is powered by a 5-V supply.

5 V

VIH (min.) = 2.0 V

3.33 V

(a)

Uncertain
region

VOH (min.) = 2.4 V

1.67 V

VIL (max.) = 0.8 V

VOL (max.) = 0.4 V

0 V

High-voltage noise margin

Low-voltage noise margin

VIH (min.) = 3.33 V

(b)

Uncertain
region

VOH (min.) = 4.95 V

VIL (max.) = 1.67 V

VOL (max.) = 0.05 V

High-voltage noise margin

Low-voltage noise margin

An output of 2.4 V
falls into the
uncertain region
of the 4000B CMOS.

Figure 26 Input and output voltage specifications: (a) 7400 series TTL and (b) 4000B series
CMOS (5-V supply).

When the TTL gate is used to drive the CMOS gate, there is no problem for the
LOW-level output because the TTL guarantees a maximum LOW-level output of 0.4 V
and the CMOS will accept any voltage up to 1.67 V as a LOW-level input.

But, for the HIGH level, the TTL may output as little as 2.4 V as a HIGH. The
CMOS expects at least 3.33 V as a HIGH-level input. Therefore, 2.4 V is unacceptable
because it falls within the uncertain region. However, a resistor can be connected
between the CMOS input to VCC, as shown in Figure 27, to solve the HIGH-level input
problem.

In Figure 27, with Vout1 LOW, the 7404 will sink current from the resistor
and the IIL from the 4069B, making Vout2 HIGH. With Vout1 HIGH, the resistor will
pull the voltage at Vin2 up to 5.0 V, causing Vout2 to go LOW. The resistor is called
a pull-up resistor and is used to raise the output of the TTL gate closer to 5 V when it is

10@k�
10@k�

10@k�

(1
3VCC)
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in a HIGH output state. With Vout1 HIGH, the voltage at Vin2 will be almost 5 V because
current into the 4069B is so LOW that the voltage drop across the is in-
significant, leaving almost 5.0 V at Vin2

The other thing to look at when interfacing is the current levels of all gates that are
involved. In this case, the 7404 can sink (IOL) 16 mA, which is easy enough for the IIL
of the 4069B plus the current from the resistor 
IOH of the 7404 is no problem either because, with the pull-up resistor, the
7404 will not have to source current.

CMOS to TTL
When driving TTL from CMOS, the voltage levels are no problem because the CMOS
will output approximately 4.95 V for a HIGH and 0.05 V for a LOW, which is easily
interpreted by the TTL gate.

But, the current levels can be a real concern because 4000B CMOS has severe
output-current limitations. (The 74C and 74HC series have much better output-current
capabilities, however.) Figure 28 shows the input/output currents that flow when inter-
facing CMOS to TTL.

(-400 mA)
� = 0.5 mA).(5 V>10 k10@k�(1 mA)

(Vin2 = 5 V - 1 mA * 10 k� = 4.99 V).
10 k�(�1 mA)

IIH
40 μA

4069B CMOS 7404 TTL

(a)

0

IOH (max.) = 0.51 mA

1

0

IIL
1.6 mA

4069B CMOS 7404 TTL

(b)

1

IOL (max.) = 0.51 mA
(Not enough)

10

The CMOS cannot sink the
IIL required by the TTL gate.

Figure 28 Current levels when interfacing CMOS to TTL: (a) CMOS IOH and (b) CMOS IOL.
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Vout1 Vin2

+5 V
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Vout2

The pull-up resistor
increases the VOH of
the TTL gate.

Figure 27 Using a pull-up resistor to interface TTL to CMOS.

For the HIGH output condition [Figure 28(a)], the 4069B CMOS can source a
maximum current of 0.51 mA, which is enough to supply the HIGH-level input current
(IIH) to one 7404 inverter. But, for the LOW output condition, the 4069B can also sink
only 0.51 mA, which is not enough for the 7404 LOW-level input current (IIL).

Most of the 4000B series has the same problem of low-output drive current capa-
bility. To alleviate the problem, two special gates, the 4050 buffer and the 4049 inverting
buffer, are specifically designed to provide high output current to solve many interfacing
problems. They have drive capabilities of and which is
enough to drive two 74TTL loads, as shown in Figure 29.

IOH = -0.9 mA,IOL = 4.0 mA
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If the CMOS buffer were used to drive another TTL series, let’s say, the 74LS
series, we would have to refer to a TTL data book to determine how many loads could
be connected without exceeding the output current limits. (The 4050B can actually
drive 10 74LS loads.) Table 4 summarizes the input/output voltage and current speci-
fications of some popular TTL and CMOS series, which easily enables us to determine
interface parameters and family characteristics. 

1
1 1

0

4011B CMOS

IOL (max.) = 4.0 mA
IOH (max.) = –0.9 mA

00

7408

0

7402

1

4050B CMOS
buffer

IIL (max.) = –1.6 mA
IIH (max.) = 40 μA

Figure 29 Using the 4050B CMOS buffer to supply sink and source current to two standard
TTL loads.Team

Discussion

Discuss several attributes
that make the HCT family
an excellent choice for
interfacing situations.

By reviewing Table 4, we can see that the 74HCMOS has relatively low input-cur-
rent requirements compared to the bipolar TTL series. Its HIGH output can source 4
mA, which is 10 times the capability of the TTL series. Also, the noise margin for the
74HCMOS is much wider than that for any of the TTL series (1.4 V HIGH, 0.9 V LOW).

Because of the low input-current requirements, any of the TTL series can drive
several of the 74HCMOS loads. An interfacing problem occurs in the voltage level,
however. The 74HCMOS logic expects 3.5 V at a minimum for a HIGH-level input.
The worst case (which we must always assume could happen) for the HIGH output level
of a 74LSTTL is 2.7 V, so we will need to use a pull-up resistor at the 74LSTTL output
to ensure an adequate HIGH level for the 74HCMOS input as shown in Figure 30.

The combinations of interfacing situations are extensive (74HCMOS to 74ALSTTL,
74TTL to 74LSTTL, and so on). In each case, reference to a data book must be made
to check the worst-case voltage and current parameters, as is shown in upcoming ex-
amples. In general, a pull-up resistor is required when interfacing TTL to CMOS to
bring the HIGH-level TTL output up to a suitable level for the CMOS input. (The
exception to the rule is when using 74HCTMOS, which is designed for TTL voltage
levels.) The disadvantages of using a pull-up resistor are that it takes up valuable room
on a printed-circuit board and that it dissipates power in the form of heat.

Different series within the TTL family and the TTL-compatible 74HCTMOS se-
ries can be interfaced directly. The main concern then is determining how many gate
loads can be connected to a single output.

TABLE 4 Worst-Case Values for Interfacing Considerationsa

Parameter 4000B CMOS 74HCMOS 74HCTMOS 74TTL 74LSTTL 74ALSTTL

VIH (min.) (V) 3.33 3.5 2.0 2.0 2.0 2.0
VIL (max.) (V) 1.67 1.0 0.8 0.8 0.8 0.8
VOH (min.) (V) 4.95 4.9 4.9 2.4 2.7 2.7
VOL (max.) (V) 0.05 0.1 0.1 0.4 0.4 0.4
IIH (max.) 1 1 1 40 20 20
IIL (max.) -1
IOH (max.) (mA) -0.51 -0.4 -0.4 -0.4
IOL (max.) (mA) 0.51 4 4 16 8 4

aAll values are for Vsupply = 5.0 V.

-4-4
-100-400-1600-1-1(mA)

(mA)
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Level Shifting
Another problem arises when you interface families that have different supply volt-
ages. For example, the 4000B series can use anywhere from to for a supply,
and the ECL series uses for a supply.

This problem is solved by using level-shifter ICs. The 4049B and 4050B buffer
ICs that were introduced earlier are also used for voltage-level shifting. Figure 31
shows the connections for interfacing 15-V CMOS to 5-V TTL.

-5.2 V
+15 V+3

1
74HC00

1

74HC00

0

74LS32

+5 V

10 kΩ

Vin

Figure 30 Interfacing 74LSTTL to 74HCMOS.

VDD  = +15 V

4001B 4050B
level shifter

74ALS00

VCC  = 5 V

Figure 31 Using a level shifter to convert 0-V>15-V logic to 0-V>5-V logic.

The 4050B level-shifting buffer is powered from a 5-V supply and can actually
accept 0-V>15-V logic levels at the input and then output the corresponding 0-V>5-V
logic levels at the output. For an inverter function, use the 4049B instead of the 4050B.

The reverse conversion, 5-V TTL to 15-V CMOS, is accomplished with the
4504B CMOS level shifter, as shown in Figure 32. The 4504B level-shifting buffer re-
quires two power supply inputs: the 5-V VCC supply to enable it to recognize the 0-
V>5-V input levels, and the 15-V supply to enable it to provide 0-V>15-V output levels.

+5 V

4504B
level shifter

4001B

+15 V

74F00

VCC VDD

Figure 32 Level shifting 0-V>5-V TTL logic to 0-V>15-V CMOS logic.
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ECL Interfacing
Interfacing 0-V>5-V logic levels to ECL circuitry requires another set of
level shifters (or translators): the ECL 10125 and the ECL 10124, whose connections
are shown in Figure 33.

-5.2@V>0@V

10101
ECL OR/NOR

10125
ECL-to-TTL

translator

74ALS00

+5 V

VCC

VEE

VEE

GND

ECL

–5.2 V

GND
TTL

VCC

GND

74F32 10124
TTL-to-ECL

translator

10101
ECL OR/NOR

+5 V

VCC

VEE

VCC

TTL

GND VEE

1 0

–5.2 V

ECL

Figure 33 Circuit connections for translating between TTL and ECL levels.

E X A M P L E  5

Determine from Table 4 how many 74LSTTL logic gates can be driven by
a single 74TTL logic gate.

Solution: The output voltage levels (VOL, VOH) of the 74TTL series are
compatible with the input voltage levels (VIL, VIH) of the 74LSTTL series.
The voltage noise margin for the HIGH level is 0.4 V and for
the LOW level it is 0.4 V 

The HIGH-level output current (IOH) for the 74TTL series is 
Each 74LSTTL gate draws of input current for the HIGH level (IIH),
so one 74TTL gate can drive 20 74LSTTL loads in the HIGH state

For the LOW state, the 74TTL IOL is 16 mA and the 74LSTTL IIL is
meaning that, for the LOW condition, one 74TTL can drive 40

74LSTTL loads Therefore, considering both the
LOW and HIGH conditions, a single 74TTL can drive 20 74LSTTL gates.

(16 mA>400 mA = 40).
-400 mA,

(400 mA>20 mA = 20).

20 mA
-400 mA.

(0.8 - 0.4).
(2.4 - 2.0),
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E X A M P L E  6

One 74HCT04 inverter is to be used to drive one input to each of the fol-
lowing gates: 7400 (NAND), 7402 (NOR), 74LS08 (AND), and 74ALS32
(OR). Draw the circuit, and label input and output worst-case voltages and
currents. Will there be total voltage and current compatibility?

Solution: The circuit is shown in Figure 34. Figure 34(a) shows the worst-
case HIGH-level values. If you sum all the input currents, the total that the
74HCT04 must supply is 120 mA (40 mA � 40 mA � 20 mA � 20 mA),
which is well below the maximum source capability of the
74HCT04. Also, the 4.9-V output voltage of the 74HCT04 is compatible with
the 2.0-V minimum requirement of the TTL inputs, leaving a noise margin
of 2.9 V (4.9 V - 2.0 V).

-4@mA

VIH = 2.0 V min. for all gates
IIH = 40 μA

′00

′02

IIH = 40 μA

′LS08

′ALS32

IIH = 20 μA

IIH = 20 μA

′HCT04

VOH = 4.9 V min.
IOH  = 4 mA max.

0

(a)

VIL = 0.8 V max. for all gates
IIL  = 1.6 mA

′00

′02

IIL = 1.6 mA

′LS08

′ALS32

IIL = 100 μA

IIL = 400 μA

′HCT04

VOL = 0.1 V max.
IOL  =  4 mA max.

1

(b)

Figure 34 Interfacing a 74HCTMOS to several different TTL series: 
(a) HIGH-level values and (b) LOW-level values.
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9 FPGA Electrical Characteristics

Each manufacturer of programmable logic will develop ICs with different electrical
characteristics related to supply voltages, power dissipation, input and output V-I rat-
ings, and propagation delays. Now that we know how to interpret data sheets, it’s
simply a matter of downloading the data for the particular PLD device and looking up
the specifications in the electrical characteristics section.

Altera Cyclone II Family
Before continuing, download the data sheet for the Cyclone II Family of FPGAs from
the Literature Section in the Altera Web site at www.altera.com. The Cyclone II
EP2C35 FPGA used in the DE-2 Education board has separate power supply connec-
tions for the internal logic and the I/O ports. The power supply for the internal logic
(called VCCINT) is always fixed at 1.2 volts, whereas the separate power supplied for the
I/O ports (called VCCIO) can be set at 1.5, 1.8, 2.5, or 3.3 volts to drive various types of
external circuitry. Figure 35 (a) shows how an FPGA may be interfaced to 3.3 V I/O
circuits. The specifications for this 3.3 V level meet the requirements to interface with
TTL and CMOS ICs (see Table 5). Figure 35 (b) shows how an FPGA may be inter-
faced to 1.5 V I/O circuits such as those found in a cell phone or other hand-held per-
sonal device.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Figure 34(b) shows the worst-case LOW-level values. The sum of all
the TTL input currents is 3.7 mA 

which is less than the 4-mA maximum sink capability of the
74HCT04. Also, the 0.1-V output of the 74HCT04 is compatible with the
0.8-V maximum requirement of the TTL inputs, leaving a noise margin of
0.7 V (0.8 V - 0.1 V).

100 mA),
(1.6 mA + 1.6 mA + 400 mA +

VCCINT VCCIO

I/OCyclone II
FPGA

1.2 V 3.3 V

3.3 V
Devices

VCCINT VCCIO

I/OCyclone II
FPGA

1.2 V 1.5 V

1.5 V
Devices

(a) (b)

Figure 35 Interfacing an FPGA to different I/O devices: (a) the 3.3 VCCIO I/O configuration;
(b) the 1.5 V VCCIO I/O configuration.

Table 5 shows the input and output specifications for two different VCCIO supply
voltage configurations of the Cyclone II family. In both cases, the VIH, VIL, VOH, and
VOL specifications differ depending on which VCCIO supply value is used. As a per-
centage of VCCIO, you can see in Table 5 that the noise margin for both HIGH and LOW
is very good. Also notice that the 3.3 V configuration will be voltage compatible with
most TTL and CMOS families.

Another important specification relates to the sink and source currents (IOL and
IOH). Changes in the maximum values for IOL and IOH are made under program control
and can range anywhere from 2 mA to 24 mA. This feature is called “Programmable
Drive Strength.”

The output pins are all connected as open-drain and have a programmable inter-
nal pull-up resistor for your convenience. The Cyclone II family is very fast, having
propagation delays in the 2 to 3 ns range. These FPGAs have thousands of internal

V
H

D
L
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look-up tables, with storage registers and memory. A drawback of having such a large
amount of internal logic is that it draws a large amount of current from the VCCINT sup-
ply. The ICCINT can reach as much as 66 mA in the standby mode.

Review Questions

16. Which logic family is faster, the 74ALS or 74HC?

17. Which logic family has a lower power dissipation, the 100K ECL or
74LS?

18. In the graph of Figure 24, the IC families plotted closest to the origin
have the best speed–power products. True or false?

19. Use the graph in Figure 25 to determine which logic family has a lower
power dissipation at 100 kHz, the 74HC CMOS or 74LS TTL.

20. What is the function of a pull-up resistor when interfacing a TTL IC to
a CMOS IC?

21. What problem arises when interfacing 4000 series CMOS ICs to stan-
dard TTL ICs?

22. Which family has more desirable output voltage specifications, the
74HCTMOS or 74ALSTTL? Why?

23. What IC specifications are used to determine how many gates of one
family can be driven from the output of another family?

Summary

In this chapter, we have learned the following:

1. There are basically three stages of internal circuitry in a TTL (transistor–
transistor logic) IC: input, control, and output.

2. The input current (IIL or IIH) to an IC gate is a constant value specified
by the IC manufacturer.

3. The output current of an IC gate depends on the size of the load connected
to it. Its value cannot exceed the maximum rating of the chip, IOL or IOH.

4. The HIGH- and LOW-level output voltages of the standard TTL family
are not 5 and 0 V but typically are 3.4 and 0.2 V.

5. The propagation delay is the length of time that it takes for the output of
a gate to respond to a stimulus at its input.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

TABLE 5 Partial List of Input and Output
Voltage Specifications for the
Cyclone II Family of FPGAs

VCCIO

Parameter1 3.3 V 1.5 V

VOL (max) 0.45 0.375
VIL (max) 0.8 0.525
VOH (min) 2.4 1.125
VIH (min) 1.7 0.975

1VCCINT = 1.2 V
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6. The rise and fall times of a pulse describe how long it takes for the volt-
age to travel between its 10% and 90% levels.

7. Open-collector outputs are required whenever logic outputs are con-
nected to a common point.

8. Several improved TTL families are available and continue to be intro-
duced each year, providing decreased power consumption and decreased
propagation delay.

9. The CMOS family uses complementary metal oxide semiconductor tran-
sistors instead of the bipolar transistors used in TTL ICs. Traditionally, the
CMOS family consumed less power but was slower than TTL. However,
recent advances in both technologies have narrowed the differences.

10. The BiCMOS family combines the best characteristics of bipolar
technology and CMOS technology to provide logic functions that are
optimized for the high-speed, low-power characteristics required in micro-
processor systems.

11. Emitter-coupled logic provides the highest-speed ICs. Its drawback is
its very high power consumption.

12. A figure of merit of IC families is the product of their propagation
delay and power consumption, called the speed–power product (the lower,
the better).

13. When interfacing logic families, several considerations must be made.
The output voltage level of one family must be high and low enough to
meet the input requirements of the receiving family. Also, the output cur-
rent capability of the driving gate must be high enough for the input draw
of the receiving gate or gates.

Glossary

BiCMOS: A logic family that is fabricated from a combination of bipolar transistors
and complementary MOSFETs. It is an extremely fast low-power family.

Bipolar Transistor: Three-layer N–P–N or P–N–P junction transistor.

Buffer: A device placed between two other devices that provides isolation and cur-
rent amplification. The input logic level is equal to the output logic level.

CMOS: Complementary metal oxide semiconductor.

Decoupling: A method of isolating voltage irregularities on the VCC power supply
line from an IC VCC input.

Differential Amplifier: An amplifier that basically compares two inputs and
provides an output signal based on the difference between the two input
signals.

ECL: Emitter-coupled logic.

EMI: Electromagnetic interference. Undesirable radiated energy from a digital
system caused by magnetic fields induced by high-speed switching.

Fall Time: The time required for a digital pulse to fall from 90% down to 10% of its
maximum voltage level.

Fan-Out: The number of logic gate inputs that can be driven from a single gate
output of the same subfamily.

LOGIC FAMILIES AND THEIR CHARACTERISTICS
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Level Shifter: A device that provides an interface between two logic families having
different power supply voltages.

MOSFET: Metal oxide semiconductor field-effect transistor.

NMOS: A family of ICs fabricated with N-channel MOSFETs.

Noise Margin: The voltage difference between the guaranteed output voltage level
and the required input voltage level of a logic gate.

Open-Collector Output: A special output stage of the TTL family that has the upper
transistor of a totem-pole configuration removed.

Open-Drain Output: The output stage of a CMOS gate having two states: LOW and
float (Similar to the TTL open collector.)

PMOS: A family of ICs fabricated with P-channel MOSFETs.

Power Dissipation: The electrical power (watts) that is consumed by a device and
given off (dissipated) in the form of heat.

Propagation Delay: The time required for a change in logic level to travel from the
input to the output of a logic gate.

Pull-Up Resistor: A resistor with one end connected to VCC and the other end con-
nected to a point in a logic circuit that needs to be raised to a voltage level
closer to VCC.

Rise Time: The time required for a digital pulse to rise from 10% up to 90% of its
maximum voltage level.

Sink Current: Current entering the output or input of a logic gate.

Source Current: Current leaving the output or input of a logic gate.

Substrate: The silicon supporting structure or framework of an integrated circuit.

Totem-Pole Output: The output stage of the TTL family having two opposite-acting
transistors, one above the other.

TTL: Transistor–transistor logic.

Wired-AND: The AND function that results from connecting several open-collector
outputs together.

Problems

Section 1
1. What is the purpose of diodes D1 and D2 in Figure 1?

2. In Figure 1, when input A is connected to ground (0 V), calculate the
approximate value of emitter current in Q1.

3. In Figure 1, when the output is HIGH, how do you account for the
output voltage being only about 3.4 V instead of 5.0 V?

4. In Figure 1, describe the state (ON or OFF) of Q3 and Q4 for

(a) Both inputs A and B LOW

(b) Both inputs A and B HIGH

Section 2
5. What does the negative sign in the rating of source current (e.g.,

signify?IOH = -400 mA)

LOGIC FAMILIES AND THEIR CHARACTERISTICS
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6. For TTL outputs, which is higher, the source current or the sink
current?

7. (a) Find Va and Ia in the circuits of Figure P7 using the following spec-
ifications:

VOH = 3.4 V typ.VOL = 0.2 V typ.

IOH = -400 mAIOL = 16 mA

VIH = 2.0 V minVIL = 0.8 V max

IIH = 40 mAIIL = -1.6 mA

LOGIC FAMILIES AND THEIR CHARACTERISTICS

(b) Repeat part (a) using input/output specifications that you gather
from a TTL data book, assuming that all gates are 74LSXX 
series.

Section 3
8. The input and output waveforms to an OR gate are given in Figure
P8. Determine:

(a) The period and frequency of Vin

(b) The rise and fall times (tr, tf) of Vin

(c) The propagation delay times of (tPLH, tPHL) of the OR gate

Va

(a)

Ia

1

0

Va

(d)

Ia

1

+5 V

10 kΩ

10 kΩ

Ia

Va

Vin
5 V
0 V

(b)

1

10 kΩ

0 V
5 V

5 V

0 V
Ia

Va

(c)

5 V 1

Figure P7

C
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9. The propagation delay times for a 74LS08 AND gate (Figure P9) are
and for a 7402 NOR gate, they are

Sketch Vout1 and Vout2 showing the effects of
propagation delay. (Assume 0 ns for the rise and fall times.)
tPLH = 22 ns, tPHL = 15 ns.
tPLH = 15 ns, tPHL = 20 ns,

LOGIC FAMILIES AND THEIR CHARACTERISTICS

8 μs

1.5
0.2

3.4

0.5
1.5

4.5
5.0

0

2 μs

100 μs

6 μs

3 μs

120 μs

V
in

 (
V

)
V

ou
t (

V
)

Vin Vout

Figure P8
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Vout1

0

Vin

0 V

Vin
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Vout1
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Figure P9

Vc

740274LS08

Vb

(b)

74S04

Va2-MHz
TTL-level
oscillator

(a)

Vd

Vout1 7400
74F02

Vin

Vout20

tPLH = 4.4 ns
tPHL = 3.2 ns

tPLH = 22 ns
tPHL = 15 ns

1

Figure P10

10. (a) Repeat Problem 9 for the circuit of Figure P10(a).

(b) Repeat Problem 9 for Va, Vb, Vc, and Vd in Figure P10(b). (Use a
TTL data book to determine the propagation delay times.)

C
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11. Refer to a TTL data book. Use the total supply current (ICCL, ICCH) to
compare the power dissipation of a 7400 versus a 74LS00.

12. Refer to a TTL data sheet to compare the typical LOW-level output
voltage (VOL) at maximum output current for a 7400 versus a 74LS00.

13. (a) Refer to a TTL data sheet to determine the noise margins for the
HIGH and LOW states of both the 7400 and 74LS00.

(b) Which has better noise margins, the 7400 or 74LS00?

14. (a) Refer to a TTL data sheet to determine which can sink more cur-
rent at its output, the commercial 74LS00 or the military 54LS00.

(b) Which has a wider range of recommended VCC supply voltage, the
7400 or the 5400?

15. Why is a pull-up resistor required at the output of an open-collector
gate to achieve a HIGH-level output?

16. The wired-AND circuits in Figure P16 use all open-collector gates.
Write the simplified Boolean equations at X and Y.

LOGIC FAMILIES AND THEIR CHARACTERISTICS

A

B

C

OC

OC

Y

+5 V

10 kΩ

A

C

X

+5 V

10 kΩ

OC

B
OC

OC

Figure P16

Sections 4 and 5
17. Make a general comparison of both the switching speed and power dis-
sipation of the 7400 TTL series versus the 4000B CMOS series.

18. Which type of transistor, bipolar or field effect, is used in TTL ICs? In
CMOS ICs?

19. Why is it important to store MOS ICs in antistatic conductive foam?

Sections 6 and 7
20. What is the principal reason that ECL ICs reach such high switching
speeds?

21. Table 3 shows that the speed–power product of the 74ALS family is
much better than the 100K ECL family. Why, then, are some large main-
frame computers based on ECL technology?
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22. The graph in Figure 24 shows the 4000B CMOS family in the oppo-
site corner from the 100K ECL family. What is the significance of this?

23. Referring to Figure 25, which logic family dissipates less power at low
frequencies, the 74LS or 74HC?

Section 8
24. (a) Using the data in Table 4, draw a graph of input and output speci-

fications similar to Figure 26 for the 74HCMOS and the 74AL-
STTL IC series.

(b) From your graphs of the two IC series, compare the HIGH- and
LOW-level noise margins.

(c) From your graphs, can you see a problem in directly interfacing:

(1) The 74HCMOS to the 74ALSTTL?

(2) The 74ALSTTL to the 74HCMOS?

25. Refer to Table 4 to determine which of the following interfacing situa-
tions (driving gate-to-gate load) will require a pull-up resistor, and why?

(a) 74TTL to 74ALSTTL

(b) 74HCMOS to 74TTL

(c) 74TTL to 74HCMOS

(d) 74LSTTL to 74HCTMOS

(e) 74LSTTL to 4000B CMOS

26. Of the interfacing situations given in Problem 25, will any of the driv-
ing gates have trouble sinking or sourcing current to a single connected
gate load?

27. From Table 4, determine:

(a) How many 74LSTTL loads can be driven by a single 74HCTMOS
gate?

(b) How many 74HCTMOS loads can be driven by a single 74LSTTL gate?

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic dia-
grams.

28. Assume that the inverter U4:A in the Watchdog Timer schematic has
the following propagation delay times: Also
assume that WATCHDOG_CLK is a 10-MHz square wave. Sketch the
waveforms at WATCHDOG_CLK and the input labeled CLK on U1:B on
the same time axis.

29. Repeat Problem 28 with a 7404 used in place of the 74HC04. Assume
that the 7404 has the following propagation delay times:

30. Find U9 in the HC11D0 schematic. LCD_SL and KEY_SL are active-
LOW outputs that signify that either the LCD is selected or the keyboard is
selected. Add a logic gate to this schematic that outputs a LOW level called
I/O_SEL whenever either the LCD or the keyboard is selected.

tPHL = 15.0 ns, tPLH = 22.0 ns.

tPHL = 7.0 ns, tPLH = 9.0 ns.
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MultiSIM® Exercises

E1. Load the circuit file for Section 1a. This is a two-input NAND similar
to Figure 1.

(a) The output should always be HIGH unless A AND B are both
_________ (HIGH or LOW?). Check your answer by changing the 
A and B inputs. (Q3 and Q4 form the “totem-pole” arrangement 
explained in Section 1.)

(b) When the output is HIGH, Q3 should be ________, and Q4 should be
________ (ON or OFF?).

(c) When the output is LOW, Q3 should be _________, and Q4 should 
be ________ (ON or OFF?). Check your answers by measuring the
voltage C-to-E on Q3 and Q4 for both conditions.

E2. Load the circuit file for Section 3a. Connect Channel-1 of the 
oscilloscope to the input of the LS-family AND gate. Connect Channel-2
to its output.

(a) Measure tplh and tphl. (Hint: See Figure 10.)

(b) Repeat for the 4000-family AND gate.

E3. Load the circuit file for Section 3b.

(a) Use the oscilloscope to determine the rise and fall time of the pulse 
applied to the AND gate.

(b) Use the dual-trace feature of the oscilloscope to measure tphl and
tplh of the AND gate. (Use 1.5 V as the measurement reference
level.)

E4. Load the circuit file for Section 3c. This is a two-input NAND with a
totem-pole output.

(a) Measure Voh and Vol.

(b) Convert it to an open-collector NAND by deleting the appropriate
comments. Measure Voh and Vol.

(c) What external component must be added to this new circuit to make
Voh look like a HIGH? Try it.

FPGA Problems

(Download the data sheet for the Cyclone II® Device Family from the Literature sec-
tion at www.altera.com).

C1. In the section called Cyclone II® Architecture (I/O Structure), find the
section describing the Programmable Drive Strength.

(a) What is the minimum and maximum IOH and IOL for the LVTTL
(3.3 V) I/O standard?

(b) Repeat for the LVCMOS (1.5 V).

C2. Refer to the section called DC Characteristics and Timing Specifica-
tions (Operating Conditions). Find the section describing the Recom-
mended Operating Conditions.

(a) What is the minimum and maximum value for VCCINT?

(b) What is the minimum and maximum value for VCCIO for the 2.5 V
operation?

LOGIC FAMILIES AND THEIR CHARACTERISTICS
V

H
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(c) What is the ICCINT and the ICCIO standby current for the EP2C35?

(d) What is the typical value for the RCONF pull-up resistor for the
condition?

C3. Refer to the section called DC Characteristics and Timing Specifica-
tions (Operating Conditions). Find the section describing the Recom-
mended Operating Conditions (Single-ended).

(a) What are the values for VIH, VIL, VOH, and VOL for the 2.5 V LVTTL
standard?

(b) Repeat for the 1.8 V LVTTL standard.

VCCIO = 3.3 V

LOGIC FAMILIES AND THEIR CHARACTERISTICS

Answers to Review Questions

1. False

2. Totem-pole output

3. 0.7, 0.3

4. Because of the voltage drops
across the internal transistors
of the gate.

5. It is the number of gates of the
same subfamily that can be
connected to a single ouput
without exceeding the current
rating of the gate.

6. Input current HIGH condition
(IIH), input current LOW condi-
tion (IIL), output current HIGH
condition (IOH), output current
LOW condition (IOL)

7. Sink current flows into the 
gate and goes to ground.
Source current flows out of 
the gate and supplies the other
gates.

8. (a) HIGH (b) HIGH (c) unde-
termined (d) LOW

9. False

10. Output

11. It pulls the output of the gate
up to 5 V when the output
transistor is off (float)

12. It reduces the propagation delay
to achieve faster speeds

13. Lower power dissipation,
slower speeds

14. Bipolar

15. False

16. 74ALS

17. 74LS

18. True

19. 74HC CMOS

20. To raise the output level of the
TTL gate so it is recognized as
a HIGH by the CMOS gate

21. The CMOS gate has severe
output current limitations

22. 74HCTMOS, because its 
voltage is almost perfect at 
4.9 V HIGH and 0.1 V LOW

23. Input current requirements 
(IIL, IIH) and output current 
capability (IOL, IOH)
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Answers to Odd-Numbered Problems

1. D1 and D2 provide some protection against
negative input voltages.

3. From Figure 2(a), there is �0.2 V dropped
across the 1.6 k, 0.7 V across and 
0.7 V across D3, leaving
�3.4 V at the output terminal.

5. Negative sign signifies current leaving the
input or output of the gate.

7a. [STD]
(a)

(b)

(c)

(d)

7b. [LS]

(a)

(b)

(c)

(d)

9.
Ia = 360 mA
Va = VOH = 3.4 V (typ)
Ia = 0.8 mA
Va = VOL = 0.35 V or 0.25 V (typ)
@Vin = HIGH, Ia = 340 mA (typ)
@Vin = LOW, Ia = 35 mA (typ)
Va = 4.8 V
Ia = 60 mA
Va = VOH = 3.4 V (typ)

Ia = 380 mA
Va = VOH = 3.4 V (typ)
Ia = 3.2 mA
Va = VOL = 0.2 V (typ)
@Vin = HIGH, Ia = 340 mA (typ)
@Vin = LOW, Ia = 20 mA (typ)
Va = 4.6 V
Ia = 120 mA
Va = 3.4 V (typ)

VBE3
,

(b) The 74LS00 has a wider margin for
the HIGH state. The 7400 has a wider
margin for the LOW state.

15. The open-collector FLOAT level is made a
HIGH level by using a pull-up resistor.

17. The 7400 series is faster than the 4000B
series but dissipates more power.

19. Because MOS ICs are prone to electro-
static burnout.

21. Where speed is most important, ECL is
faster but uses more power.

23. The 74HC family

25. Interfacing (c) and (e) will require a pull-
up resistor to “pull up” the TTL HIGH-
level output to meet the minimum
HIGH-level input specifications of the
CMOS gates.

27. (a) 10 (b) 400

29.

Vin

15ns

15ns

20ns

22ns

Vout1

Vout2

11.

13. (a) 7400: HIGH state 
LOW state 

74LS00: HIGH state 
LOW state (max levels) = 0.3 V

(min levels) = 0.7 V
(max levels) = 0.4 V
(min levels) = 0.4 V

74LS00: PD = 15 mW (max)
7400: PD = 75 mW (max)

100 nS

CLK

WATCHDOG_CLK

22 nS 15 nS

E1. (a) HIGH (b) ON, OFF (c) OFF,
ON

E3. (a) 12 ns, 12 ns (b) 6.3 ns, 11 ns

C1. (a) 4 mA to 24 mA (b) 2 mA to 8 mA

C3. (a) 1.7 V, 0.7 V, 2.0 V, 0.4 V
(b) 1.17 V, 0.630 V, 1.35 V, 0.45 V
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Flip-Flops and Registers

OUTLINE

1 S-R Flip-Flop
2 Gated S-R Flip-Flop
3 Gated D Flip-Flop
4 D Latch: 7475 IC; VHDL Description
5 D Flip-Flop: 7474 IC; VHDL Description
6 Master–Slave J-K Flip-Flop
7 Edge-Triggered J-K Flip-Flop with VHDL Model
8 Integrated-Circuit J-K Flip-Flop (7476, 74LS76)
9 Using an Octal D Flip-Flop in a Microcontroller Application

10 Using Altera’s LPM Flip-Flop

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Explain the internal circuit operation of S-R and gated S-R flip-flops.
• Compare the operation of D latches and D flip-flops by using timing diagrams.
• Describe the difference between pulse-triggered and edge-triggered flip-flops.
• Explain the theory of operation of master–slave devices.
• Connect IC J-K flip-flops as toggle and D flip-flops.
• Use timing diagrams to illustrate the synchronous and asynchronous operation of

J-K flip-flops.
• Use VHDL to design flip-flops for CPLD implementation.

INTRODUCTION

The logic circuits that we have studied have consisted mainly of logic gates (AND,
OR, NAND, NOR, INVERT) and combinational logic. Starting in this chapter, we
will deal with data storage circuitry that will latch on to (remember) a digital state (1
or 0).

This new type of digital circuitry is called sequential logic, because it is con-
trolled by and used for controlling other circuitry in a specific sequence dictated by a
control clock or enable/disable control signals.

The simplest form of data storage is the Set–Reset (S-R) flip-flop. These circuits
are called transparent latches because the outputs respond immediately to changes
at the input, and the input state will be remembered, or latched onto. The latch will

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 10 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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sometimes have an enable input, which is used to control the latch to accept or ignore
the S-R input states.

More sophisticated flip-flops use a clock as the control input and are used wher-
ever the input and output signals must occur within a particular sequence.

1 S-R Flip-Flop

Q
0

Q
1

1

0

0
Reset

1
Set

(a)

Inputs Outputs

Q
1

Q
0

0

1

1
Reset

0
Set

(b)

Inputs Outputs

Figure 1 Cross-NOR S-R flip-flop: (a) Set condition; (b) Reset condition.

When power is first applied to Figure 1, Q and are undetermined. Let’s start
our analysis by placing a 1 (HIGH) on the Set and a 0 (LOW) on Reset [Figure 1(a)].
This is defined as the Set condition and should make the Q output 1 and output 0. A
HIGH on the Set will make the output of the upper NOR equal 0 and that 0
is fed down to the lower NOR, which together with a LOW on the Reset input will
cause the lower NOR’s output to equal a 1 [Remember, a NOR gate is always
0 output, except when both inputs are 0.]

Now, when the 1 is removed from the Set input, the flip-flop should remember that
it is Set (i.e., So with Set Reset and from previously
being Set, let’s continue our analysis. The upper NOR has a 0–1 at its inputs, making

whereas the lower NOR has a 0–0 at its inputs, keeping Great—the flip-
flop remained Set even after the Set input was returned to 0 (called the Hold condition).

Now we should be able to Reset the flip-flop by making [Figure
1(b)]. With the lower NOR will output a 0 placing a 0–0 on the upper
NOR, making its output 1 thus, the flip-flop “flipped” to its Reset state.

The only other input condition is when both S and R inputs are HIGH. In this
case, both NORs will put out a LOW, making Q and equal 0, which is a condition
that is not used. (Why would anyone want to Set and Reset at the same time, anyway!)
Also, when you return to the Hold condition from you will get unpre-
dictable results unless you know which input returned LOW last.

From the previous analysis, we can construct the S-R flip-flop function table
shown in Table 1, which lists all input and output conditions. 

S = 1, R = 1,

Q

(Q = 1);
(Q = 0),R = 1,

S = 0, R = 1

Q = 1.Q = 0,

Q = 1= 0,= 0,Q = 1, Q = 0).

(Q = 1).

(Q = 0),
Q

Q

TABLE 1 Function Table for Figure 1

S R Q Comments

0 0 Q Hold condition (no change)
1 0 1 0 Flip-flop Set
0 1 0 1 Flip-flop Reset
1 1 0 0 Not used

Q

Q

Common
Misconception

You may feel that you
can’t solve this circuit
because one input to
each NOR is unknown.
Remember that you
don’t need to know
both inputs. If one
input is HIGH, the
output is LOW.

The S-R flip-flop is a data storage circuit that can be constructed using basic gates.
Using a cross-coupling scheme with two NOR gates, we can form the flip-flop shown
in Figure 1.

FLIP-FLOPS AND REGISTERS
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Figure 2 Cross-NAND S-R flip-flop.

Now let’s get practical and find an IC TTL NOR gate and draw the actual wiring
connections to form a cross-NOR like Figure 1 so that we may check it in the lab.

The TTL data manual shows a quad NOR gate 7402. Looking at its pin layout in
conjunction with Figure 1, we can draw the circuit of Figure 4. To check out the opera-
tion of Figure 4 in the lab, apply 5 V to pin 14 and ground pin 7. Set the flip-flop by
placing a HIGH (5 V) to the Set input and a LOW (0 V, ground) to the Reset input. A
logic probe attached to the Q output should register a HIGH. When the S-R inputs are
returned to the 0–0 state, the Q output should remain latched in the 1 state. The Reset
function can be checked using the same procedure.

S-R Timing Analysis
By performing a timing analysis on the S-R flip-flop, we can see why it is called trans-
parent and also observe the latching phenomenon.

FLIP-FLOPS AND REGISTERS

Figure 3 Symbols for an S-R flip-flop.

An S-R flip-flop can also be made from cross-NAND gates, as shown in Figure
2. Prove to yourself that Figure 2 will produce the function table shown in Table 2.
(Start with and remember that a NAND is LOW out only when both in-
puts are HIGH.) The symbols used for an S-R flip-flop are shown in Figure 3. The sym-
bols show that both true and complemented Q outputs are available. The second
symbol is technically more accurate, but the first symbol is found most often in manu-
facturers’ data manuals and in this text. 

S = 1, R = 0,

TABLE 2 Function Table for Figure 2

S R Q Comments

0 0 Q Hold condition
1 0 1 0 Flip-flop Set
0 1 0 1 Flip-flop Reset
1 1 1 1 Not used

Q

Q

Team
Discussion

Will we get the same
function table if we
eliminate the inverters and
switch the S and R inputs?

Q

Q
R

S

R

QS

Q R

QS

Q Q
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1 2 3 4 5 6 7

Q

14 13 12 11 10 9 8

7402

VCC

GND

+5 V

Q

S

R

Figure 4 S-R flip-flop connections using a 7402 TTL IC.

R

QS

QR

S Q

Q

Figure 5

S

R

Q

Function

S
e
t

H
o
l
d

R
e
s
e
t

H
o
l
d

S
e
t

H
o
l
d

R
e
s
e
t

H
o
l
d

S
e
t

H
o
l
d

21

Figure 6

E X A M P L E  1

To the S-R flip-flop shown in Figure 5, we connect the S and R waveforms
given in Figure 6. Sketch the Q output waveform that will result.

Solution:

Notes:

1. The flip-flop is latched (held) in the Set condition even after the HIGH
is removed from the S input.

2. The flip-flop is considered transparent because the Q output responds
immediately to input changes.
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R

QS

Q R

QS

Q R

QS

Q R

QS

Q

Reset
switch+5 V

+5 V
Temperature
limit switch

4–Bit
register

Strobe
gates

23 22 21 20

23 22 21 20

Output to a
microprocessor system

Binary input representing
the time of day

A momentary HIGH on
this switch Resets all
Qs to zero.

A HIGH here enables
1’s at the Binary inputs
to pass through to the
S-inputs.

Figure 7 S-R flip-flop used as a storage register.

S-R Flip-Flop Application
Let’s say that we need a storage register that will remember the value of a binary num-
ber (23222120) that represents the time of day at the instant a momentary temperature
limit switch goes into a HIGH (1) state. Figure 7 could be used to implement such a
circuit. Because a 4-bit binary number is to be stored, we need four S-R flip-flops. We
will look at their Q outputs with a logic probe to read the stored values. 

FLIP-FLOPS AND REGISTERS

Team
Discussion

Discuss some of the
problems that may occur if
the circuit is operated
improperly by forgetting to
reset or by allowing
multiple temperature
switch closures.

With the Reset switch in the up position, the R inputs will be zero. With the tem-
perature limit switch in the up position, one input to each AND gate is grounded,
keeping the S inputs at 0 also. To start the operation, first the Reset switch is momen-
tarily pressed down, placing 5 V (1) on all four R inputs and thus resetting all flip-
flops to 0.

Meanwhile, the binary input number is not allowed to reach the S inputs because
a 0 is at the other input of each AND gate. (Gates used in this method are referred to as
strobe gates because they let information pass only when they are enabled.)

When the temperature limit switch momentarily goes down, 5 V (1) will be
placed at each strobe gate, allowing the binary number (1’s and 0’s) to pass through to
the S inputs, thus setting the appropriate flip-flops. (Assume that the switch will go
down only once.)

The binary input number representing the time of day that the temperature switch
went down will be stored in the 4-bit register and can later be read by a logic probe or
automatically by a microprocessor system.
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Review Questions

1. A flip-flop is different from a basic logic gate because it remembers the
state of the inputs after they are removed. True or false?

2. What levels must be placed on S and R to Set an S-R flip-flop?

3. What effect do and have on the output level at Q?

2 Gated S-R Flip-Flop

Simple gate circuits, combinational logic, and transparent S-R flip-flops are called
asynchronous (not synchronous) because the output responds immediately to input
changes. Synchronous circuits operate sequentially, in step, with a control input. To
make an S-R flip-flop synchronous, we add a gated input to enable and disable the S
and R inputs. Figure 8 shows the connections that make the cross-NOR S-R flip-flop
into a gated S-R flip-flop.

R = 0S = 0

FLIP-FLOPS AND REGISTERS

A HIGH Gate
Enable allows
Set and Reset
to pass through.

Q

Q

Reset

Set

Gate
Enable

Sx

Rx

Held at 0 – 0
when Gate
Enable = 0

Gated S-R Flip-Flop

S-R Flip-Flop

Figure 8 Gated S-R flip-flop.

R

QS

Q

G

G
0
0
0
0
1
1
1
1

S
0
0
1
1
0
0
1
1

R
0
1
0
1
0
1
0
1

Q
Q
Q
Q
Q
Q
0
1
0

Q
Q
Q
Q
Q
Q
1
0
0

Hold
Hold
Hold
Hold
Hold
Reset
Set
Unused

Comments

S-R inputs
disabled

(b)(a)

S-R inputs
enabled

Figure 9 Function table and symbol for the gated S-R flip-flop of Figure 8.

The Sx and Rx lines in Figure 8 are the original Set and Reset inputs. With the ad-
dition of the AND gates, however, the Sx and Rx lines will be kept LOW–LOW (Hold
condition) as long as the Gate Enable is LOW. The flip-flop will operate normally while
the Gate Enable is HIGH. The function chart [Figure 9(b)] and Example 2 illustrate the
operation of the gated S-R flip-flop.
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Solution:

G
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Q

Figure 10

E X A M P L E  2

Feed the G, S, and R inputs in Figure 10 into the gated S-R flip-flop, sketch
the output wave at Q, and list the flip-flop functions.

Figure 11

E X A M P L E  3

Feed the G, S, and R inputs in Figure 11 into the gated S-R flip-flop, and
sketch the output wave at Q.

Solution:

G

S

R

Q

3 Gated D Flip-Flop

Another type of flip-flop is the D flip-flop (Data flip-flop). It can be formed from the
gated S-R flip-flop by the addition of an inverter. This enables just a single input (D) to
both Set and Reset the flip-flop.

In Figure 12, we see that S and R will be complements of each other, and S is con-
nected to a single line labeled D (Data). The operation is such that Q will be the same
as D while G is HIGH, and Q will remain latched when G goes LOW. (Latched means
that Q remains constant regardless of changes in D.)

454



FLIP-FLOPS AND REGISTERS

R

QS

Q

GG

D

Figure 12 Gated D flip-flop.

Figure 13

E X A M P L E  4

Sketch the output waveform at Q for the inputs at D and G of the gated D
flip-flop in Figure 13.

Solution:

G

D

Q

Q
follows

D

Q
latched

Q
follows

D

Q
latched

Q
follows

D

Review Questions

4. Explain why the S-R flip-flop is called asynchronous and the gated S-R
flip-flop is called synchronous.

5. Changes in S and R while a gate is enabled have no effect on the Q out-
put of a gated S-R flip-flop. True or false?

6. What procedure would you use to Reset the Q output of a gated D flip-
flop?

4 D Latch: 7475 IC; VHDL Description

7475 IC
The 7475 is an example of an IC D latch (also called a bistable latch). It contains four

From the function table (Table 3) we can see that the Q output will follow D
(transparent) as long as the enable line (E) is HIGH (called active-HIGH enable).
When E goes LOW, the Q output will become latched to the value that D was just be-
fore the HIGH-to-LOW transition of E. 

transparent D latches. Its logic symbol and pin configuration are given in Figure 14. Latch-
es 0 and 1 share a common enable (E

0–1
), and latches 2 and 3 share a common enable (E

2–3
). 

The enables act just like the G-input in the previous section. 
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VCC

161

152

143

134

125

116

107

98

GND

E2-3

D1

D0

Q0

D2

7475

(a)

(b)

D3

Q3

E0-1

Q1

Q1

Q0

Q2

Q2

Q3

D0 Q0

Q0E0-1

D1 Q1

Q1E0-1

D2 Q2

Q2E2-3

D3 Q3

Q3E2-3

Figure 14 The 7475 quad bistable D latch: (a) logic symbol; (b) pin configuration.

TABLE 3 Function Table for a 7475a

Inputs Outputs

Operating Mode E D Q

Data enabled H L L H
Data enabled H H H L
Data latched L x q

aq state of Q before the HIGH-to-LOW edge of E; x don’t care.==

q

Q

Helpful 
Hint

Some students use the
function table as a crutch.
This can become a
dangerous habit as the
functions get more complex.
You must get into the habit
of understanding the
description provided by the
manufacturer. (In this case,
what is meant by
transparent and latched?) E X A M P L E  5

For the inputs at D0 and E0–1 for the 7475 D latch shown in Figure 15,
sketch the output waveform at Q0 in Figure 16.

D0 Q0

Q0E0-1

1 74754

Figure 15

FLIP-FLOPS AND REGISTERS
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VHDL Description of a D Latch
The function of a D latch is to pass the binary state on its D input out to Q (transparent
operation) while the enable is HIGH, and then store that value at Q (latch operation)
when the enable goes LOW. This function can be implemented in an FPGA as a block
design file (bdf ) or as a VHDL program (vhd ). Example 6 shows both methods and
provides a simulation of the latch.

Figure 16

E0-1

Q
follows

D

Q
latched

Q
follows

D

Q
latched

Q
follows

D

D0

Q0

Q
latched

E X A M P L E  6

D Latch

Create a D latch using the block design method. Right-click in the block
design area and insert the symbol named latch. Test the design by creating
a waveform simulation file. Repeat using the VHDL design entry method.

Solution: Figure 17 shows the solution as a bdf file using the primitive
symbol LATCH. d0 and e0 are applied as inputs and q0 is the output.

Right-click then insert
symbol latch

Figure 17 Block design file for the D latch of Example 6.

The VHDL solution is shown in Figure 18. Notice that d0 and e0 are
listed in the sensitivity list of the PROCESS statement. This way, whenever
either of them changes levels, the process is executed. The IF clause sets q0
equal to d0 when e0 is HIGH. (If e0 is not HIGH, q0 remains 
unchanged.)

The waveform simulation file is shown in Figure 19. This simulation
must be run for both design methods (block and VHDL) to check the
validity of both implementations. [Follow the procedure outlined in

V
H

D
L

FLIP-FLOPS AND REGISTERS
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Section PROGRAMMABLE LOGIC DEVICES: CPLDS AND FPGAS
WITH VHDL DESIGN from the chapter, Programmable Devices:
CPLDS and FPGAS with VHDL Design (Steps 38–40) to assign the bdf
file, then the vhd file to the current project before each simulation.]
Notice in the simulation that q0 follows the state of d0 while e0 is HIGH,
then it becomes latched when e0 goes LOW.

q follows d
while e
is HIGH

q latched
while e
is LOW

Figure 19 Simulation file for the D latch of Example 6.

Sensitivity list

Condition to load q0 with d0

Figure 18 VHDL design file for the D latch of Example 6.

FLIP-FLOPS AND REGISTERS
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Review Questions

7. The 7475 IC contains how many D latches?

8. The Q output of the 7475 D latch follows the level on the D input as long
as E is ___________ (HIGH or LOW).

9. Changes to D are ignored by the 7475 while E is LOW. True or false?

5 D Flip-Flop: 7474 IC; VHDL Description

7474 IC
The 7474 D flip-flop differs from the 7475 D latch in several ways. Most important,
the 7474 is an edge-triggered device. This means that transitions in Q occur only at the
edge of the input trigger pulse. The trigger pulse is usually a clock or timing signal
instead of an enable line. In the case of the 7474, the trigger point is at the positive
edge of Cp (LOW-to-HIGH transition). The small triangle on the D flip-flop symbol
[Figure 20(a)] is used to indicate that it is edge triggered. 

FLIP-FLOPS AND REGISTERS

8 Q2

9 Q2

10

GND

11 Cp2

12 D2

13 RD2

14RD1

(a)

(b)

D1 Q1

Q1

Cp1

RD1

SD1

RD1

SD1Active-LOW Set

Edge-trigger symbol

Active-LOW Reset

D2 Q2

Q2

Cp2

RD2

SD2

RD2

SD2

 D, Cp = synchronous inputs
               (data, clock)
SD, RD = asynchronous inputs
               (Set, Reset)
  Q, Q = outputs

7

Q1 6

Q1

VCC

5

4SD1

3Cp1

2D1

1

SD2

7474

Figure 20 The 7474 dual D flip-flop: (a) logic symbol; (b) pin configuration.

Common
Misconception

Don’t mistakenly think
that you can leave the
asynchronous inputs
disconnected if they are 
not to be used (they must
be tied HIGH).

Common
Misconception

Students often mistakenly
think that applying a LOW
to will make Q � LOW.SD

Inside 
Your PC

The D latch and D flip-flop
are also available as octal
devices (8 flip-flops in a sin-
gle IC). The 74LS373 and
74LS374 octal ICs are often
used to interface to micro-
processors. (See Sections 9
and 13–10.)
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Edge-triggered devices are made to respond to only the edge of the clock signal
by converting the positive clock input pulse into a single, narrow spike. Figure 21
shows a circuit similar to that inside the 7474 to convert the rising edge of Cp into a
positive spike. This is called a positive edge-detection circuit.

In Figure 21, the original clock, Cp, is input to an inverter whose purpose is to in-
vert the signal and delay it by the propagation delay time of the inverter (tph1). This in-
verted, delayed signal, , is then fed into the AND gate along with the original clock,
Cp. By studying the waveforms, you can see that the output waveform, Cp , is a very
narrow pulse (called a spike) that lines up with the positive edge of Cp. This is now
used as the trigger signal inside the D flip-flop. Therefore, even though a very wide
pulse is entered at Cp of the 7474, the edge-detection circuitry converts it to a spike so
that the D flip-flop reacts only to data entered at D at the positive edge of Cp.

The 7474 has two distinct types of inputs: synchronous and asynchronous. The
synchronous inputs are the D (Data) and Cp (Clock) inputs. The state at the D input will
be transferred to Q at the positive edge of the input trigger (LOW-to-HIGH edge of Cp).
The asynchronous inputs are (Set) and (Reset), which operate independently of
D and Cp. Being asynchronous means that they are not in sync with the clock pulse, and
the Q outputs will respond immediately to input changes at and . The little circle
at SD and RD means that they are active-LOW inputs, and because the circles act like
inverters, the external pin on the IC is labeled as the complement of the internal label.

This all sounds complicated, but it really is not. Just realize that a LOW on will
immediately Set the flip-flop, and a LOW on will immediately Reset the flip-flop,
regardless of the states at the synchronous (D, Cp) inputs.

The function table (Table 4) and following examples illustrate the operation of
the 7474 D flip-flop.

RD

SD

RDSD

RDSD

¿

Cpd

TABLE 4 Function Table for a 7474 D Flip-Flopa

Inputs Outputs

Operating Mode Cp D Q

Asynchronous Set L H x x H L
Asynchronous Reset H L x x L H
Not used L L x x H H
Synchronous Set H H h H L
Synchronous Reset H H 1 L H

a � positive edge of clock; H � HIGH; h � HIGH level one setup time prior to 
positive clock edge; L � LOW; l � LOW level one setup time before positive 
clock edge; x � don’t care.

c

c

c

QRDSD
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74HCT04

Narrow spikes occur
at positive edge of Cp

74HCT08

(Spike)
Cp

Cpd

Cp′

Cp
′

Cp
tphl of inverterCpd

Figure 21 Positive edge-detection circuit and waveforms.

Team
Discussion

Discuss how the 7474 might
be used to remember that a
pedestrian had pressed a
crosswalk push button. 

X means that 
we “don’t care”
about these
inputs because

or is
active. 

RDSD

←⎯ ←⎯
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Figure 22 Using MultiSIM® to simulate a 7474 D flip-flop.

The lowercase h in the D column indicates that to do a synchronous Set, the D
must be in a HIGH state at least one setup time before the positive edge of the clock.
The same rules apply for the lowercase 1 (Reset).

The setup time for this flip-flop is 20 ns, which means that if D is changing
while Cp is LOW, that’s okay, but D must be held stable (HIGH or LOW) at least 20 ns
before the LOW-to-HIGH transition of Cp. Also realize that the only digital level on the
D input that is used is the level that is present at the positive edge of Cp.

We have learned a lot of new terms in regard to the 7474 (active-LOW, edge-
triggered, asynchronous, and others). These terms are important because they apply to
almost all the ICs that are used in the building of sequential circuits.1

FLIP-FLOPS AND REGISTERS
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Figure 22 shows a MultiSIM® simulation of a 7474 D flip-flop. Adding
switches to all of the inputs provides a means to test each of the flip-flop
operating modes. For example, to provide a positive edge clock to you
would move the Clock input switch from the LOW position (0) to the
HIGH position (1) by pressing the letter C on your keyboard.

MultiSIM Exercise:

(a) Load the file fig10_22 from the text companion website. Run the sim-
ulation and press the C key to apply a positive edge clock. Because D
was LOW before the clock edge, the Q output LED is OFF.

(b) What steps would you perform to complete a synchronous Reset? Try it.

(c) What happens if you now make LOW and try to com-
plete a synchronous Set? Try it.

(d) What steps would you perform to complete an asynchronous Set? Try it.

(e) What steps would you perform to complete an asynchronous Reset?
Try it.

(Reset¿)RESET

Cp

VCC 1

0

VCC 1

Q

0

QD

Cp ∼Q

Set′ (S)

Reset′ (R)

SET

Data (D)

Clock (C)

RESET

7474

_
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Sketch the output waveform at Q for the 7474 D flip-flop shown in Figure
23(a) whose input waveforms are as given in Figure 23(b). 

Helpful 
Hint

Two ways that you can
remember that it takes a
LOW to asynchronously
Set the flip-flop are (1) the
overbar on and (2) the
bubble on .SD

SD Solution:

E X A M P L E  8

Sketch the output waveforms at Q for the 7474 D flip-flop shown in Figure
24(a) whose input waveforms are given in Figure 24(b) and (c).

Figure 23

(a)

D Q

Q

Cp

RD

SD

RD

SD

1 74742

Cp

SD

RD

D

Q

(b)

AS SR SS AR SS AR SS

AS = asynchronous Set
AR = asynchronous Reset
SS = synchronous Set
SR = synchronous Reset

D Q

Q

Cp

RD

SD

RD

SD

(a)

1 74742

Figure 24
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Figure 24 Continued

Cp

SD

RD

D

Q

(b)

AR AS
AR

SS SR SR

These HIGHs
are ignored
because they
don’t occur at
the positive
edge of Cp

RD overrides Cp, D

Cp

SD

RD

D

Q

(c)

ASSR

Q is “undetermined”
because SD and RD
both start out HIGH.

SR AS

RD overrides
Cp, D

SD overrides
Cp, D

Review Questions

10. The 7474 is an edge-triggered device. What does this mean?

11. Which are the synchronous and which are the asynchronous inputs to
the 7474 D flip-flop?

12. To perform an asynchronous Set, the line must be made HIGH.
True or false?

13. The purpose of the inverter in the edge-detection circuit of Figure 18 is
to ___________ and ___________ the signal from Cp.

VHDL Description of a D Flip-Flop
The function of a D flip-flop is to remember the logic level on D at the instant that the in-
put clock trigger makes a state transition (LOW to HIGH or HIGH to LOW). Flip-flops
can also have asynchronous Set and Reset inputs. The flip-flop function can be imple-
mented in an FPGA as a block design file (bdf ) or as a VHDL program (vhd ). Examples
9 and 10 show both methods and provide a simulation of the flip flops.

SD

Solution:

V
H

D
L

Solution:
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D Flip-Flop

Create a D flip-flop using the block design method. Right-click in the block
design area and insert the symbol named dff. Test the design by creating a
waveform simulation file. Repeat using the VHDL design entry method.

Solution: Figure 25 shows the solution as a bdf file using the primitive
symbol DFF. d, cp, and n_reset are applied as inputs and q is the output.
The name n_reset is chosen to represent the active-LOW asynchronous
Reset because cannot be typed with the overbar. You will also notice
that inside of the symbol, Altera uses the terms Preset (PRN) instead of Set
(Sd ) and Clear (CLRN ) instead of Reset (Rd ).

reset

reset

Same as R

Same as SRight-click then
insert symbol dff

D

D

Figure 25 Block design file for the D flip-flop of Example 9.

The VHDL solution is shown in Figure 26(a). Within the PROCESS
block, the first check is to determine if n_reset is LOW. If it is LOW, it
overrides any synchronous operations on cp and d and resets q to ‘0’. If it
is not LOW, then the ELSE clause is executed. Here the program must de-
termine if there is a positive (LOW to HIGH) edge on cp. This is accom-
plished by asking IF (cp’EVENT AND cp ‘1’). This is interpreted as
“Was there an event (change of state) on cp and is cp now HIGH?” To
check for a negative (HIGH-to-LOW) clock edge, cp ‘1’ would be
changed to cp ‘0’. So, if it is determined that there is a positive edge on
cp, then q is loaded with the logic level of d. The VHDL program ends with
an END IF for each IF statement and an END PROCESS for the PROCESS
statement. Notice the use of indentation to delineate the beginning and end
of the PROCESS and each IF block.

Whenever there are IF-THEN-ELSE statements in a program, a flow-
chart like Figure 26(b) is helpful to visualize program branching. This
makes it obvious that the asynchronous input n_reset has priority over the
synchronous cp. If n_reset is LOW, q is reset to 0 and the check for an ac-
tive clock edge is skipped.

The simulation file is shown in Figure 27. This simulation must be run for
both design methods (block and VHDL) to check the validity of both imple-
mentations. [Follow the procedure outlined in Section 4 from the chapter,
Programmable Logic Devices: CPLDs and FPGAs with VHDL Design (Steps
38–40) to assign the bdf file, then the vhd file to the current project 

=

=

=

FLIP-FLOPS AND REGISTERS

464



Figure 26 VHDL design for the D flip-flop of Example 9: (a) VHDL listing; (b) flowchart.

n_reset = 0
?

IF
Yes

No

Asynchronous Reset
bypasses synchronous
operations.

Yes

No

END IF

END PROCESS

PROCESS cp, n_reset

q < = d

q < = 0

END IF

IF      cp
?

(b)

(a)

Asynchronous Reset

Check for positive  
clock edge

Synchronous 
operation

Each IF requires an END IF

before each simulation.] Notice in the simulation that starting n_reset
LOW makes q start out LOW. Then after the 10 ms mark it resets q again.
Also notice that at each positive edge of cp, q is set to the level of d. If cp
is not on a positive edge, then d is ignored.

FLIP-FLOPS AND REGISTERS
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Figure 27 Simulation file for the D flip-flop of Example 9.

E X A M P L E  1 0

D Flip-Flop with Asynchronous Set and Reset

Create a D flip-flop using the block design method having both asynchro-
nous Set and Reset inputs. Right-click in the block design area and insert
the symbol named dff. Test the design by creating a waveform simulation
file. Repeat using the VHDL design entry method.

Solution: Figure 28 shows the solution as a bdf file using the primitive
symbol DFF. d, cp, n_set, and n_reset are applied as inputs, and q is the
output. Notice that inside of the symbol, Altera uses Preset (PRN ) instead
of Set (Sd ) and Clear (CLRN ) instead of Reset (Rd ).

The VHDL solution is shown in Figure 29(a). Within the PROCESS
block the operation of the IF clauses are similar to that explained in
Example 9 except, instead of using two statements for ELSE and IF, they
are combined as ELSIF. Also notice that ELSIF does not require an END
IF statement.

Figure 28 Block design file for the D flip-flop of Example 10.

FLIP-FLOPS AND REGISTERS
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IF
Yes

No
The flow from either
asynchronous operation
bypasses the check
for a clock edge.Yes

No

END IF

END PROCESS

PROCESS cp, n_reset, n_set

q < = 1

q < = 0

ELSIF
n_reset = 1

AND
n_set = 0

?

Yes

No
q < = d

ELSIF      cp
?

n_reset = 0
AND

n_set = 1
?

(b)

Figure 29 VHDL design for the D flip-flop of Example 10: (a) VHDL listing; 
(b) flowchart.

(a)

Positive clock edge

Asynchronous
Set

Asynchronous
Reset

Synchronous
operation
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This LOW overrides d and cp

Figure 30 Simulation file for the D flip-flop of Example 10.

The flowchart in Figure 29(b) helps visualize the program branching due
to the IF THEN ELSE statements. As you can see, if either asynchronous input
is active, q is Set or Reset and the check for the positive clock edge is skipped.

The simulation file is shown in Figure 30. This simulation must be run
for both design methods (block and VHDL) to check the validity of both im-
plementations. [Follow the procedure outlined in Section 4  from the chapter,
Programmable Logic Devices: CPLDs and FPGAs with VHDL Design
(Steps 38–40) to assign the bdf file, then the vhd file to the current project be-
fore each simulation.] This simulation illustrates asynchronous Set and Reset
in several locations. Be sure that you can identify each one. Also study the
synchronous inputs (cp and d) carefully to see that q responds to the level of
d only at the positive clock edge. Notice at the 9 ms positive cp edge, q does
not go HIGH because n_reset is active and overrides the synchronous inputs.

FLIP-FLOPS AND REGISTERS

6 Master–Slave J-K Flip-Flop

Another type of flip-flop is the J-K flip-flop. It differs from the S-R flip-flop in that it
has one new mode of operation, called toggle. Toggle means that Q and will switch
to their opposite states at the active clock edge. (Q will switch from a 1 to 0 or from a
0 to a 1.) The synchronous inputs to the J-K flip-flop are labeled J, K, and Cp. J acts
like the S input to an S-R flip-flop, and K acts like the R input to an S-R flip-flop. The
toggle mode is achieved by making both J and K HIGH before the active clock edge.
Table 5 shows the four synchronous operating modes of J-K flip-flops.

Q

TABLE 5 Synchronous Operating 
Modes of a J-K Flip-Flop

Operating Mode J K

Hold 0 0
Set 1 0
Reset 0 1
Toggle 1 1

Toggle means Q
flips to opposite
state.

J acts like Set.
K acts like Reset.←⎯⎯⎯⎯⎯⎯⎯

←⎯⎯

←
⎯⎯⎯

468



A number of the older flip-flops (74H71, 7472, 7473, 7476, 7478, 74104, 74105)
are of the master–slave variety. They are rarely used today, but their theory of opera-
tion helps in understanding the newer varieties. They consist of two latches: a master
S-R latch (S-R flip-flop) that receives data while the input trigger clock is HIGH, and a
slave S-R latch that receives data from the master and outputs it when the clock goes
LOW. Figure 31 shows a simplified equivalent circuit and logic symbol for a master–
slave J-K flip-flop.

Figure 31 Positive pulse-triggered master–slave J-K flip-flop: (a) equivalent circuit; 
(b) logic symbol.

FLIP-FLOPS AND REGISTERS

From Figure 31, we can see that the master latch will be loaded with the state of
the J and K inputs, whereas AND gates 1 and 2 are enabled by a HIGH Cp (i.e., the
master is loaded while Cp is HIGH). For now, let’s ignore the feedback connections
shown in Figure 31 as dashed lines.

When Cp goes LOW, gates 1 and 2 are disabled, but gates 3 and 4 are enabled
by the HIGH from the inverter, allowing the digital state at the master to pass through
to the slave latch inputs.

When Cp goes HIGH again, gates 3 and 4 will be disabled, thus keeping the slave
latch at its current digital state. Also, with Cp HIGH again, the master will be loaded
with the digital states of the J and K inputs, and the cycle repeats (see Figure 32).

Cp

Gates 1 and 2
disabled;
gates 3 and 4
enabled;
slave loaded
from master

Cycle
repeats

Gates 1 and 2
enabled;
master loaded

Figure 32 Enable/disable operation of the Cp line of a master–slave flip-flop.

QS1

QR1

QS2

QR2

Q

Q

J

Cp

K

1

2

3

4

Master Slave

Note: The dashed lines are internal feedback connections that enable the toggle operation.

(a)

K

QJ

Q

Cp

(b)
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Master–slave flip-flops are called pulse-triggered or level-triggered devices because
input data are read during the entire time that the clock pulse is at a HIGH level.

If you analyze the logic in Figure 31, including the dashed lines, you will see
how the toggle operation occurs. With J 1 and K 1, let’s assume that Q 1

. The dashed feedback connection from Q 1 will enable gate 2 (gate 1 is
disabled by the 0 on ), allowing the master to get reset when Cp goes HIGH.
Therefore, Q (of the slave) will toggle to a 0 when Cp returns LOW.

With J and K still 1 and Q 0, the next time Cp is HIGH, gate 1 will be enabled
because . This will set the master. Then when Cp returns LOW, the Q output of the
slave will toggle to a 1. In other words, the feedback connections allow only the opposite
state to enter the master when J 1 and K 1. Notice that even if J and K are only
momentarily made HIGH or if they are pulsed HIGH at different times while Cp is
HIGH, the master will toggle and pass the toggle on to the slave when Cp goes LOW.

Occasionally, unwanted pulses or short glitches caused by electrostatic noise ap-
pear on J and K while Cp is HIGH. This phenomenon of interpreting unwanted signals
on J and K while Cp is HIGH is called ones catching and is eliminated by the newer J-K
flip-flops, which use an edge-triggering technique instead of pulse triggering.

==

Q = 1
=

Q
=(Q = 0)

===

FLIP-FLOPS AND REGISTERS
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To illustrate the master–slave operation, for the master–slave J-K flip-flop
shown in Figure 33, draw the Q output in Figure 34. (Assume that Q is ini-
tially 0.)

Solution:

K

QJ

Q

Cp

K

J

Cp

Figure 33

Cp

Master loaded
with a Set (J)

J

K

Q

Slave latches
onto state
from master

Reset pulse (K) is
ignored because
master inputs are
disabled

Master loaded
with a Reset

Slave latches
onto state
from master

K = 1, then J = 1
the master remembers
both and toggles

Slave latches
onto the state of
the master

Figure 34
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7 Edge-Triggered J-K Flip-Flop with VHDL Model

With edge triggering, the flip-flop accepts data only on the J and K inputs that are pres-
ent at the active clock edge (either the HIGH-to-LOW edge of Cp or the LOW-to-HIGH
edge of Cp). This gives the design engineer the ability to accept input data on J and K at
a precise instant in time. Transitions of the level J and K before or after the active clock
trigger edge are ignored. The logic symbols for edge-triggered flip-flops use a small tri-
angle at the clock input to signify that it is an edge-triggered device (see Figure 37).

FLIP-FLOPS AND REGISTERS
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For the master–slave J-K flip-flop shown in Figure 35, sketch the wave-
form at Q in Figure 36. (Assume that Q is initially 0.)

Solution:

K

QJ

Q

Cp

Figure 35

Cp

S
e
t

J

K

Q

R
e
s
e
t

T
o
g
g
l
e

Figure 36

Transitions of the Q output for the positive edge-triggered flip-flop shown in
Figure 37(a) will occur when the Cp input goes from LOW to HIGH (positive edge).
Figure 37(b) shows a negative edge-triggered flip-flop. The input clock signal will
connect to the IC pin labeled . The small circle indicates that transitions in the out-
put will occur at the HIGH-to-LOW edge (negative edge) of the Cp input.

Cp

J Q

Q

Cp

J Q

Q

Cp

(a) (b)

K K

Cp Cp

Cp ≡ clock input
J ≡ Set input

K ≡ Reset input

positive edge

Negative edge

Figure 37 Symbols for edge-triggered J-K flip-flops: (a) positive edge triggered; 
(b) negative edge triggered.
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The function table for a negative edge-triggered J-K flip-flop is shown in
Figure 38.

The downward arrow in the column indicates that the flip-flop is triggered by
the HIGH-to-LOW transition (negative edge) of the clock.

Cp

FLIP-FLOPS AND REGISTERS

E X A M P L E  1 3

To illustrate edge triggering, for the negative edge-triggered J-K flip-flop
shown in Figure 39, let’s draw the Q output in Figure 40. (Assume that Q
is initially 0.)

Solution:

Operating mode

Hold
Set
Reset
Toggle

↓

↓

↓

↓

Cp

0
1
0
1

J K Q Q

0
0
1
1

1
0

0
1

No change

Opposite
state

Inputs Outputs

↓ ≡ HIGH- to-LOW

Cp

Negative edge
(HIGH-to-LOW)

Figure 38 Function table for a negative edge-triggered J-K flip-flop.

J Q

Q

Cp

K

Cp

J

K

Figure 39

Cp

J

K

Q

1 2 3 4 5 6

1 J = 1, K = 0 at the negative clock edge; Q is Set

2 J = 0, K = 0 at the negative clock edge; Q is held
(transitions in K before the edge are ignored)

3 J = 0, K = 1 at the negative clock edge; Q is Reset

4 J = 1, K = 1 at the negative clock edge; Q toggles

5 J = 0, K = 1 at the negative clock edge; Q is Reset

6 J = 0, K = 0 at the negative clock edge; Q is held

Figure 40
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VHDL Description of an Edge-Triggered J-K Flip-Flop
A J-K flip-flop has four synchronous operations: Hold, Set, Reset, and Toggle. When
an output toggles, it changes to the opposite state of what it was before the input trig-
ger was applied. Because it has four operations, the VHDL solution can be made more
streamlined by using the CASE statement instead of multiple IF-THEN-ELSE state-
ments. J-K flip-flops can be designed for FPGAs using a graphic design method or as
a VHDL program as shown in the following example.

FLIP-FLOPS AND REGISTERS
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J-K Flip-Flop

Create a J-K flip-flop using the block design method. Right-click in the block
design area and insert the symbol named jkff. Test the design by creating a
waveform simulation file. Repeat using the VHDL design entry method.

Solution: Figure 41 shows the solution as a bdf file using the primitive
symbol JKFF. This symbol is a positive-edge flip-flop so an inverter was
added to the clock line to make it a negative edge trigger and n_cp is used
to represent .Cp

cp

Disable
asynchronous
inputs

Inverter required to provide
negative-edge triggering

Figure 41 Block design file for the J-K flip-flop of Example 14.

The VHDL solution is shown in Figure 42(a). Notice in the entity that
q is declared as a BUFFER to enable it to be used as both an input and an
output. This is because the output assigned to q is sometimes determined
by the state that is input to it from the previous value of q. [i.e., for the Hold
condition, q becomes the state that q was before the clock transition (no
change), and for Toggle, it becomes the opposite state]. The CASE state-
ment is going to be checking a 2-bit vector called jk so a vector SIGNAL
must be declared, and the individual j and k inputs must be concatenated
together using the & symbol to form a 2-bit vector. The IF statement
checks for a negative edge on cp. If it is a negative edge, then the CASE
block is executed. All four flip-flop conditions are listed as the CASE con-
ditions. The OTHERS clause is required to cover the other states allowed
by std_logic besides 1 and 0.

The flowchart for the process is shown in Figure 42(b). This makes it
obvious that the CASE statement is only executed if there is a negative
edge on cp. If not, q is unaffected and the process ends.

V
H

D
L
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(a)

Buffer declares q as output and input

Concatenate j and k into a 2-bit vector

Double quote required for vector quantities

Figure 42 VHDL design file for the J-K flip-flop of Example 14: (a) VHDL
listing; (b) flowchart.

WHEN 11
q < = q

WHEN 01
q < = 0

WHEN 10
q < = 1

IF
Yes

No

END PROCESS

PROCESS n_cp, j, k

CASE jk IS

END IF

     cp

?

WHEN OTHERS
q < = q

WHEN 00
q < = q

END CASE

(b)

The simulation file is shown in Figure 43. This simulation must be run
for both design methods (block and VHDL) to check the validity of both im-
plementations. [Follow the procedure outlined in Section 4  from the chapter,
Programmable Logic Devices: CPLDs and FPGAs with VHDL Design
(Steps 38–40) to assign the bdf file, then the vhd file to the current project be-
fore each simulation.] This simulation illustrates the four operations of a J-K
flip-flop. At the first negative clock edge, j and k are both LOW (Hold) so q

FLIP-FLOPS AND REGISTERS
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remains unchanged. At the next edge, j is HIGH, k is LOW, so q is Set. At the
next edge, j is LOW, k is HIGH, so q is Reset. For the last two negative clock
edges, j and k are both HIGH so q toggles to the opposite state each time.

FLIP-FLOPS AND REGISTERS

Set Reset Toggle

Figure 43 Simulation file for the J-K flip-flop of Example 14.

Review Questions

14. Describe why master–slave flip-flops are called ones catching.

15. The Set input to a J-K flip-flop is ___________ (J, K) and the Reset in-
put is ___________ (J, K ).

16. The edge-triggered J-K flip-flop looks only at the J-K inputs that are
present during the active clock edge on Cp. True or false?

17. What effect does the toggle operation of a J-K flip-flop have on the Q
output?

8 Integrated-Circuit J-K Flip-Flop (7476, 74LS76)

Now let’s take a look at actual J-K flip-flop ICs. The 7476 and 74LS76 are popular 
J-K flip-flops because they are both dual flip-flops (two flip-flops in each IC package)
and they have asynchronous inputs ( and ) as well as synchronous inputs

. The 7476 is a positive pulse-triggered (master–slave) flip-flop, and the
74LS76 is a negative edge-triggered flip-flop, a situation that can trap the unwary tech-
nician who attempts to replace the 7476 with the 74LS76!

From Figure 44(a) and Table 6, we see that the asynchronous inputs and are
active-LOW. That is, a LOW on (Set) will Set the flip-flop (Q 1), and a LOW on

will Reset the flip-flop (Q 0). Remember, the asynchronous inputs will cause the
flip-flop to respond immediately without regard to the clock trigger input.

For synchronous operations using J, K, and , the asynchronous inputs must 
be disabled by putting a HIGH level on both and . The J and K inputs are read one
setup time before the HIGH-to-LOW edge of the clock . One setup time for the
74LS76 is 20 ns. This means that the state of J and K 20 ns before the negative edge of
the clock is used to determine the synchronous operation to be performed. (Of course, the
7476 master–slave will read the state of J and K during the entire positive clock pulse.) 

(Cp)
RDSD

Cp

=RD

=SD

RDSD

(Cp, J, K )
SDRD
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J2

Cp2

SD2

SD2

(a)

K2

Q2

Q2RD2

RD2

Cp2

J1

Cp1

SD1

SD1

K1

Q1

Q1RD1

RD1

Cp1

VCC

161

152

143

134

125

116

107

98

GNDJ1

Cp1

74LS76

K2

Q1

Q1

K1

Q2

Q2

J2

SD1

RD1

Cp2

SD2

RD2

(b)

Figure 44 The 74LS76 negative edge-triggered flip-flop: (a) logic symbol; 
(b) pin configuration.

Helpful
Hint

The 7476 master–slave can
be demonstrated in lab to
be a ones catcher. The
74LS76, however, will
ignore J and K except at
the trigger edge. Try it.

Helpful
Hint

The 74LS112 is another
dual J-K flip-flop. It is very
popular because it is
available in the higher-
speed families, such as
74F112, 74ALS112, and
74HC112.

TABLE 6 Function Table for the 74LS76a

Inputs Outputs

Operating Mode J K Q

Asynchronous Set L H x x x H L
Asynchronous Reset H L x x x L H
Synchronous Hold H H ↓ l l q
Synchronous Set H H ↓ h l H L
Synchronous Reset H H ↓ l h L H
Synchronous Toggle H H ↓ h h q

aH HIGH-voltage steady state; L LOW-voltage steady state; h HIGH voltage one setup time before
negative clock edge; l LOW voltage one setup time before negative clock edge; x don’t care; q state of
Q before negative clock edge; ↓ HIGH-to-LOW (negative) clock edge.=

===

===

q

q

QCpRDSD
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Also notice that in the toggle mode (J K 1), after a negative clock edge, Q
becomes whatever was before the clock edge, and vice versa (i.e., if Q 1 before
the negative clock edge, then Q 0 after the negative clock edge).

Now let’s work through several timing analysis examples to be sure that we fully
understand the operation of J-K flip-flops. 

=

=Q
==

7 4 L S 7 6  J - K F L I P - F L O P  S I M U L AT I O N

Figure 45 shows a MultiSIM® simulation of a 74LS76 J-K Flip-Flop.
[Notice that MultiSIM uses the abbreviation PR (PreSet) in place of 
CLR (Clear) in place of and CLK (Clock) in place of Also, all ter-
minals are preceded by the number 1 to signify that it’s the first half of the
dual package.] Adding switches to all of the inputs provides a means to test
each of the flip-flop operating modes. For example, to provide a negative
edge clock to CLK you would move the Clock input switch from the LOW
position (0) to the HIGH position (1) to the LOW position (0) by pressing
the letter C on your keyboard twice.

MultiSIM Exercise:

(b) What steps would you perform to complete a synchronous Reset? A
synchronous Set? A synchronous Toggle? Try them.

(c) What happens if you now make (Reset ) LOW and try to com-
plete a synchronous Set? Try it.

(d) What steps would you perform to complete an asynchronous Set? An
asynchronous Reset? Try them.

¿CLR

Cp.RD,
SD,

VCC

J

Clock′ (C)

K

1

VCC 1

4

1

2

3

1J

1K

1CLK

~1CLR

~1PR

~1Q

1Q
Q

16

15

14

0 0

74LS76

Set′ (S)

Reset′ (R)

Figure 45 Using MultiSIM® to simulate 74LS76 J-K flip-flop operations.

(a) Load the file fig10_45 from the text companion website. Run the sim-
ulation and press the C key twice to apply a negative edge clock.
Because J-K were 1–1 before the clock edge, the Q output LED remains
unchanged (Hold mode).
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J

Cp

SD

SD

K

Q

QRD

RD

Cp

1 74LS762

(a)

Figure 46

Solution:

E X A M P L E  1 5

Sketch the Q waveform for the 74LS76 negative edge-triggered J-K flip-flop shown in Figure 46(a), with
the input waveforms given in Figure 46(b).

Cp

J

K

Q

SD

RD

0 1 2 3

Solution to
Example 16
(Master-Slave)

SRAS ST AR SH AS

SH = synchronous hold
ST = synchronous toggle

(b)

Note: Q changes only on the negative edge of , except when asynchronous operations are
taking place.

(SD, RD)Cp

E X A M P L E  1 6

How would the Q waveform of Example 11 be different if we used a 7476
pulse-triggered master–slave flip-flop instead of the 74LS76?

Solution: During positive pulse 2, J is HIGH for a short time. The master
latch within the 7476 will remember that and cause the flip-flop to do a
synchronous Set (Q 1) when returns LOW. (See Figure 46.)Cp=

E X A M P L E  1 7

Sketch the Q waveform for the 7476 positive pulse-triggered master-slave flip-
flop shown in Figure 47 with the input waveforms given in Figure 48.

FLIP-FLOPS AND REGISTERS
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Solution:

E X A M P L E  1 8

The 74109 is a positive edge-triggered flip-flop. The logic symbol
(Figure 49) and input waveforms (Figure 50) are given; sketch Q.

J@K

J

Cp

SD

SD

K

Q

QRD

RD

Cp

1 74762

Figure 47

J

Cp

SD

SD

K

Q

QRD

RD

  Cp

J

K

 74109

Figure 49

Figure 48

Cp

J

K

Q

SD

RD

0 1 2 3

STAR SR SS ST

while Cp

These HIGHs occurred
 was HIGH,

so they were "remembered."

FLIP-FLOPS AND REGISTERS

479



Solution:

Notes:

1. Positive edge triggering.

2. instead of K; therefore, for a toggle, J 1, .K = 0=K

Figure 50

Cp

J

K

Q

SD

RD

0 1 2 3

AS ST AS ST SS
AR

The J-K flip-flop can be used to form other flip-flops by making the appropriate
external connections. For example, to form a D flip-flop, add an inverter between the J
and K inputs and bring the data into the J input, as shown in Figure 51.

The flip-flop in Figure 51 will operate as a D flip-flop because the data are
brought in on the J terminal and its complement is at the K. So, if Data 1, the flip-
flop will be Set after the clock edge; if Data 0, the flip-flop will be Reset after the
clock edge. (Note: You lose the toggle mode and hold mode using this configuration.)

Also, it is often important for a flip-flop to operate in the toggle mode. This can
be done simply by connecting both J and K to 1. This will cause the flip-flop to change
states at each active clock edge, as shown in Figure 52. Notice that the frequency of the
output waveform at Q will be one-half the frequency of the input waveform at .

Figure 53 shows the test apparatus used to display the input and output of a tog-
gle flip-flop. The oscilloscope display is used to accurately show the timing and fre-
quency relationship between the two waveforms.

Cp

=

=

J

Cp

SD

1

K

Q

QRD

1

Cp

Data

Connect unused
asynchronous inputs
to 1.

Figure 51 D flip-flop made from a J-K flip-flop.

FLIP-FLOPS AND REGISTERS

480



FLIP-FLOPS AND REGISTERS

Figure 53 Test apparatus used to analyze the input and output of a toggle flip-flop.

Helpful 
Hint

It is interesting for you to
see an application of the D
flip-flop and the toggle 
flip-flop .

J

Cp

SD

1

K

Q

QRD

Cp

1

Cp

Q

This LOW Resets the F-F,
intializing Q to zero

Figure 52 J-K connected as a toggle flip-flop.

As we have seen, there is a variety of flip-flops, each with its own operating char-
acteristics. 

First, let’s summarize what we have learned about flip-flops by utilizing four
common flip-flops in the same circuit and then supplying input signals and sketching
the Q output of each (see Example 19).

T F L I P - F L O P  S I M U L AT I O N

Figure 54 shows a MultiSIM® simulation of a T flip-flop (toggle flip-flop). (Notice that MultiSIM
uses the abbreviation T for “toggle” instead of providing J and K inputs tied to VCC. Also, this partic-
ular T flip-flop has active-HIGH asynchronous inputs and a positive-edge clock.)

MultiSIM Exercise: Load the file fig10_54 from the text companion website. Double-click the
oscilloscope to expand its size, and then turn on the power switch. Use the oscilloscope settings to
determine the clock-input period and the Q output period. Calculate the clock-input frequency and Q
output frequency.
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For each of the flip-flops shown in Figure 55(a), sketch the Q outputs in Figure 55(b).

D

Cp

SD

1

Q

QRD

Cp1

D

E

Q

Q

J

Cp

SD

1

K

Q

QRD
1

J

Cp

SD

1

K

Q

QRD
1

Q1

Q2

Q3

Q4

E

Data

Cp2

Cp3

RD

7475 D latch
Q follows D while trigger HIGH
Q latched while trigger LOW

7474 D flip-flop (positive edge-triggered)
Q flips to the state of D at positive
edge of trigger

7476 J-K flip-flop (positive pulse-triggered M/S)
“Ones catching” while trigger HIGH,
then flip at negative edge

74LS76 J-K flip-flop (negative edge-triggered)
Flip at negative edge

1 74754

1 74742

1 74762

1 74LS762

(a)

VCC  5 V
G

A B

T

XSC1

+

V1

Q
1 kHz
5 V

T Q

CLK ∼Q

SET

RESET

CLK

Figure 54 Using MultiSIM® to simulate the input/output characteristics of a toggle flip-flop.

Figure 55
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E, Cp1, Cp2, Cp3

RD

Q1

Q2

Q3

Q4

(Trigger)

Data

(b)

Figure 55 Continued

Solution:

Review Questions

18. How do you asynchronously Reset the 74LS76 flip-flop?

19. The synchronous inputs to the 74LS76 override the asynchronous in-
puts. True or false?

20. To operate a 74LS76 flip-flop synchronously, the and inputs
must be held ___________ (HIGH, LOW).

21. What is the distinction between uppercase and lowercase letters when
used in the function table for the 74LS76 flip-flop?

9 Using an Octal D Flip-Flop in a Microcontroller
Application

Most of the basic latches and flip-flops are also available as octal ICs. In this configu-
ration, there are eight latches or flip-flops in a single IC package. If all eight latches or
flip-flops are controlled by a common clock, it is called an 8-bit register. An example
of an 8-bit D flip-flop register is the high-speed CMOS 74HCT273 (also available in
the TTL LS and S families). The ’273 contains eight D flip-flops, all controlled by a
common edge-triggered clock, Cp (see Figure 56). At the positive edge of Cp, the 
8 bits of data at D0 through D7 are stored in the eight D flip-flops and output at Q0
through Q7. The ’273 also has an active-LOW master reset , which provides
asynchronous Reset capability to all eight flip-flops.

An application of the ’273 octal D flip-flop is shown in Figure 57. Here it is used
as an update and hold register. Every 10 s, it receives a clock pulse from the Motorola
68HC11 microcontroller. The data that are on D0–D7 at each positive clock edge are
stored in the register and output at Q0–Q7.

(MR)

RDSD

FLIP-FLOPS AND REGISTERS
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The analog temperature sensor is designed to output a voltage that is propor-
tional to degrees centigrade. The 68HC11 microcontroller has the capability to read
analog voltages and convert them into their equivalent digital value. A software pro-
gram is written for the microcontroller to translate this digital string into a meaning-
ful two-digit BCD output for the display.

The BCD output of the 68HC11 is constantly changing as the temperature fluc-
tuates. One way to stabilize this fluctuating data is to use a storage register like the
74HCT273. Because the ’273 only accepts the BCD data every 10 s, it will hold the
two-digit display constant for that length of time, making it easier to read.

Cp

MR

D0

3

Q0

2

D1

4

Q1

5

D2

7

Q2

6

D3

8

Q3

9

D4

13

Q4

12

D5

14

Q5

15

D6

17

Q6

16

D7

18

Q7

19

11

1

VCC = Pin 20
GND = Pin 10

All eight
D F-Fs are
driven by a
common CP.

Figure 56 Logic diagram for a 74HCT273 octal D flip-flop.
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6
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Figure 57 Using an octal D flip-flop to interface a display to a microcontroller.
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10 Using Altera’s LPM Flip-Flop

Quartus® II software provides a general-purpose flip-flop called LPM_FF in its
Library of Parameterized Modules subdirectory called /megafunctions/storage. It has
several different parameters available for the user to work with in the design of flip-
flop circuits. A help screen describing all of its features can be viewed by entering
LPM_FF in the index of the drop-down Help menu. The port descriptions that appear
will provide an explanation of all of the inputs, outputs, and parameters that are avail-
able. The next two examples will illustrate some of its basic operating features with its
resulting simulation waveforms.

Asynchronous Reset

Octal

Figure 58 The LPM_FF used for Example 20.

E X A M P L E  2 0

LPM Flip-Flop

Use the LPM_FF to implement an octal D flip-flop with synchronous clock
and data inputs and an asynchronous clear. Test its operation by producing
a set of simulation waveforms that exercise both the synchronous and asyn-
chronous inputs.

Solution: Insert the LPM_FF symbol to a new block design file. Use the
MegaWizard to make it an octal device by specifying 8 D Flip-Flops. Also
add an asynchronous clear input. Attach the inputs and outputs as shown in
Figure 58.

Several waveforms are made up for the simulation to exercise the fea-
tures of the LPM_FF (see Figure 59). The initial HIGH on aclear resets all
eight q outputs to 0’s (00H). The first positive edge clock occurs at 1.0 ms.
This stores the 8 bits from the d-inputs (FFH) into the register, which then
appear on the q outputs just the way that an individual 7474 D flip-flop
would. The same occurs at the 3-, 5-, and 7- ms marks. Then an asynchronous
aclear is asserted at 8.0 ms. (It is an active-HIGH signal, but it could have

V
H

D
L
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been specified as active-LOW by right-clicking the symbol and modifying
its Properties.) This forces the q-outputs to 00H. The next aclear is asserted
at 10.5 ms, resetting the q outputs. It is still HIGH beyond the 11- ms posi-
tive clock edge. Since aclear has priority, the synchronous operation of
loading the d inputs (66H) will not occur.

The level on d at the clock
edge is transferred to q

Override clock
@ 11μs

Figure 59 The simulation file for Example 20.

E X A M P L E  2 1

LPM Flip-Flop with Asynchronous Control

Use the LPM_FF to implement an octal D flip-flop with asynchronous
clear, set, and load. Include an enable to control the clock. Test its opera-
tion by producing a set of simulation waveforms that exercise both the
asynchronous and synchronous inputs.

Solution: Insert the LPM_FF symbol to a block design file as shown in
Figure 60. Use the MegaWizard to make it an octal device by specifying 8
D Flip-Flops with a clock enable. Also add asynchronous clear, load, and
set inputs. Connect all of the inputs and outputs as shown.

The simulation file in Figure 61 is designed to exercise all of the
synchronous and asynchronous inputs. As specified in the Help screen, the
enable line must be HIGH to enable the clock to be read. (Notice that 
the positive clock transition at 5.0 ms is ignored because enable is LOW.)
The q outputs initially start out at FFH because the asynchronous set
(aset) is asserted HIGH right at the beginning of the waveforms. After
that, the q outputs take on the value of the d inputs at each positive clock
edge. At 8.5 ms the aload signal is asserted. This asynchronously loads
the d inputs (33H) into the device regardless of the state of the clock. The
last asynchronous operation occurs at 13.75 ms, where aclear resets the q
outputs to 00H.
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Summary

In this chapter, we have learned that

1. The S-R flip-flop is a single-bit data storage circuit that can be con-
structed using basic gates.

2. Adding gate enable circuitry to the S-R flip-flop makes it synchronous. This
means that it will operate only under the control of a clock or enable signal.

FLIP-FLOPS AND REGISTERS

Figure 61 The simulation file for Example 21.

Figure 60 The LPM_FF used for Example 21.
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3. The D flip-flop operates similar to the S-R, except it has only a single
data input, D.

4. The 7475 is an IC D latch. The output (Q) follows D while the enable
(E) is HIGH. When E goes LOW, Q remains latched.

5. The 7474 is an IC D flip-flop. It has two synchronous inputs, D and Cp,
and two asynchronous inputs, and . Q changes to the level of D at the
positive edge of Cp. Q responds immediately to the asynchronous inputs re-
gardless of the synchronous operations.

6. The J-K flip-flop differs from the S-R flip-flop because it can also per-
form a toggle operation. Toggling means that Q flips to its opposite state.

7. The master–slave J-K flip-flop consists of two latches: a master that re-
ceives data while the clock trigger is HIGH, and a slave that receives data
from the master and outputs it to Q when the clock goes LOW.

8. The 74LS76 is an edge-triggered J-K flip-flop IC. It has synchronous
and asynchronous inputs. The 7476 is similar, except it is a pulse-triggered
master–slave type.

9. The 74HCT273 is an example of an octal D flip-flop. It has eight D flip-
flops in a single IC package, making it ideal for microprocessor applications.

10. D latches, D flip-flops, and J-K flip-flops can be described in VHDL
and implemented in CPLDs.

11. The Quartus® II software provides a general-purpose flip-flop in the LPM
subdirectory that can be used to implement multi-bit D and toggle flip-flops.

Glossary

Active-LOW: Means that the input to or the output from a terminal must be LOW to
be enabled, or “active.”

Asynchronous: (Not synchronous.) A condition in which the output of a device will
switch states instantaneously as the inputs change without regard to an in-
put clock signal.

Clock: A device used to produce a periodic digital signal that repeatedly switches
from LOW to HIGH and back at a predetermined rate.

Combinational Logic: The use of several of the basic gates (AND, OR, NOR, NAND)
together to form more complex logic functions. The output of a combina-
tional logic circuit is determined by the present logic levels at its inputs.

Complement: Opposite digital state (i.e., the complement of 0 is 1, and vice versa).

Concatenate: Combine two or more values end-to-end and treat them as one.

Digital State: The logic levels within a digital circuit (HIGH level 1 state and
LOW level 0 state).

Disabled: The condition in which a digital circuit’s inputs or outputs are not allowed
to accept or transmit digital states.

Edge Triggered: The term given to a digital device that can accept inputs and change
outputs only on the positive or negative edge of some input control signal
or clock.

Enabled: The condition in which a digital circuit’s inputs or outputs are allowed to
accept or transmit digital states normally.

=

=

RDSD
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Flip-Flop: A circuit capable of storing a digital 1 or 0 level based on sequential digi-
tal levels input to it.

Function Table: A table that illustrates all the possible combinations of input and
output states for a given digital IC or device.

Latch: The ability to hold onto a particular digital state. A latch circuit will hold the
level of a digital pulse even after the input is removed.

Level-Triggered: See Pulse triggered.

Master–Slave: A storage device consisting of two sections: the master section, which
accepts input data while the clock is HIGH; and the slave section, which re-
ceives the data from the master when the clock goes LOW.

Negative Edge: The edge on a clock or trigger pulse that is making the transition from
HIGH to LOW.

Noise: Any fluctuations in power supply voltages, switching surges, or electrostatic
charges will cause irregularities in the HIGH- and LOW-level voltages of a
digital signal. These irregularities or fluctuations in voltage levels are
called electrical noise and can cause false readings of digital levels.

Octal: A group of eight. An octal flip-flop IC has eight flip-flops in a single package.

Ones Catching: A feature of the master–slave flip-flop that allows the master section
to latch on to any 1 level that is felt at the inputs at any time while the input
clock pulse is HIGH and then transfer those levels to the slave when the
clock goes LOW.

Positive Edge: The edge on a clock or trigger pulse that is making the transition from
LOW to HIGH.

Pulse-Triggered: The term given to a digital device that can accept inputs during an
entire positive or negative pulse of some input control signal or clock.
(Also called level triggered.)

Register: A group of several flip-flops or latches that is used to store a binary string
and is controlled by a common clock or enable signal.

Reset: A condition that produces a digital LOW (0) state.

Sequential Logic: Digital circuits that involve the use of a sequence of timing pulses
to synchronize the reading of their input data. Storage devices such as flip-
flops and latches and functional ICs such as counters and shift registers are
sequential logic.

Set: A condition that produces a digital HIGH (1) state.

Setup Time: The length of time before the active edge of a trigger pulse (control signal)
that the inputs of a digital device must be in a stable digital state. [That is,
if the setup time of a device is 20 ns, the inputs must be held stable (and
will be read) 20 ns before the trigger edge.]

Storage Register: Two or more data storage circuits (such as flip-flops or latches)
used in conjunction with each other to hold several bits of information.

Strobe Gates: A control gate used to enable or disable inputs from reaching a partic-
ular digital device.

Synchronous: A condition in which the output of a device will operate only in syn-
chronization with (in step with) a specific HIGH or LOW timing pulse or
trigger signal.

Toggle: In a flip-flop, a toggle is when Q changes to the level of and changes to
the level of Q.

QQ
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Transition: The instant of change in digital state from HIGH to LOW or LOW to
HIGH.

Transparent Latch: An asynchronous device whose outputs will hold onto the most
recent digital state of the inputs. The outputs immediately follow the state
of the inputs without regard to trigger input and remain in that state even af-
ter the inputs are removed or disabled.

Trigger: The input control signal to a digital device that is used to specify the instant
that the device is to accept inputs or change outputs.

Problems

Section 1
1. Make the necessary connections to the 7400 quad NAND gate IC in
Figure P1 to form the cross-NAND S-R flip-flop of Figure 2. [Remember
that an inverter can be formed from a NAND.]

1 2 3 4 5 6 7

Q
14 13 12 11 10 9 8

VCC

GND
Q

S

R

Figure P1

Section 2
2. Sketch the Q output waveform for a gated S-R flip-flop (Figure 8), given
the inputs at S, R, and G shown in Figure P2.

Q

G

S

R

Figure P2
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3. Repeat Problem 2 for the input waves shown in Figure P3.

4. Repeat problem 2 for the input waves shown in Figure P4.

Section 3
5. Referring to Figure 8 and 12, sketch the logic diagram using NORs,
ANDs, and inverters that will function as a gated D flip-flop.

6. How many IC chips will be required to build the gated D flip-flop that
you sketched in Problem 5?

7. Make the necessary connections to a 7402 quad NOR and a 7408 quad
AND to form the gated D flip-flop of Problem 5.

8. Sketch the Q output waveform for the gated D flip-flop of Figure 12
given the D and G inputs shown in Figure P8.

Q

G

S

R

Figure P3

Q

G

S

R

Figure P4

Q

G

D

Figure P8

D
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Q

G

D

Figure P9

Q

E

D

E

QD

QE

D

Figure P10

Q

E

D

Figure P11

13. The 7475 is transparent while the E input is ___________ (LOW or
HIGH), and it is latched while E is ___________ (LOW or HIGH).

Section 5
14. (a) What are the asynchronous inputs to the 7474 D flip-flop?

(b) What are the synchronous inputs to the 7474 D flip-flop?

9. Repeat Problem 8 for the G and D inputs shown in Figure P9.

Section 4
10. The logic symbol for one-fourth of a 7475 transparent D latch is given
in Figure P10. Sketch the Q output waveform given the inputs at E and D.

11. Repeat Problem 10 for the waveforms at E and D shown in Figure P11.

12. Explain why the 7475 is called transparent and why it is called a latch.
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16. Repeat Problem 15 for the input waves shown in Figure P16.

15. The logic symbol for one-half of a 7474 dual D flip-flop is given in
Figure P15(a). Sketch the Q output wave given the inputs at Cp, D, , and

shown in Figure P15(b).RD

SD

17. Describe several differences between the 7474 D flip-flop and the
7475 D latch.

18. Describe the differences between the asynchronous inputs and the syn-
chronous inputs of the 7474.

19. What does the small triangle on the Cp line of the 7474 indicate?

20. To disable the asynchronous inputs to the 7474, should they be con-
nected to a HIGH or a LOW?

21. Using the universal gate capability of a NAND gate covered in Section
5–7, redesign Figure 21 using only one 74HCT00 NAND IC.

22. Design a circuit similar to Figure 21 that can be used as a negative
edge detector instead of a positive edge detector.

Cp

D

Q

SD

RD

D

Cp

SD

Q

Q

RD

Cp

(a)

(b)

D

Figure P15

Cp

D

Q

SD

RD

Figure P16

D

D
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Cp1′ Cp2

J

K

SD

RD

J

Cp

SD

Q
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RD
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K RD
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SD
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SD
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Q1
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Figure P26

Cp1′ Cp2

J

K

SD

RD

Q1

Q2

Figure P27

27. Repeat Problem 26 for the input waveforms shown in Figure P27.

Sections 6, 7, and 8
23. What is the one additional synchronous operating mode that the 
J-K flip-flop has that the S-R flip-flop does not have?

24. What are the asynchronous inputs to the 7476 J-K flip-flop? Are they
active LOW or active HIGH?

25. The 7476 is called a pulse-triggered master–slave flip-flop, whereas
the 74LS76 is called an edge-triggered flip-flop. Describe the differences
between them.

26. The logic symbol and input waveforms for both the 7476 and 74LS76
are given in Figure P26. Sketch the waveform at each Q output.

C

C
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28. Sketch the output waveform at Q for Figure P28.
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SD

K RD

74LS76

1

Figure P28

29. Sketch the output waveform at Q for Figure P29.

30. Sketch the output waveform at Q for Figure P30.
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Figure P29
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Cp

SD

J

Cp

Q

Q

1

Cp

SD

K RD

74LS76

Q

SD

Figure P32

32. Sketch the output waveform at Q for Figure P32.

31. Sketch the output waveform at Q for Figure P31.

Cp

SD

J

Cp

Q

Q

1

Cp

SD

K RD

74LS76

Q

SD

Figure P31

C

Section 9
33. The 74HCT373 (or 74LS373) is an octal transparent latch. Refer to a
data sheet (CMOS or TTL) to review its operation. Discuss why it can or
cannot be used to replace the 273 in Figure 57.

34. A designer decides to change the timing pulse increment in Figure 57
from 10 s to 10 ms. When she does, the least significant digit always dis-
plays the number 8 . Explain why.

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

35. Find U1:A of the Watchdog Timer schematic. Assume that initially,
WATCHDOG_EN-LOW and CPU_RESET are pulsed LOW.

(a) What is the output level of U2:A?

(b) When WATCHDOG_EN goes HIGH, does the output of U2:A go
LOW?

(c) What must happen to U1:A to make the output of U2:A go LOW?

C

C D

C T

CS
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36. In the Watchdog Timer schematic, both U14 flip-flops are Reset when
there is a LOW/CPU_RESET ___________ (and, or) a LOW from
U14:B.

37. After being Reset, U14:A will be Set as soon as ___________.

38. U5 and U6 are octal D flip-flops in the Watchdog Timer schematic.
They provide two stages of latching for the 8-bit data bus labeled
D(7:0).

(a) How are they initially Reset? (Hint: CLR is the abbreviation for
CLEAR, which is the same as Master Reset.)

(b) What has to happen for the Q-outputs of U5 to receive the value of the
data bus?

(c) What has to happen for the Q-outputs of U6 to receive the value of the
U5 outputs?

MultiSIM® Exercises

E1. Load the circuit file for Section 1a. This is a cross-NAND S-R flip-
flop similar to Figure 2.

(a) To “Set” Q to ON, you must make S ___________ and R
___________. Try it.

(b) To “Reset” Q to OFF, you must make S ___________ and R
___________. Try it.

(c) To “Hold” the last value of Q, you must make S ___________ and
R ___________. Try it.

E2. Load the circuit file for Section 1b. This circuit is a cross-NAND S-R
flip-flop similar to Figure 2. It can be constructed in lab using a single 7400
Quad NAND IC. Make the necessary connections to the 7400 to implement
a cross-NAND S-R flip-flop. How did you make the inverters out of
NANDs? Demonstrate Setting and Resetting Q to your instructor.

E3. Load the circuit file for Section 1c. Only one of the flip-flop circuits
shown is working properly.

(a) What is the faulty component (if any) in ckt-1?

(b) What is the faulty component (if any) in ckt-2?

(c) What is the faulty component (if any) in ckt-3?

(d) What is the faulty component (if any) in ckt-4? Fix all of the faults
and retest.

E4. Load the circuit file for Section 5a. The 7474 D flip-flop has synchro-
nous inputs (D, Cp) and asynchronous inputs (Sd , Rd ).

(a) List the steps that you need to perform with the switches D and C to
synchronously Reset Q.

(b) List the steps that you need to perform with the switches D and C to
synchronously Set Q.

(c) If the asynchronous inputs (Sd , Rd ) are allowed to float (not con-
nected to Vcc), what happens to the operation of the D flip-flop?

(d) Connect the switches S and R to the asynchronous inputs. List the
steps that you need to follow to Set and then to Reset the flip-flop.

¿¿

¿¿
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E5. Load the circuit file for Section 5b. The Word Generator is used to in-
ject the signal Cp, D, Sd , and Rd into the D flip-flop shown. On a piece
of paper, carefully sketch those four waveforms displayed on the Logic An-
alyzer, and then sketch what you think Q will look like. Check your answer
by connecting Q to one of the Logic Analyzer inputs.

E6. Load the circuit file for Section 5c. The Word Generator is used to in-
ject the signals Cp, D, Sd , and Rd into the D flip-flop shown. On a piece
of paper, carefully sketch those four waveforms displayed on the Logic An-
alyzer, and then sketch what you think Q will look like. Check your answer
by connecting Q to one of the Logic Analyzer inputs.

E7. Load the circuit file for Section 8a. The 7476 J-K flip flop has syn-
chronous inputs (J, K, Cp) and asynchronous inputs (Sd , Rd ).

(a) List the steps that you need to perform to synchronously Reset Q.

(b) List the steps that you need to perform to synchronously Set Q.

(c) Make J 1, K 1. What happens if you now continuously press C?

(d) If the asynchronous inputs (Sd , Rd ) are allowed to float (not con-
nected to Vcc), what happens to the operation of the flip-flop?

(e) Connect the switches S and R to the asynchronous inputs. List the
steps that you need to follow to Set and then to Reset the flip-flop.

E8. Load the circuit file for Section 8b. The Word Generator is used to
inject the signals Cp , J, K, Sd , and Rd into the J-K flip-flop shown. On
a piece of paper, carefully sketch those five waveforms displayed on the
Logic Analyzer, and then sketch what you think Q will look like. Check
your answer by connecting Q to one of the Logic Analyzer inputs.

E9. Load the circuit file for Section 8c. The Word Generator is used to
inject the signals Cp , J, K, Sd , and Rd into the J-K flip-flop shown. On
a piece of paper, carefully sketch those five waveforms displayed on the
Logic Analyzer, and then sketch what you think Q will look like. Check
your answer by connecting Q to one of the Logic Analyzer inputs.

FPGA Problems

C1. The VHDL program in Figure 18 is the implementation of a D Latch.

(a) Make the necessary changes to make the enable active-LOW so that
q0 follows d0 while e0 is LOW. Save this program as prob_c10_1.vhd.

(b) Test its operation by creating waveform simulations that demonstrate
its transparent operation and its latching feature.

(c) Download your design to an FPGA IC. Discuss your observations of
the q output LED with your instructor as you use the switches to step
through the combinations of e0 and d0 simulated in (b).

C2. The VHDL program in Figure 26(a) is the implementation of a D flip-
flop with an asynchronous Reset.

(a) Make the necessary changes to provide an asynchronous Set instead
of Reset. Save this program as prob_c10_2.vhd.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous (cp and d ) and asynchronous (n_set) operations.

¿¿¿
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(c) Download your design to an FPGA IC. Discuss your observations of
the q output LED with your instructor as you use the switches or push
buttons to step through the combinations of n_set, cp, and d simulated in (b).

C3. The Primitives subdirectory contains a D flip-flop with a clock 
enable signal. It is called DFFE.

(a) Build a block design file containing this flip-flop with I/O ports
labeled similar to the bdf file shown in Figure 28. Save this program as
prob_c10_3.bdf.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous and asynchronous operations as well as its clock
enable/disable feature. (Use the help menu to find information on the
operation of the DFFE primitive.)

(c) Download your design to an FPGA IC. Discuss your observations of
the q output LED with your instructor as you use the switches or push
buttons to step through the combinations of n_set, n_reset, clock_enable,
cp, and d simulated in (b).

C4. The VHDL program in Figure 29(a) is the implementation of a D flip-
flop with asynchronous Set and Reset.

(a) Make the necessary changes to provide a clock enable similar to 
that provided by the DFFE primitive used in Problem C3. Save this
program as prob_c10_4.vhd.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous and asynchronous operations as well as its clock
enable/disable feature.

(c) Download your design to an FPGA IC. Discuss your observations of
the q output LED with your instructor as you use the switches or push
buttons to step through the combinations of n_set, n_reset, clock_enable,
cp, and d. simulated in (b).

C5. The block design file in Figure 41 is the implementation of a J-K flip-
flop using the primitive symbol called JKFF.

(a) Make the necessary changes to provide input pins for the active-LOW
Set and Reset, which are currently connected to VCC. Save this program as
prob_c10_5.bdf.

(b) Test its operation by creating waveform simulations that demonstrate
its asynchronous operations using n_set and n_reset as well as its
synchronous operations using j, k, and n_cp.

(c) Download your design to an FPGA IC. Discuss your observations of
the q output LED with your instructor as you use the switches or push
buttons to step through the combinations of n_set, n_reset, j, k, and n_cp
simulated in (b). [Note: The switches on the DE2 board exhibit a
phenomenon called switch bounce. This causes each change in switch
position to be interpreted as several HIGH/LOW pulses instead of one.
This will produce unpredictable results in q when bouncing occurs on the
clock input when j and k are in the toggle mode. (Figure 11–47 shows a
method commonly used to debounce switches.) The DE2 board has four
electronically debounced pushbuttons that eliminate this problem when
used on the clock input (n_cp).]

C6. The VHDL program in Figure 42(a) is the implementation of a J-K
flip-flop.

FLIP-FLOPS AND REGISTERS
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(a) Make the necessary program additions to provide active-LOW
asynchronous Set and Reset. Save this program as prob_c10_6.vhd.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous and asynchronous operations.

(c) Download your design to an FPGA IC. Discuss your observations 
of the q output LED with your instructor as you use the switches or
debounced push buttons to step through the combinations of n_set,
n_reset, j, k, and cp simulated in (b).

C7. The LPM model in Figure 58 is the implementation of an 
octal D flip-flop with asynchronous clear.

(a) Right-click the symbol and modify its properties to specify the aclear
as active-LOW and the clock as negative-edge triggered. Save this
program as prob_c10_7.bdf.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous and asynchronous operations. (Make the simulation
similar to Figure 59, but with different values.)

(c) Download your design to an FPGA IC. Discuss your observations 
of the q output LED with your instructor as you use the switches or
debounced push buttons to step through the combinations of aclear,
clock, and d[7..0] simulated in (b).

C8. The LPM model in Figure 60 is the implementation of an 
octal D flip-flop with asynchronous set, clear, and load.

(a) Right-click the symbol and modify its properties to specify the aset,
aclear, aload, and enable as active-LOW and the clock as negative-edge
triggered. Save this program as prob_c10_8.bdf.

(b) Test its operation by creating waveform simulations that demonstrate
its synchronous and asynchronous operations. (Make the simulation
similar to Figure 61, but with different values.)

(c) Download your design to an FPGA IC. Discuss your observations
of the q output LED with your instructor as you use the switches or
debounced push buttons to step through the combinations of aset, aclear,
aload, enable, clock, and d[7..0] simulated in (b).

FLIP-FLOPS AND REGISTERS

Answers to Review Questions

1. True

2.
3. None

4. An S-R flip-flop is asynchro-
nous because the output re-
sponds immediately to input
changes. The gated S-R is syn-
chronous because it operates
sequentially with the control
input at the gate.

5. False

S = 1, R = 0
6.
7. 4

8. HIGH

9. True

10. Transitions at Q will occur
only at the edge of the input
trigger pulse.

11. Cp and D are synchronous. 
and are asynchronous.

12. False

RD

SD

D = 0, G = 1
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13. Invert, delay

14. Because the master will latch
onto any HIGH inputs while
the clock pulse is HIGH and
transfer them to the slave when
the clock goes LOW

15. J, K

16. True

17. It switches the Q and out-
puts to their opposite states.

Q

FLIP-FLOPS AND REGISTERS

18. Apply a LOW on the input.

19. False

20. HIGH

21. The uppercase letters mean
steady state. The lowercase 
letters are used for levels one
setup time before the negative
clock edge.

RD

Answers to Odd-Numbered Problems

1.

9.

11.

13. HIGH, LOW

3.

5.

7.

1 14VCC

GND

S R

+5 V

Q

Q

G

S

R

Q

D
Q

Q

G

11 14 14VCC

Q

+5 V

G D

+5 V

7 87 8

Q

GND GND

VCC

G

D

Q

E

D

Q

501



FLIP-FLOPS AND REGISTERS

15. 29.

31.

33. The is a transparent latch. If the tim-
ing pulses are connected to E, the BCD
will pass through to Q while E is HIGH
and latch on to the data when E goes LOW.
As long as the positive timing pulses are
very narrow ( 10 ms), the display will not
flicker. The is the preferred device,
however, because it is edge triggered.

35. (a) HIGH (b) no (c) Qa must go
HIGH while WATCHDOG_EN is HIGH.
(Qa will go HIGH after Qb of U1:B goes
HIGH.)

37. WATCHDOG.SEL is pulsed.

E1. (a) 1, 0
(b) 0, 1
(c) 0, 0

E3. (a) Top inverter
(b) Vcc
(c) None
(d) R switch

E5.

¿273
6

¿373

17. The 7474 is edge-triggered; the 7475 is
pulse-triggered. The 7474 has asynchro-
nous inputs at and 

19. The triangle indicates that it is an edge-
triggered device as opposed to being pulse-
triggered.

21.

RD.SD

23. The toggle mode

25. The 7476 accepts J and K data during the
entire positive level of CP, whereas the
74LS76 only looks at J and K at the nega-
tive edge of CP.

27.

Cp

SD

RD

D

Q

CP

1 14VCC

7 8GND

+5 V

CP′

SD

Trigger

RD

J

K

Q1

Q2

SD

Data

CP

Q

SD

CP

Q

CP

D

Sd′

Rd′

Q
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E7. (a) pulse LOW then
HIGH

(b) pulse LOW then
HIGH

(c) Q toggles each time goes LOW
(d) Q stuck HIGH
(e) Set: Pulse S LOW then HIGH; Reset:

Pulse R LOW then HIGH

E9.

Cp¿

Cp ¿J = 1, K = 0,

Cp¿J = 0, K = 1,

Q

Rd′

Sd′

K

J

Cp′
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Practical Considerations 
for Digital Design

OUTLINE

1 Flip-Flop Time Parameters
2 Automatic Reset
3 Schmitt Trigger ICs
4 Switch Debouncing
5 Sizing Pull-Up Resistors
6 Practical Input and Output Considerations

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Describe the causes and effects of a race condition on synchronous flip-flop
operation.

• Use manufacturers’ data sheets to determine IC operating specifications such as
setup time, hold time, propagation delay, and input/output voltage and current
specifications.

• Perform worst-case analysis on the time-dependent operations of flip-flops and
sequential circuitry.

• Design a series RC circuit to provide an automatic power-up reset function.
• Describe the wave-shaping capability and operating characteristics of Schmitt

trigger ICs.
• Describe the problems caused by switch bounce and how to eliminate its effects.
• Calculate the optimum size for a pull-up resistor.

INTRODUCTION

We now have the major building blocks required to form sequential circuits. There are
a few practical time and voltage considerations that we have to deal with first before
we connect ICs to form sequential logic.

For instance, ideally, a 74LS76 flip-flop switches on the negative edge of the input
clock, but actually, it could take the output as long as 30 ns to switch. Thirty nanoseconds

does not sound like much, but when you cascade several flip-flops end to
end or any time you have combinational logic with flip-flops that rely on a high degree
of accurate timing, the IC delay times could cause serious design problems.

Digital ICs have to keep up with the high speed of the microprocessors used
in modern computer systems. For example, a microprocessor operating at a clock

(30 * 10-9 s)

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 11 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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frequency of 20 MHz will have a clock period of 50 ns. The slower IC families that
have switching speeds of 20 to 30 ns would create timing problems that would lead
to misinterpretation of digital levels in a system operating that fast. To ensure reli-
ability in high-speed systems, designers must consider the worst-case timing sce-
nario. They cannot simply play it safe and build in a large margin of error because
that would mean that a slower operating system would be developed, which would
not compete favorably in the modern marketplace.

In this chapter, we look at the actual operating characteristics of digital ICs as
they relate to output delay times, input setup requirements, and input/output voltage
and current levels. With a good knowledge of the practical aspects of digital ICs, we
then develop the external circuitry needed to interface to digital logic.

1 Flip-Flop Time Parameters

There are several time parameters listed in IC manufacturers’ data manuals that require
careful analysis. For example, let’s look at Figure 1, which uses a 74LS76 flip-flop
with the J and inputs brought in from some external circuit.Cp

The waveform shown for J and will create a race condition. Race is the term
used when the inputs to a triggerable device (like a flip-flop) are changing at the same
time that the active trigger edge of the input clock is making its transition. In the case
of Figure 1, the J waveform is changing from LOW to HIGH exactly at the negative
edge of the clock, so what is J at the negative edge of the clock, LOW or HIGH?

The setup time is the length of time before the active clock edge that the flip-flop
looks back to determine the levels to use at the inputs. In other words, for Figure 1, the
flip-flop will look back one setup time before the negative clock edge to determine the
levels at J and K.

The setup time for the 74LS76 is 20 ns, so we must ask, were J and K HIGH or
LOW 20 ns before the negative clock edge? Well, K is tied to ground, so it was LOW,
and depending on when J changed from LOW to HIGH, the flip-flop may have Set

or Held 
In a data manual, the manufacturer will provide ac waveforms that illustrate the

measuring points for all the various time parameters. The illustration for setup time
will look something like Figure 2.

(J = 0, K = 0).(J = 1, K = 0)

Cp

Cp

RD
J

Cp

Q

Q

1

Cp

SD

K RD

74LS76

Q

J

RD

J

0

Will Q get
“Set”?

Active clock edge

J changes near
the clock edge

Undetermined

Figure 1 A possible race condition on a J-K flip-flop creates an undetermined result at Q.

Now when you look at Figure 1, you should ask the question, will Q ever get Set?
Remember that J must be HIGH at the negative edge of to set the flip-flop. Actually,
J must be HIGH one setup time before the negative edge of the clock.

Cp

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN
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Cp VM

VMJ or K

ts (L) ts (H)

VM = 1.5 V

The shaded areas indicate when the input is
permitted to change for predictable output
performance

Trigger points

Figure 2 Setup time waveform specifications for a 74LS76.

The active transition (trigger point) of the input (clock) occurs when goes
from above to below the 1.5-V level.

Setup time (LOW), ts (L), is given as 20 ns. This means that J and K can be
changing states 21 ns or more before the active transition of ; but to be interpreted as
a LOW, they must be 1.5 V or less at 20 ns before the active transition of 

Setup time (HIGH), ts (H), is also given as 20 ns. This means that J and K can be
changing states 21 ns or more before the active edge of ; but to be interpreted as a
HIGH, they must be 1.3 V or more at 20 ns before the active transition of 

Did you follow all that? If not, go back and read it again! Sometimes, material
like this has to be read over and over again, carefully, to be fully understood.

Not only does the input have to be set up some definite time before the clock
edge, but it also has to be held for a definite time after the clock edge. This time is
called the hold time [th (L) and th (H)].

Fortunately, the hold time for the 74LS76 (and most other flip-flops) is given as
0 ns. This means that the desired levels at J and K must be held 0 ns after the active
clock edge. In other words, the levels do not have to be held beyond the active clock
edge for most flip-flops. In the case of the 74LS76, the desired level for J and K must
be present from 20 ns before the negative clock edge to 0 ns after the clock edge.

For example, for a 74LS76 to have a LOW level on J and K, the waveforms in
Figure 3 illustrate the minimum setup and hold times allowed to still have the LOW re-
liably interpreted as a LOW. Figure 3 shows us that J and K are allowed to change
states any time greater than 20 ns before the negative clock edge, and because the hold
time is zero, they are permitted to change immediately after the negative clock edge.

Cp.
Cp

Cp.
Cp

CpCp

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

Cp

J and/or K

ts (L) = 20 ns

th (L) = 0 ns th (H) = 0 ns

ts (H) = 20 ns

Cp looks back 20 ns to
see that J and/or K are
LOW and kept LOW.

Figure 3 Setup and hold parameters for a 74LS76 flip-flop.
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J

Cp

SD

1

K

Q

RD

RD

Cp

 74H106

Q

J and K

Figure 4

Cp

J and K

12 ns

Q

2 ns 12 ns8 ns 2 ns

12 ns

Q will toggle to a HIGH
because J, K is set up
HIGH more than 10 ns
before the negative clock
edge and held more than
0 ns after the negative
clock edge

Q will be “undetermined”
because J, K is not set up
10 ns before the negative
clock edge (Q will not know
whether to toggle or hold)

Q will be “undetermined”;
J, K is set up HIGH, but is
not held HIGH over to the
negative clock edge as is
required

RD

Undetermined

Do you notice in Examples 1 and 2 that the Q output changes exactly on the neg-
ative clock edge? Do you really think that it will? It won’t! Electrical charges that build
up inside any digital logic circuit won’t allow it to change states instantaneously as the
inputs change. This delay from input to output is called propagation delay. There are
propagation delays from the synchronous inputs to the output and also from the asyn-
chronous inputs to the output.

E X A M P L E  1

Solution:

Following the rules for setup and hold times, for the 74H106 shown in
Figure 4, sketch the waveform at Q in Figure 5

(H) = 0 ns].th (L) = thts (H) = 10 ns,
[ts (L) = 13 ns,

Figure 5
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E X A M P L E  2

Sketch the Q output for the 74H106 shown in Figure 6, with the input waveforms given in Figure 7
(H) = 0 ns].th (L) = thts (H) = 10 ns,[ts (L) = 13 ns,

J

Cp

SD

1

K

Q

RD

SD

Cp

 74H106

Q

X

Figure 6

Cp

X

Q

SD

12 ns 14 ns 11 ns

Hold ToggleToggle

Figure 7

Solution:

For example, there is a propagation delay period from the instant that or 
goes LOW until the Q output responds accordingly. The data manual shows a
maximum propagation delay for to Q of 20 ns and for to Q of 30 ns. Because a
LOW on causes Q to go LOW to HIGH, the propagation delay is abbreviated tPLH.
A LOW on causes Q to go HIGH to LOW; therefore, use tPHL for that propagation
delay, as illustrated in Figure 8.

The propagation delay from the clock trigger point to the Q output is also called
tPLH or tPHL, depending on whether the Q output is going LOW to HIGH or HIGH to
LOW. For the 74LS76 clock to output, and Figure 9 illus-
trates the synchronous propagation delays.

In addition to setup, hold, and propagation delay times, the manufacturer’s data
manual will also give

1. Maximum frequency ( fmax), or the maximum frequency allowed at the clock
input. Any frequency above this limit will yield unpredictable results.

2. Clock pulse width (LOW) [tw(L)], or the minimum width (in nanoseconds)
that is allowed at the clock input during the LOW level for reliable operation.

3. Clock pulse width (HIGH) [tw(H)], or the minimum width (in nanoseconds)
that is allowed at the clock input during the HIGH level for reliable operation.

tPHL = 30 ns.tPLH = 20 ns,

RD

SD

RDSD

SDRD
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Common
Misconception

Some students mistakenly
think that the propagation
delays in this figure should
be additive, yielding a total
delay of 80 ns.

J

Cp

SD

K

Q

RD

SD

 74LS76

Q

RD

Q

SD

tPHL =
30 ns

tPLH =
20 ns

tPHL =
30 ns

RD

Undetermined

It takes 30 ns
for Q to
respond to the
RD pulse.

Figure 8 Propagation delay for the asynchronous input to Q output for the 74LS76.

Cp

J
SD

K

Q

RD

1

 74LS76

Q

Vm = 1.5 V

Q

tPLH = 20 ns tPHL = 30 ns tPLH = 20 ns
Synch. SetSynch. toggleSynch. Set

K

J

Vm

1

Cp

K

1

Undetermined

Figure 9 Propagation delay for the clock to output of the 74LS76.
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4. Set or Reset pulse width (LOW) [tw(L)], or the minimum width (in nanosec-
onds) of the LOW pulse at the Set or Reset inputs. 

Figure 10 shows the measurement points for these specifications.

(RD)(SD)

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

Cp Vm

tw (L)

SD or RD

tw (H)

Vm

tw (L)

Vm = 1.5 V

Figure 10 Minimum pulse-width specifications.

Team
Discussion

Why do manufacturers
give maximum propagation
delay times but minimum
pulse widths?

Helpful 
Hint

It is very important that
you learn how to interpret
a data manual. New
devices and ICs are
constantly being
introduced. Often, the
only way to learn their
operation and features 
is to study a data sheet.

Helpful
Hint

Data sheets for ICs are
provided at manufacturers’
Web sites. Compare the
data sheet in Figure 11 to
ones that you find for a
similar JK, the 74F112,
74ALS112, or 74HC112.

If these specifications are not met, the flip-flop may enter a metastable state. In
this state, the Q-output voltage will become an invalid level (neither HIGH nor LOW) for
a short time (metastable) and then stabilize HIGH or LOW. For example, if Q is HIGH
and you apply too short of an pulse to an LS TTL IC, Q may become 1.5 V (invalid)
for a few milliseconds and then either return HIGH or go LOW This
condition also occurs if you do not meet the setup or hold time requirements.

Complete specifications for the 7476/74LS76 flip-flop are given in Figure 11. Can
you locate all the specifications that we have discussed so far? If you have your own
data manual, look at some of the other flip-flops, and see how they compare. In the
front of the manual, you will find a section that describes all the IC specifications and
abbreviations used throughout the data manual.

Now that we understand most of the operating characteristics of digital ICs, let’s
examine why they are so important and what implications they have for our design of
digital circuits.

To get the flip-flop in Example 3 to toggle, we have to move Cp to the right by at
least 10 ns so that J is HIGH 10 ns before the positive edge of Cp. By saying “move it
to the right,” we mean “delay it by at least 10 ns.”

One common way to introduce delay is to insert one or more IC gates in the Cp line,
as shown in Figure 14, so that their combined propagation delay is greater than 10 ns. From
the manufacturer’s specifications, we can see that the propagation delay for a 7432 input to
output is max. and max. [Typically, the propagation delay will
be slightly less than the maximum (worst case) rating.]

Now let’s redraw the waveforms as shown in Figure 15 with the delayed clock to
see if the flip-flop will toggle. The 7432 will delay the LOW-to-HIGH edge of the
clock by approximately 15 ns, so J will be HIGH one setup time before the trigger
point on Cp; thus, Q will toggle.

An important point to be made here is that in Figure 14 we are relying on the
propagation delay of the 7432 to be 15 ns, which according to the manufacturer is the
worst case (maximum) for the 7432. What happens if the actual propagation delay is
less than 15 ns, let’s say only 8 ns? The clock (Cp) would not be delayed far enough to
the right for J to be set up in time.

Special delay-gate ICs are available that provide exact, predefined delays specif-
ically for the purpose of delaying a particular signal to enable proper time relation-
ships. One such delay gate is shown in Figure 16. To use this delay gate, you would
connect the signal that you want delayed to the Cp input terminal. You then select the
delayed output waveform that suits your needs. The output waveforms are identical to
the input except delayed by 5, 10, 15, or 20 ns. Complemented, delayed waveforms are
also available at the and outputs. Delay gates with various other delay in-
tervals are also available.

205, 10, 15,

tPLH = 15 nstPHL = 22 ns

(60.4 V).(72.4 V)
RD
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Describes
the
operation
and function
of the chip.

Notice the
overbars
indicating
active-LOW
terminals.

2 unit loads means that these inputs draw 2
times the II ratings in this family.

10 unit loads means that
these outputs can supply 10
times the amount of current
required for a single unit
input load (or fan-out = 10).

Gives part numbers for various package
types, VCC , and temperature ranges.

Figure 11 Typical data sheet for a 7476/74LS76. (Used with permission from NXP
Semiconductors.)
Note: Download this and other data sheets at www.datasheetcatalog.com.
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Figure 11 Continued

Gives the input requirements
and output results for each
operating mode.

Maximum
output
currents.

HIGH/LOW
Input voltage
requirements.
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Figure 11 Continued

Waveforms 1, 2 and 3 on the next
page show the measurement points
for frequency and propagation
delay values.

HIGH/LOW
input
current
requirements.

Typical and
worst-case
output
voltages.
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These
waveforms
define time
measurement
points.

Setup and
hold times

Minimum
pulse widths

Figure 11 Continued
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Solution: ts for a 74109 is 10 ns, which means that J must be HIGH and 
must be LOW 10 ns before the positive clock edge. When we draw the
waveforms as shown in Figure 13, we see that J and Cp are exactly the
same. Therefore, because J is not HIGH one setup time before the positive
clock edge, Q will not toggle. 

K

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

J

Cp

SD

K

Q

RD

1

Clock

 74109

Q

RD

Figure 12

E X A M P L E  3

The 74109 is a positive edge-triggered flip-flop. If we attach the J input
to the clock as shown in Figure 12, will the flip-flop’s Q output toggle?

J@K

Cp

K

J

RD

Q

Figure 13

J

Cp

SD

K

Q

RD

1

Clock

 74109

Q

RD

7432

Cp

Logic gate used
to introduce
a delay

Figure 14 Modification of flip-flop in Example 3 to allow it to toggle.
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Cp

Clock

J

RD

Q

≈ 15 ns

Delayed
clock signal

Figure 15 Timing waveforms for Figure 14.

Figure 16 A 5-ns multitap delay gate: (a) logic symbol and (b) output waveforms.

Delay
gate
(ns)

Cp

5

(a)

Input

10

15

20

5

10

15

20

Delayed
outputs

True

Complement

Cp

5 5 ns 5 ns

10 ns
10

10 ns

15 ns15 15 ns

20 ns 20 ns20

5 5 ns 5 ns

10 ns

10 ns
10

15

20

15 ns 15 ns

20 ns 20 ns

(b)

Team
Discussion

If manufacturers provided
a minimum and a
maximum propagation
delay, which would you
use?

E X A M P L E  4

Use the setup, hold, and propagation delay times from a data manual to de-
termine if the 74109 flip-flop in the circuit shown in Figure 17 will tog-
gle. (Assume that the flip-flop is initially Reset, and remember that for a
toggle, J = 1, K = 0.)

J@K
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Solution: First, draw the waveforms as shown in Figure 18. the de-
layed clock, makes its LOW-to-HIGH transition and triggers the flip-flop
20 ns after J makes its transition. Looking at the waveforms, J is

before the positive edge of and is held 
after the positive edge of Therefore, the flip-flop will toggle at each
positive edge of CpD.

CpD.
HIGH � 6 nsCpDHIGH � 10 ns

CpD,

E X A M P L E  5

Use the specifications from a data manual to determine if the 74LS112 J-K
flip-flop in the circuit shown in Figure 19 will toggle. (Assume that the
flip-flop is initially Reset.)

Delay
(ns)

Cp

5

Clock

10

15

20

5

10

15

20

J

Cp

SD

K

Q

RD

1

 74109

Q

CpD

1

Figure 17

Figure 18
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Q

Clock

74LS112:
ts
th

tPLH
tPHL

= 20 ns
=   0 ns
= 20 ns
= 30 ns

CpD

J

10 ns

Undetermined

Figure 20

Solution: First, draw the waveforms as shown in Figure 20. is inverted
and delayed by 10 ns from the Clock and J waveforms. Each negative edge
of triggers the flip-flop. Looking at the waveforms, the J input is not set
up HIGH 20 ns before the negative edge and, therefore, is not inter-
preted as a HIGH. The flip-flop output will be undetermined from then on
because it cannot distinguish if J is a HIGH or a LOW at each negative 
edge.

To correct the problem, should be connected to the tap on
the delay gate instead of the tap. This way, when the flip-flop “looks
back” 20 ns from the negative edge of it will see a HIGH on J, allow-
ing the toggle operation to occur.

CpD,
10@ns

30@nsCpD

CpD

CpD�
CpD

CpD

Delay
(ns)

Cp

10

Clock

20

30

40

10

20

30

40

J

Cp

SD

K

Q

RD

1

 74LS112

Q

CpD

1

1

Figure 19

E X A M P L E  6

The repetitive waveforms shown in Figure 21(b) are input to the 7474D
flip-flop shown in Figure 21(a). Because of poor timing, Q never goes
HIGH. Add a delay gate to correct the timing problem. (Assume that rise,
fall, and propagation delay times are 0 ns.)
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Solution: Q never goes HIGH because the 40-ns HIGH pulse on D does
not occur at the positive edge of Cp. Delaying the D waveform by 30 ns will
move D to the right far enough to fulfill the necessary setup and hold times
to allow the flip-flop to get Set at every positive edge of Cp, as shown in
Figure 22. (DD is the delayed D waveform, which has been shifted to the
right by 30 ns to correct the timing problem.) 

RD

D

Cp

SD

1

Q

RD

DD

 7474

Q

Cp

10

20

30

40

10

20

30

40

D

Cp

Figure 22(a)

RD

7474:
ts
th

= 20 ns
=   5 ns

(a)

D

Cp

SD

1

Q

RD

Cp

 7474

Q

D

Figure 21

Cp

D

(b)

Q

20
 n

s

40
 n

s

40
 n

s

40
 n

s 10
0 

ns

60
 n

s

RD

Team
Discussion

To obtain the fastest
possible operating speed
in a digital system,
designers sometimes push
the times to the absolute
limits specified by the
manufacturer. Discuss
some of the considerations
the designer must watch
for and some of the
problems that may occur.
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E X A M P L E  7

Propagation Delays in the Cyclone® II EP2C35 FPGA

Create a vector waveform file (vwf ) that exercises a D flip-flop in such a
way to allow us to determine the propagation delays for its synchronous
and asynchronous inputs to the q output. Include an AND gate at its output
to show the delay for the output 

Solution: Figure 23 shows the DFF primitive with the required inputs and
outputs. The vwf file for the circuit is shown in Figure 24. Since the propa-
gation times will be in the nanosecond range, the End Time (Edit menu)
was set to 0.5 ms (500 ns). The Grid Size (Edit menu) was set to 20 ns to
draw the cp and d waveforms and the narrow n_sd and n_rd pulses. If you
look carefully, you can see a delay between the n_sd-to-q waveforms and
from the cp-to-q waveforms.

x = dq.

Figure 22(b) Continued

Note: DD is the D waveform shifted to the right by 30 ns.

Cp

RD

DD

Q

30 ns 10 ns

Figure 23 DFF Primitive with an AND gate used to illustrate FPGA
propagation delays in Example 7.

V
H

D
L
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The expanded view shown in Figure 25 is displayed by moving the
vertical cursor to the 108.703 ns mark by pressing the left/right arrows lo-
cated after the Master Time Bar. Then use the Zoom tool magnifier
symbol) to expand the display as shown. (To zoom out, hold the shift key
while using the Zoom tool.) After expanding the display and moving the
cursor, the following propagation delays were determined:

tPHL(cp-to-q) � 8.703 ns

tPLH(n_sd-to-q) � 7.162 ns

tPLH(d-to-x) � 7.65 ns (AND gate)

(+ /-

tPHL = 8.703 ns

tPLH = 7.65 ns
tPLH = 7.162 ns

Figure 25 Zooming in on the simulation for Example 7 to view the delay times.

1 2 3 4

1 n_sd - to - q

cp - to - q

n_sd - to - q

d - to - x (AND gate)

2

3

4

Figure 24 Waveform simulation used to exercise the FPGA of Example 7.
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Review Questions

1. A race condition occurs when the Q output of a flip-flop changes at the
same time as its clock input. True or false?

2. Setup time is the length of time that the clock input must be held stable
before its active transition. True or false?

3. Describe what manufacturers mean when they specify a hold time of 0
ns for a flip-flop.

4. The abbreviation tPHL is used to specify the __________ of an IC from
input to output. The letters HL in the abbreviation refer to the __________
(input/output) waveform changing from HIGH to LOW.

5. Under what circumstances would a digital circuit design require a delay
gate?

2 Automatic Reset

Often, it is advantageous to automatically Reset (or Set) all resettable (or settable) de-
vices as soon as power is first applied to a digital circuit. In the case of resetting flip-
flops, we want a LOW voltage level (0) present at the inputs for a short duration
immediately following power-up, but then after a short time (usually a few microsec-
onds), we want the line to return to a HIGH (1) level so that the flip-flops can start
their synchronous operations.

To implement such an operation, we might use a series RC circuit to charge a ca-
pacitor that is initially discharged (0). A short time after the power-up voltage is ap-
plied to the RC circuit and the flip-flop’s VCC, the capacitor will charge up to a value
high enough to be considered a HIGH (1) by the input.

Basic electronic theory states that in a series RC circuit, the capacitor becomes
almost fully charged after a time equal to the product 5RC. This means that in Figure
26(a) the capacitor (which is initially discharged via the internal resistance of the 
terminal) will begin to charge toward the 5-V level through R as soon as the switch is
closed.

Before the capacitor reaches the HIGH-level threshold of the 74LS76 
the temporary LOW on the terminal will cause the flip-flop to Reset. As soon as the
capacitor charges to above 2.0 V, the terminal will see a HIGH, allowing the flip-
flop to perform its normal synchronous operations. The waveforms that appear on the
VCC and lines as the power switch is closed and opened are shown in Figure 26(b).

This automatic resetting scheme can be used in circuits employing single or mul-
tiple resettable ICs. Depending on the device being Reset, the length of time that the
Reset line is at a LOW level will be approximately 1 ms

As you add more and more devices to the Reset line, the time duration of the
LOW will decrease because of the additional charging paths supplied by the internal
circuitry of the ICs. Remember, there is a minimum allowable width for the LOW
Reset pulse for a 74LS76). To increase the time, you can increase the capac-
itor to or to eliminate loading effects and create a sharp edge on the line,
a 7407 buffer could be inserted in series with the input. (A silicon diode can also be
added from the top of the capacitor up to the VCC line to discharge the capacitor more
rapidly when power is removed.) 

RD

RD0.01 mF,
(�25 ns

RD

RD

RD

(�2.0 V),

RD

RD

RD

RD
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3 Schmitt Trigger ICs

A Schmitt trigger is a special type of IC that is used to transform slowly changing
waveforms into sharply defined, jitter-free output signals. They are useful for changing
clock edges that may have slow rise and fall times into straight vertical edges.

The Schmitt trigger employs a technique called positive feedback internally to
speed up the level transitions and also to introduce an effect called hysteresis.
Hysteresis means that the switching threshold on a positive-going input signal is at a
higher level than the switching threshold on a negative-going input signal [see
Figure 27(b)]. This is useful for devices that have to ignore small amounts of jitter,
or electrical noise, on input signals. Notice in Figure 27(a) that when the positive-
and negative-going thresholds are exactly the same (typically 1.5 V) as with standard
gates, and a small amount of noise causes the input to jitter slightly, the output will
switch back and forth several times until the input level is far above the threshold
voltage.

Figure 27 illustrates the difference in the output waveforms for a standard 7404
inverter and a 7414 Schmitt trigger inverter. As you can see in Figure 27(b), the output
(Vout2) is an inverted, jitter-free pulse. On the other hand, just think if Vout1 were fed
into the input of a 74LS76 hooked up as a toggle flip-flop; the flip-flop would tog-
gle three times (three negative edges) instead of once as was intended. 

Cp

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

Switch
closed

Switch
opened

Q1

Cp1

SD1

RD1

SD2

Cp2

8

1

2

3

J1 4

5

6

7

9

16

15

14

13

12

11

10

(a)

GND

74LS76
VCC

RD2

K1

Q1

Q2

Q2

K2

J2

R
1 kΩ

C
0.001 μF

Power
switch 5-V

power
supply

+

−

RD

(b)

Flip-flop
energized

+5 V

0 V
VCC

HIGH

Reset FF

LOW≈ 2 V
5 V

0 V

Capacitor
discharge

via RD

Figure 26 Automatic power-up Reset for a J-K flip-flop: (a) circuit connections 
and (b) waveforms.
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The difference between the positive- and negative-going thresholds is defined as
the hysteresis voltage. For the 7414, the positive-going threshold is typically 1.7 V,
and the negative-going threshold is typically 0.9 V, yielding a hysteresis voltage

of 0.8 V. The small box symbol (�⊥)  inside the 7414 symbol is used to indicate
that it is a Schmitt trigger inverter instead of a regular inverter.

The most important specification for Schmitt trigger devices is illustrated by use
of a transfer function graph, which is a plot of Vout versus Vin. From the transfer func-
tion, we can determine the HIGH- and LOW-level output voltages (typically 3.4 and
0.2 V, the same as for most TTL gates), as well as and 

Figure 28 shows the transfer function for the 7414. The transfer function
graph is produced experimentally by using a variable voltage source at the input to

¢VT.VT +, VT -,

(�VT)
(VT -)

(VT +)

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

(a)

7404

0

Vout 1

0

Vin

Switching
threshold (1.5 V)

(b)

7414

0

Vout 2

0

Vin

Positive-going
threshold (VT +

Negative-going
threshold ( )) VT -

Vin
Vout 1

7414 (Schmitt
inverter)

7404 (inverter)

Vin
Vout 2

Noise
sourceDigital

pulse

5 V

5 V

5 V

5 V

Figure 27 Switching characteristics of inverters: (a) false switching of the regular inverter
and (b) jitter-free operation of a Schmitt trigger.

0.2 V (VOL)

3.4 V (VOH)

Vout

0 0.9 V ( )VT - 1.7 V (VT +

Vin

)

Figure 28 Transfer function for a 7414 Schmitt trigger inverter.

Common
Misconception

Using an oscilloscope in the
X-Y mode, you can view
the transfer function as
you apply a 0- to 5-V
triangle wave to Vin. You
may think that it is not
working because the
vertical lines are not
apparent. They do not
show because the output
switches so fast. However,
the threshold points are
still obvious to see.

Team
Discussion

How would the transfer
function of a noninverting
Schmitt differ from Figure
28?
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the Schmitt and a DMM (digital multimeter) at Vin and Vout, as shown in Figure
29(a) and (b).

As the Vin of Figure 29(a) is increased from 0 V up toward 5 V, Vout will start out
at approximately 3.4 V (1) and switch to 0.2 V (0) when Vin exceeds the positive-go-
ing threshold as shown in Figure 29(b). The output transition from HIGH to
LOW is also indicated in Figure 28 by the downward arrow. As Vin is increased up to
5 V, Vout remains at 0.2 V (0).

As the input voltage is then decreased down toward 0 V, Vout will remain LOW un-
til the negative-going threshold is passed At that point, the output will switch
up to 3.4 V (1), as indicated by the upward arrow in Figure 28. As Vin continues to 0 V,
Vout remains HIGH at 3.4 V. The hysteresis in this case is 1.7 V - 0.9 V = 0.8 V.

(�0.9 V).

(�1.7 V)

PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

7414

Vin
Vout

0 to 5 V

DMM DMM

(a)

Figure 29 Circuit used to experimentally produce a Schmitt trigger transfer function; 
(a) circuit diagram, (b) Vin, Vout versus time waveforms.

Vout

VOH

VOL

Vin

0.2 V

3.4 V

(b)

0.9 V
1.7 V

5 V

0 V

0 V

VT�

VT�

�VT

S C H M I T T  T R I G G E R  S I M U L AT I O N

Figure 30 shows a MultiSIM® simulation of a 7414 Schmitt Trigger. The
function generator (XFG1) is set to output a triangle wave to span 0 V to

This span crosses both thresholds of the 7414. The oscilloscope dis-
play shows the input triangle wave and the resulting output square wave. In
Figure 30, vertical cursor #1 was moved to measure VUT and #2 was moved
to measure VLT on the triangle wave (Channel_A). In this simulation, the
value for VUT (on cursor #1) is 1.786V and VLT (on cursor #2) is 816mV.
(Note: and 

MultiSIM Exercise:

(b) Replace the 7414 with a 74132 and repeat step (a).

VLT K VT -
.)VUT K VT +

+5 V.

(a) Load the file fig11_30 from the text companion website. Double-click
the oscilloscope to expand its size, and then turn on the power switch.
Drag vertical cursors #1 and #2 to measure VUT and VLT on the triangle
wave and determine the hysteresis voltage.

525



PRACTICAL CONSIDERATIONS FOR DIGITAL DESIGN

E X A M P L E  8

Let’s use the Schmitt trigger to convert a small-signal sine wave (Es) into a
square wave (Vout).

Solution: The diode is used to short the negative 4 V from Es to ground
to protect the Schmitt input, as shown in Figure 31(a). The resistor1@k�

G

A B

T

XSC1

7414N

XFG1

+ −

VUT

Vout
Vin

�VT

VLT

Figure 30 Using MultiSIM® to determine the switching thresholds of a 7414
Schmitt trigger.

1.7 V

−0.7 V

0.2 V

Vin

(b)

3.4 V

4 V

0.9 V
0

Vout

(a)

Diode

Vin
Vout

7414
+4 V

0 V
–4 V

1 kΩ

Es

VT +

VT –

Figure 31

Helpful 
Hint

Notice that there will be a
slight negative voltage of

at Vin during the
negative cycle.
�0.7 V

Team
Discussion

Why is the duty cycle of
Vout always going to be
greater than 50%?
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E X A M P L E  9

The Vin waveform to the 74132 Schmitt trigger NAND gate in Figure 32 is
given in Figure 33.

Vin

74132

Vout

Figure 32

(a) Sketch the Vout waveform. (The 74132 has the same voltage specifica-
tions as the 7414.)

(b) Determine the duty cycle of the output waveform; the duty cycle is
defined as

Solution:

(a) The Vout waveform is shown in Figure 33.

time HIGH

time HIGH + time LOW
* 100%

0

0.2 V

Vin

3.4 V

0.4
0.8
1.2
1.6
2.0
2.4

(V)

Vout

1.7 V = VT (+)

0.9 V = VT (–)

Figure 33

(b) Vout stays HIGH while Vin increases from 0.4 to 1.7 V, for a change of
1.3 V. Vout stays LOW while Vin increases from 1.7 to 2.2 V, for a change
of 0.5 V. Because the input voltage increases linearly with respect to
time, the change in Vin is proportional to time duration, so

duty cycle =

1.3 V

1.3 V + 0.5 V
* 100% = 72.2%

Common
Misconception

Students often fail to get
the Schmitt output to
switch in the lab, because
they don’t apply a large-
enough input signal to
cross both thresholds.

will limit the current through the diode when it is conducting.
which is well within the rating of

most silicon diodes.]
Also, the HIGH-level input current to the Schmitt (IIH) is only 

causing a voltage drop of when Vin is HIGH.
(We can assume that 0.04 V is negligible compared to 4.0 V.)

The input to the Schmitt will, therefore, be a half-wave signal with a
4.0-V peak. The output will be a square wave, as shown in Figure 31(b). 

+

40 mA * 1 k� = 0.04 V
40 mA,

[Idiode = (4 - 0.7 V)>1 k� = 3.3 mA,
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E X A M P L E  1 1

Draw and completely label the Vout versus Vin transfer function for the Schmitt
trigger device whose Vin and Vout waveforms are given in Figure 35.

E X A M P L E  1 0

Sketch Vout of the 7414 in Figure 34(a) given the Vin waveform shown in
Figure 34(b).

Vin Vout

7414Figure 34(a)

Figure 34(b)

2.0

1.6

0

0.2 V

Vin

3.4 V

0.4

0.8

1.2

2.4

(V)

Vout

Solution:

2.8

2.4

0

0.4

Vin

4.2

1.2

1.6

2.0

3.2

(V)

Vout

0.8

0.4 Vin VoutSchmitt
trigger

(V)

Figure 35
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Review Questions

6. In an automatic power-up Reset RC circuit, the voltage across the
__________ (resistor, capacitor) provides the initial LOW to the inputs.

7. The input voltage to a Schmitt trigger IC has to cross two different
switching points called the __________ and the __________. The voltage
differential between these two switching points is called the __________.

8. A Schmitt trigger IC is capable of “cleaning up” a square wave that may
have a small amount of noise on it. Briefly explain how it works.

9. The transfer function of a Schmitt trigger device graphically shows the
relationship between the __________ and __________ voltages.

4 Switch Debouncing

Often, mechanical switches are used in the design of digital circuits. Unfortunately,
however, most switches exhibit a phenomenon called switch bounce. Switch bounce
is the action that occurs when a mechanical switch is opened or closed. For example,
when the contacts of a switch are closed, the electrical and mechanical connection is
first made, but due to a slight springing action of the contacts, they will bounce back
open, then close, then open, then close, continuing repeatedly until they finally settle
down in the closed position. This bouncing action will typically take place for as long
as 50 ms.

A typical connection for a single-pole, single-throw (SPST) switch is shown in
Figure 37. This is a poor design because, if we expect the toggle to operate only once
when we close the switch, we will be out of luck because of switch bounce. Why do
we say that? Let’s look at the waveform at to see what actually happens when a
switch is closed. 

Figure 38 shows that will receive several LOW pulses each time the switch is
closed instead of the single pulse that we expect. This is because as the switch is first
closed, the contacts come together and then bounce apart several times before settling
down together. (The pull-up resistor in Figure 37 is necessary to hold the volt-
age level at up close to while the switch is open. If the pull-up resistor were
not used, the voltage at with the switch open would be undetermined, but with the

[and realizing that the current into the terminal is negligible], the level at the
terminal will be held at approximately while the switch is open.)+5 VCp

Cp10 k�
Cp

+5 VCp

10@k�

Cp

Cp

RD
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0.4 V

4.2 V

Vout

1.6 V 2.4 V
Vin

Transfer function

Figure 36

Solution: The transfer function is shown in Figure 36.

Common
Misconception

Students often draw
this transfer function
backward, thinking that
it is an inverting Schmitt.
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There are several ways to eliminate the effects of switch bounce. If you need to
debounce a single-pole, single-throw switch or push button, the Schmitt trigger
scheme shown in Figure 39 can be used. With the switch open, the capacitor will be
charged to (1), keeping When the switch is closed, the capacitor will
discharge rapidly to zero via the current-limiting resistor, making Vout equal to
1. Then, as the switch bounces, the capacitor will repeatedly try to charge slowly back
up to a HIGH and then discharge rapidly to zero. The RC charging time constant

is long enough that the capacitor will not get the chance to charge
up high enough (above before the switch bounces back to the closed position.
This keeps Vout equal to 1. 

When the switch is reopened, the capacitor is allowed to charge all the way up to
When it crosses will switch to 0, as shown in Figure 39. The result is

that by closing the switch or push button once you will get only a single pulse at the
output even though the switch is bouncing.

To debounce single-pole, double-throw switches, a different method is 
required, as illustrated in Figures 40 and 41. The single-pole, double-throw switch

VT +, Vout+5 V.

VT +)
(10 k� * 0.47 mF)

100@�
Vout = 0.+5 V
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SPST
switch

J

Cp

SD

K

Q

RD

 74LS76

Q

Cp

1

10

10 kΩ

+5 V (1)

1

1

Figure 37 Switch used as a clock input to a toggle flip-flop.
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Switch
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Multiple LOWs at Cp

Switch bounce

Q

A LOW appears each
time the contacts touch.

Q toggles  at each
negative Cp edge.

Figure 38 Waveform at point for Figure 37 assuming Q starts HIGH.Cp

Team
Discussion

When is switch bounce a
problem? When doesn’t it
matter?

Team
Discussion

Why are the LOW 
pulses on drawn 
so narrow?
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0

1

Closed

Opened

Vout

Switch
position

VT+

0 V

+5 V
Vcap

(or Vin)
VT–

Switch or
push button
0

R
10 kΩ

+5 V

Vin Vout

74HCT14

100 Ω

C
0.47 μF

Figure 39 Schmitt method of debouncing a single-pole, single-throw switch.

in between
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Switch
position

0

10 kΩ

A

B

Set (1)

Reset (0)

(b)

A

OUT

+5 V

7400

7400

B
10 kΩ

+5 V

OUT

(a)

Reset-Reset-Reset. . .

Set-Set-Set . . .

Figure 40 (a) Cross-NAND method of debouncing a single-pole, double-throw switch and
(b) waveforms for part (a).
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D
SD

Q

RD

 7474

Q

Cp

B

10 kΩ

+5 V

10 kΩ

A

OUT

Figure 41 D flip-flop method of debouncing a single-pole, double-throw switch.

shown in Figure 40(a) actually has three positions: (1) position A, (2) in between posi-
tion A and position B while it is making its transition, and (3) position B. The cross-
NAND debouncer works very similarly to the cross-NAND S-R flip-flop.

When the switch is in position A, OUT will be Set (1). When the switch is moved
to position B, it bounces, causing OUT to Reset, Hold, Reset, Hold, Reset, Hold re-
peatedly until the switch stops bouncing and settles into position B. From the time the
switch first touched position B until it is returned to position A, OUT will be Reset
even though the switch is bouncing.

When the switch is returned to position A, it will bounce, causing OUT to be Set,
Hold, Set, Hold, Set, Hold repeatedly until the switch stops bouncing. In this case,
OUT will be Set and remain Set from the moment the switch first touched position A,
even though the switch is bouncing.

Figure 41 shows another way to debounce a single-pole, double-throw switch us-
ing a 7474 D flip-flop. (Actually, any flip-flop with asynchronous and inputs can
be used.)

The waveforms created from Figure 41 will look the same as those in Figure
40(b). As the switch is moved to position A but is still bouncing, the flip-flop will Set,
Hold, Set, Hold, Set, Hold repeatedly until the switch settles into position A, keeping
the flip-flop Set. When it is moved to position B, the flip-flop will Reset, Hold, Reset,
Hold, and so on until it settles down, keeping the flip-flop Reset.

Figures 42(a) and (b) show the results of using a D flip-flop to debounce multi-
ple LOWs on its asynchronous inputs. Assume that n_sd and n_rd are to be connected
to a SPDT switch that makes multiple closures to a LOW before it settles down.

The simulation waveforms show that the first LOW closure on n_sd sets the q
output and as the signal continues to bounce, it has no effect on q because it is already
Set. At the 6- ms mark, n_sd is made HIGH and n_rd is allowed to make multiple LOW
closures. As you can see, only the first LOW is used to reset q and the subsequent
LOWs are ignored because q is already Reset.

RDSD

V
H

D
L
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5 Sizing Pull-Up Resistors

By the way, how do we know what size pull-up resistors to use in circuits like the one
in Figure 41? Remember, the object of the pull-up resistor is to keep a terminal at a HIGH
level when it would normally be at a float (not 1 or 0) level. In Figure 41, when the switch
is between points A and B, current will flow down through the resistor to IIH
for is This causes a voltage drop of leaving 4.2 V
at which is well within the HIGH specifications of the 7474.

You may ask, Why not just make the pull-up resistor very small to minimize the
voltage drop across it? Well, when the switch is in position A or B, we have a direct
connection to ground. If the resistor is too small, we will have excessive current and
high power consumption. However, a or larger resistor would work just fine. So
check the IIH and VIH values in a data book and keep within their ratings. Usually, a

pull-up resistor is a good size for most digital circuits.10@k�

10@k�

SD,
80 mA * 10 k� = 0.8 V,80 mA.SD

SD.10@k�
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(a)

Figure 42 Using a D flip-flop to debounce multiple LOWs on its asynchronous inputs: (a)
circuit diagram; (b) waveform simulation.

ignore bounce

asynchronous Resetasynchronous Set

ignore bounce

(b)
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When you have to provide a pull-down resistor (to keep a floating terminal
LOW), a much smaller resistor is required because IIL is typically much higher than
IIH. For example, if and a pull-down resistor is used, the volt-
age across the resistor is 0.160 V, which will be interpreted as a LOW. One concern of
using a pull-down resistor is the high power dissipation of the resistor.

100@�IIL = -1.6 mA

E X A M P L E  1 2

Determine the power dissipation of the pull-up resistors used in
Figure 40(a). Also, determine the HIGH-level voltage at the input to the
NAND gates.

Solution: The specs for a 7400 NAND from a TTL data manual are

When the switch is between positions A and B, IIH will flow from the
5 V, through the resistor, into the NAND. The power dissipation is

The high-level input voltage

The 4.6-V HIGH-level input voltage is above the 2.0-V VIH limit given in
the specs, and is negligible for most applications.

When the switch is moved to either A or B, the power dissipation in
the resistor is

The value of 2.5 mW is still negligible for most applications. If not, in-
crease the size of the pull-up resistor and recalculate for the HIGH-
level input voltage and power dissipation. As long as you keep the
HIGH-level input voltage above the specified limit of 2.0 V, the circuit will
operate properly. 

10@k�

 = 2.5 mW

 =

5 V2

10 k�

 P =

V2

R

16 mW

 = 4.6 V

 = 5 V - 40 mA * 10 k�

 V = VCC - IIH * R

 = 16 mW

 = (40 mA)2
* 10 k�

 P = I2
* R

10@k�+

 VIH = 2.0 V min.

 VIL = 0.8 V max.

 IIH = 40 mA max.

 IIL = 1.6 mA max.

10@k�

6 Practical Input and Output Considerations

Team
Discussion

Sizing pull-up resistors for
open-collector outputs
requires that you also
consider the size of the
load resistor. For example,
if the load is what
happens if you use a

pull-up?10@k�

10 k�,

Before designing and building the practical digital circuits’ let’s study some circuit de-
signs for interfacing to the inputs and outputs of integrated-circuit chips.
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A 5-V Power Supply
For now, we limit our discussion to the TTL family of ICs. From the data manual, we can
see that TTL requires a constant supply voltage of Also, the total supply
current requirement into the VCC terminal ranges from 20 to 100 mA for most TTL ICs.

For the power supply, the 78XX series of IC voltage regulators is inexpensive and
easy to use. To construct a regulated 5.0-V supply, we use the 7805 (the 05 designates
5 V; a 7808 would designate an 8.0-V supply). The 7805 is a three-terminal device (input,
ground, output) capable of supplying at 1000 mA. Figure 43 shows how a
7805 voltage regulator is used in conjunction with an ac-to-dc rectifier circuit.

5.0 V ; 0.2%

5.0 V ; 5%.

Helpful
Hint

This is an inexpensive but

1 A
Fuse

120 Vac
60 Hz

120 V : 12.6 V
transformer

12.6 Vac

4 – IN4001 diodes or
1 – 1 A bridge rectifier

1000 μF
25 V

Vout
+5 V

1000 μF
25 V

1000 μF
25 V

7805

GND

In Out

0.01  μF
25 V

– +

Figure 43 Complete 5-V, 1-A TTL power supply.

In Figure 43 the 12.6-V ac rms is rectified by the diodes (or a four-terminal
bridge rectifier) into a full-wave dc of approximately 20 V. Any step-down transformer
with a secondary voltage of 12 to 24 V will work. The of capacitance is re-
quired to hold the dc level into the 7805 at a high, steady level. The 7805 will automat-
ically decrease the 20-V dc input to a solid, ripple-free 5.0-V dc output.

The capacitor is recommended by TTL manufacturers for decoupling
the power supply. Tantalum capacitors work best and should be mounted as close as
possible to the VCC -to-ground pins on every TTL IC used in your circuit. Their size
should be between 0.01 and with a voltage rating The purpose of the
capacitor is to eliminate the effects of voltage spikes created from the internal TTL
switching and electrostatic noise generated on the power and ground lines.

The 7805 will get very hot when your circuit draws more than 0.5 A. In that case,
it should be mounted on a heat sink to help dissipate the heat.

A 60-Hz Clock
Figure 44 shows a circuit design for a simple 60-Hz TTL-level (0 to 5 V) clock that can
be powered from the same transformer used in Figure 43 and used to drive the clock
inputs to our synchronous ICs. Our electric power industry supplies us with accurate
60-Hz ac voltages. It is a simple task to reduce the voltage to usable levels and still
maintain a 60-Hz [60-pulse-per-second (pps)] signal.

� 5 V.0.1 mF,

0.01@mF

3000 mF

120 V
60 Hz

VCC

74HCT14

1 kΩ VA

1 kΩ

12.6 V
60 Hz

IN749
zener
diode

60 pps
TTL-level

output
(Vout)

Figure 44 Accurate 60-Hz, TTL-level clock pulse generator.

Helpful 
Hint

This circuit can be
attached to the same
transformer used in the
power supply circuit.

very useful circuit for you
to build for yourself. With
the additional expense of a
breadboard and a few ICs,
you can test out several of
the text circuits at home.
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From analog electronics courses, you may remember that a zener diode will con-
duct normally in the forward-biased direction, and in the reverse-biased direction, it
will start conducting when a voltage level equal to its reverse zener breakdown rating
is reached (4.3 V for the IN749). Any zener diode rated watt or greater with a voltage
of 4 to 5 V will work.

The resistors are required to limit the zener current to reasonable levels.
Figure 45 shows the waveform that will appear at point A and Vout of Figure 44. The
zener breaks down at 4.3 V, which is high enough for a one-level input to the Schmitt
trigger but not so high that it burns out the chip. The Vout waveform will be an accurate
60-pulse-per-second, approximately 50% duty cycle square wave. This frequency can
easily be divided down to 1 pulse per second by using toggle flip-flops. One pulse per
second is handy because it is slow enough to see on visual displays (like LEDs) and ac-
curate enough to use as a trigger pulse on a digital clock. 

1@k�

1
4

VT+

0.2 V

VA

3.4 V

4.3 V

Vout

VT–

17.8 V
(peak)

VT+

0 V
−0.7  V

Figure 45 Voltage waveform at point A and Vout of Figure 44.

Driving Light-Emitting Diodes
Light-emitting diodes (LEDs) are good devices to visually display a HIGH (1) or LOW
(0) digital state. A typical red LED will drop 1.7 V cathode to anode when forward bi-
ased (positive anode-to-cathode voltage) and will illuminate with 10 to 20 mA flowing
through it. In the reverse-biased direction (zero or negative anode-to-cathode voltage),
the LED will block current flow and not illuminate.

Because it takes 10 to 20 mA to illuminate an LED, we may have trouble driv-
ing it with a TTL output. From the TTL data manual, we can determine that most ICs
can sink (0-level output) a lot more current than they can source (1-level output).
Typically, the maximum sink current, IOL, is 16 mA, and the maximum source current,
IOH, is only 0.4 mA. Therefore, we had better use a LOW level (0) to turn on our LED
instead of a HIGH level.

Figure 46 shows how we can drive an LED from the output of a TTL circuit (a J-
K flip-flop in this case). The J-K flip-flop is set up in the toggle mode so that Q will
flip states once each second. 

When Q is LOW (0 V), the LED is forward biased, and current will flow through
the LED and resistor and sink into the Q output. The resistor is required to limit
the series current to 10 mA and 10 mA into the
LOW-level Q output will not burn out the flip-flop. If, however, we were trying to turn
the LED on with a HIGH-level output, we would turn the LED around and connect the
cathode to ground. But, 10 mA would exceed the limit of on the 7476 and either
burn it out or just not illuminate the LED.

IOH

[I = (5 V - 1.7 V)>330 � = 10 mA],
330@�
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Phototransistor Input to a Latching Alarm System
A phototransistor is made to turn off and on by shining light on its base region. It is
encased in clear plastic and is turned on when light strikes its base region or if the base
connection is forward biased with an external voltage. The resistance from collector to
emitter for an OFF transistor is typically 1 to An ON transistor will range from

to as low as depending on the light intensity. If even more sensitivity is
required, a CDS photocell could be used in place of the phototransistor.

The circuit of Figure 47 uses a phototransistor in an alarm system. The photo-
transistor could be placed in a doorway and positioned so that light is normally strik-
ing it. This will keep its resistance low and the voltage at point A low. When a person
walks through the doorway, the light is interrupted, making the voltage at point A mo-
mentarily high. The 74HCT14 Schmitt inverters will react by outputting a LOW-to-
HIGH pulse. This creates the clock trigger to the D flip-flop, which will latch HIGH,
turning on the alarm. The alarm will remain on until the Reset pushbutton is pressed. 

10 �1000 �
10 M�.

LED
(lights when
Q is LOW)

J

Cp

SD

K

Q

RD

1

 7476

Q

1

1

+5 V

1

1

Rlimit
= 330 Ω

Anode

Cathode

1-pps clock

Figure 46 Driving an LED.
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≅ 10 MΩ
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Rdark
Rlight

C

E
B 7474

Reset

Active-HIGH
Alarm

Light energy
striking base
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Figure 47 Phototransistor used as an input to a latching alarm system.
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If we want the light to
come on when Q is HIGH,
could we connect the
circuit to instead?Q

Team
Discussion

Search the IC manufac-
turers’ Web sites for a 
flip-flop that could source
10 mA. (Hint: Try the
74112 in the following
subfamilies: F, ALS, HCT,
and ACT.)

Team
Discussion

Could a toggle flip-flop be
used in place of the D flip-
flop? How would the
operation change?

Using an Optocoupler for Level Shifting
An optocoupler (or optoisolator) is an IC with an LED and phototransistor encased in
the same package. The phototransistor has a very high OFF resistance (dark) and a low
ON resistance (light), which are controlled by the amount of light striking its base from
the LED. The terms optocoupler and optoisolator come from the fact that the output
side of the device is electrically isolated from the input side and can, therefore, be used
to couple one circuit to another without being concerned about incompatible or harm-
ful voltage levels.
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Figure 48 shows how an optocoupler can be used to transmit TTL-level data to
another circuit having 25-V logic levels. The 7408 is used to sink current through the
optocoupler’s LED each time the input signal goes LOW. Each time the LED
illuminates, the phototransistor will exhibit a low resistance, making Vout LOW.
Therefore, the output signal will be in phase with the input signal, but its HIGH/LOW
levels will be approximately 25 V/0 V. Notice that the 25-V circuit is totally separate
from the 5-V TTL circuit, providing complete isolation from the potentially damaging
higher voltage.

Event Counting with an Optical Interrupter Switch
A special form of the optocoupler is the optical interrupter switch shown in Figure
49. This device is constructed with an infrared emitting diode that shines light through
a slotted opening in the plastic housing before striking the base of the phototransistor
on the other side of the opening. The slot is placed between the LED and phototransis-
tor to allow for an opaque (light blocking) object to be placed in the opening to inter-
rupt the light transmission. To use the device, the LED is constantly forward biased
from anode to cathode (A-to-K) with approximately 20 mA. This produces infrared
light which shines across the slot and strikes the phototransistor’s base, turning it 
ON, causing its collector to emitter (C-to-E) to act like a short. Then if an opaque ob-
ject is placed in the slot, the light transmission is blocked and the transistor is turned
OFF, acting like an open circuit from C-to-E.

22 kΩ

+25 V

1

Vout

330 Ω

+5 V

25 V
0 V

NC

4N35
Optocoupler

5 V
0 V

7408

Figure 48 An optocoupler provides isolation in a level-shifting application.

Infrared emitting diode

(a) (b)

Phototransistor

Infrared emitting diode

Phototransistor

A

A

K

E

CK E
C

Figure 49 Optical interrupter switch: (a) physical representation and (b) schematic diagram.
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Figure 50 shows how the interrupter switch can be used to determine the shaft
position of a motor. The shaft encoder disk has eight slots cut out of an opaque wheel.
This corresponds to a displacement of per slot. During one revo-
lution of the motor shaft, the light strikes the transistor and then is blocked eight times,
turning the transistor ON and then OFF eight times.

If the transistor output is connected to a digital counter as shown in Figure 51 we
could determine the motor shaft position or count the numbers of shaft revolutions per
unit time and calculate rotations per minute (RPMs). The Schmitt trigger IC is used to
ensure that any irregularities in the HIGH/LOW transistor output levels are converted
to a suitable level of VOH/VOL provided by the Schmitt output before being input to the
digital system counter.

The Fairchild H21A1 interrupter switch is used in this circuit. The LED current
is set up at approximately 22 mA When the
encoder disk is blocking the light, the transistor is OFF, placing approximately 5 V at
the input to the Schmitt inverter via the pull-up resistor. In this state, the
Schmitt inverter outputs a LOW to the digital system counter. As the shaft encoder disk
turns to an open cutout, light strikes the transistor and shorts the C-to-E to ground,
which inputs a LOW to the Schmitt. In this state, the Schmitt inverter outputs a HIGH

3.3@k�

� = 22 mA].[I = (5 V - 1.7 V)>150 

(360�>8 = 45�).45�

+ 5 V

150 Ω

A

K

C

E

+ 5 V

H21A1

3.3 kΩ

74HC14

Digital
system
counter

Figure 51 Connecting the optical interrupter switch in a digital system to count events.

Motor

Motor shaft

Shaft encoder disk

Optical interrupter switch

A
K E

C

Figure 50 Using the optical interrupter switch to encode motor shaft position.
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to the digital system counter. This LOW to HIGH transition caused the count to incre-
ment by 1. When the count increments to 8, the digital system knows that one revolu-
tion has been completed.

A Power MOSFET Used to Drive a Relay and AC Motor
The output drive capability of digital logic severely limits the size of the load that can
be connected. An LS-TTL buffer such as the 74LS244 can sink up to 24 mA, and the
BiCMOS 74ABT244 can sink up to 64 mA. But, this is still far below the current re-
quirements of some loads. A common way to boost the current capability is to use a
power MOSFET, which is particularly well suited for these applications. This is a tran-
sistor specifically designed to have a very high input impedance to limit current draw
into its gate and also be capable of passing a high current through its drain to source. 

Figure 52 shows a circuit that could be used to drive a ac motor from a dig-
ital logic circuit. Because the starting current of a motor can be extremely high, we will
use a relay with a 24-V dc coil and a 50-A contact rating. A relay of this size may re-
quire as much as 200 mA to energize the coil to pull in the contacts. A MOSFET such
as the IRF130 can pass up to 12 A through its drain to source, so it can easily handle
this relay coil requirement.

1
3@hp

G

+24 V

IN4002

74HCT08

120 V ac

1
3

–hp

motor

Relay

IRF130
MOSFET

D

S

Figure 52 Using a power MOSFET to interface digital logic to high-power ac circuitry.

When the 74HCT08 outputs a HIGH (5 V) to the gate of the MOSFET, the drain
to source becomes a short This allows current to flow through the relay coil,
creating the magnetic flux required to pull in the contacts. The motor will start. The
1N4002 diode provides arc protection across the coil when it is deenergized.

Level Detecting with an Analog Comparator
Analog comparators such as the LM339 are commonly used to interface to digital cir-
cuitry. A comparison of the two analog voltages at the comparator’s input are used to
determine the device’s output logic level (1 or 0). If the analog voltage at the input
is greater than the voltage at the input, then the output is a logic 1. Otherwise, the
output is a logic 0. The output of the LM339 acts like an open-collector gate, so a pull-
up resistor is required to make the output HIGH.

The circuit in Figure 53 is used to detect when the temperature of a furnace ex-
ceeds The LM35 is a temperature sensor used to monitor the furnace tempera-
ture. It outputs 10 mV for each degree Celsius. (For example, if it is , it will output
200 mV.)

20 �C
100 �C.

(- )
(+)

(�0.2 �).

Team
Discussion

The relay and the
optocoupler are common
means used to interface
digital logic to the outside
world. List several devices
that might be driven from
a digital or microprocessor
circuit.
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This circuit is set up to sound an alarm when the temperature exceeds The
10-k potentiometer can be set at any value as a reference for comparison. In this case, we
want to set it at 1.00 V. When the temperature exceeds , the input becomes
greater than the and the LM339 outputs a HIGH. This HIGH will find its way to the
buzzer as long as the Enable switch is in the UP position. Piezo alarm buzzers are noted
for their very small current draw and can easily be driven by the digital logic gate.

Many other types of sensors could be monitored by the comparator instead of the
temperature sensor. Sensors that output levels in the 0- to 5-V range are available for
monitoring such quantities as pressure, velocity, light intensity, and displacement. The
reference level set by the potentiometer allows you to select exactly what level triggers
the alarm.

Using a Hall-Effect Switch as a Digital Input
Hall-effect sensors and switches are becoming very popular in automotive and con-
sumer electronics. The basic Hall sensor consists of a small sheet of semiconductor ma-
terial with an external bias current flowing through it. The Hall effect is based on the
fact that a small voltage is output when south magnetic flux lines, perpendicular to the
Hall bias current, are brought into close proximity of this material. This phenomenon
was discovered in 1879 by the scientist E. F. Hall. Figure 54 shows the internal 

(-)
(+)100 �C

100 �C.

10 kΩ
Potentiometer

LM35

+5 V
Reference
set to 1.0 V

+5 V

+5 V +5 V

10 mV/°C

LM339

HIGH output
IF (+) > (–)

74HCT08

Enable
Disable

+5 V

10 kΩ
Pull-up

Piezo
buzzer
alarm

–

+

Heat
from
furnace

Figure 53 Using an LM339 analog comparator to interface to digital logic.
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Figure 54 Internal circuitry of a Hall-effect switch IC.
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circuitry of a typical Hall-effect switch. The voltage that is produced in the Hall-effect
sensor is amplified and sent to a Schmitt trigger device to produce sharp switching
points and introduce hysteresis. The output of the Schmitt trigger drives the base of an
NPN transistor which is set up with an open-collector output. This open-collector out-
put requires a pull-up resistor (typically to produce the HIGH/LOW levels re-
quired for TTL digital logic or counter circuits.

The Hall-effect switch is usually packaged as a three-terminal device as shown in
Figure 55. This illustration shows the south pole of a permanent magnet being brought
close to the sensor to trigger it. Its inherent hysteresis ensures that the switch state will
not change until the magnet is moved back a predetermined distance from the sensor.
A popular line of Hall-effect switches is the 3121 series manufactured by Allegro
MicroSystems, Inc. They can run on 4.5 to 24 V and, when triggered, their open-col-
lector output can sink up to 25 mA. A pull-up resistor is required to hold the output
HIGH when it is not triggered.

10 k�)

S

Figure 56 A magnetic rotor triggering a Hall-effect switch IC.

Figure 55 The flux lines from a south magnet triggering a Hall-effect switch IC.

Figure 56 shows how a Hall-effect sensor can be used to monitor rotation of a
motor. In this case, because there are three south magnets, one revolution will be indi-
cated after three pulses are received by the digital circuit connected to the sensor’s out-
put. More sophisticated rotary activators are available employing ring magnets having up
to 20 pole-pairs in a 1-in. diameter ring.

Micro-Electro-Mechanical Systems (MEMS)
Micro-Electro-Mechanical Systems are transducers that convert either physical
movement into an electrical signal (called a microsensor) or visa-versa (called a micro-
actuator). A nano-fabrication process called “micromachining” is used to etch away
microscopic channels in a silicon substrate to form these sensors and actuators. They
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can also be formed by a deposition process where the silicon structure is grown by
depositing material in layers until the complete actuator or sensor is formed. In either
case, this fabrication manipulates matter at the atomic or molecular level. The result is
a silicon structure measured in micrometers (microns) with actual moving elements
electrically connected to the outside world.

One common form of a micro-sensor is the accelerometer used in automobiles
for air-bag deployment upon impact. Accelerometers are also used for sensing orienta-
tion of consumer electronic devices like digital cameras and cell phones to realign the
viewing position of their screen. Another MEMS sensor is the gyroscope, which can
detect automobile instability to trigger dynamic stability control. MEMS sensors also
have several uses in medicine, such as the pressure sensors used to monitor blood pres-
sure and flow rate.

One of the most common fabrication techniques for nano-fabricating an ac-
celerometer is to cut and undercut channels to form the two plates of a variable capac-
itor. Each end of the floating silicon channel is anchored to a stationary location on
the substrate. As the accelerometer is tipped or jolted, the floating channel is momen-
tarily repositioned, causing a change in the capacitance, which indicates movement.
The change in capacitance is linear relative to the force of the earth’s gravity (g). The
variable capacitance is then connected to signal conditioning circuitry, which outputs
a voltage proportional to the g-force produced by the movement or tilt. Accelerometers
can also be constructed based on a varying piezo-electric charge or a Hall-effect
voltage.

MEMS micro-actuators are transducers that convert an applied electrical signal
into mechanical movement. Common techniques used to produce movement of the
nano-structure employ electromagnetism or piezo-electric charge. The most common
actuators are motors, valves, optical switches, and pumps. MEMS actuators are often
used in medical applications for flow control, and MEMS micro-nozzles direct the ink
pattern in inkjet printers.

The newest MEMS are integrating microelectronics on the same substrate
with the microsensors and micro-actuators to form complete systems with FPGA
and microcontroller programmability all in one. Complete specifications and data
sheets of MEMS technology can be found by performing an Internet search on MEMS
manufacturers.

Connecting Multiple I/O to a CPLD or FPGA
Figure 57 shows how multiple inputs and outputs can be connected to a CPLD or
FPGA. A single-pole, single-throw (SPST) dual-in-line package (DIP) switch is
used to input HIGH/LOW levels into the device. With all eight switches open, the
pull-up resistors provide all HIGH levels to the inputs (In0 through In7). When any
switch is closed, a LOW will appear on that input. Debounced clock inputs are
provided at Clk0 and Clk1 by the cross-NAND S-R flip flop connections shown.
When either SPDT switch (or SPDT push-button) goes from its down position to its
up position, the level on Clk changes from LOW to HIGH. This level change on Clk
makes only one transition even as the switch bounces. This single transition is very
important if the clock input is connected to logic that counts each time the switch is
moved from LOW to HIGH because including the bounces would give an inaccu-
rate count result.

The LEDs shown in Figure 57 are connected as active-HIGH logic indicators.
Unlike most 7400-series ICs, CPLDs and FPGAs are capable of sinking and sourc-
ing far more than the 10 mA required to illuminate an LED. Outputting a HIGH at
any output (Out0 through Out7) will source current through the corresponding LED
and limiting resistor, turning that LED ON. (The display can be made active-
LOW by reversing the LEDs and changing the ground connection to VCC.)

330@�
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Review Questions

10. What is the cause of switch bounce, and why is it harmful in digital cir-
cuits?

11. What size resistor is better suited for a pull-up resistor, or

12. What 78XX series IC voltage regulator could be used to build an inex-
pensive 12-V power supply?

13. The zener diode serves two purposes in the pulse generator design in
Figure 44. What are those purposes?

100 �?
10 k�
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Figure 57 Multiple inputs and outputs connected to a CPLD or FPGA.
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14. Why are LEDs usually connected as active-LOW indicator lights in-
stead of active HIGH?

15. Is the phototransistor alarm in Figure 47 better suited for a home bur-
glar alarm or as an alarm to announce when a customer has entered a store?
Why?

16. How would the operation of the alarm in Figure 47 change if only one
Schmitt inverter was used instead of two?

17. Why is an optocoupler sometimes referred to as an optoisolator?

18. In Figure 52, why can’t you drive the relay directly with 74HCT08 in-
stead of using the MOSFET?

Summary

In this chapter, we have learned the following:

1. Unpredictable results on IC logic can occur if strict timing requirements
are not met.

2. A setup time is required to ensure that the input data to a logic circuit is
present some definite time before the active clock edge.

3. A hold time is required to ensure that the input data to a logic circuit is
held for some definite time after the active clock edge.

4. The propagation delay is the length of time it takes for the output of a
logic circuit to respond to an input stimulus.

5. Delay gates are available to purposely introduce time delays when
required.

6. The charging voltage on a capacitor in a series RC circuit can be used to
create a short delay for a power-up reset.

7. The two key features of Schmitt trigger ICs are that they output
extremely sharp edges and that they have two distinct input threshold volt-
ages. The difference between the threshold voltages is called the hysteresis
voltage.

8. Mechanical switches exhibit a phenomenon called switch bounce,
which can cause problems in most kinds of logic circuits.

9. Pull-up resistors are required to make a normally floating input act like
a HIGH. Pull-down resistors are required to make a normally floating input
act like a LOW.

10. A practical, inexpensive 5-V power supply can be made with just a
transformer, four diodes, some capacitors, and a voltage regulator.

11. A 60-pulse-per-second clock oscillator can be made using the power
supply’s transformer and a few additional components.

12. The resistance from collector to emitter of a phototransistor changes
from approximately down to approximately when light
shines on its base region.

13. An optocoupler provides electrical isolation from one part of a circuit
to another.

1000 �10 M�
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14. Power MOSFETs are commonly used to increase the output drive
capability of IC logic from less than 100 mA to more than 1 A.

Glossary

Active Clock Edge: A clock edge is the point in time where the waveform is chang-
ing from HIGH to LOW (negative edge) or LOW to HIGH (positive edge).
The active clock edge is the edge (either positive or negative) used to trig-
ger a synchronous device to accept input digital states.

AC Waveforms: Test waveforms that are supplied by IC manufacturers for design en-
gineers to determine timing sequence and measurement points for such
quantities as setup, hold, and propagation delay times.

Automatic Reset: A scheme used to automatically Set or Reset all storage ICs (usu-
ally flip-flops) to a Set or Reset condition when power is first applied to
them so that their starting condition can always be determined.

Duty Cycle: The ratio of the length of time a periodic wave is HIGH versus the total
period of the wave.

Float: A condition in which an input or output line in a circuit is neither HIGH nor
LOW because it is not directly connected to a high or low voltage level.

Hold Time: The length of time after the active clock edge that the input data to be rec-
ognized (usually J and K) must be held stable to ensure recognition.

Hysteresis: In digital Schmitt trigger ICs, hysteresis is the difference in voltage
between the positive-going switching threshold and the negative-going
switching threshold at the input.

Jitter: A term used in digital electronics to describe a waveform that has some degree
of electrical noise on it, causing it to rise and fall slightly between and dur-
ing level transitions.

Micro-Electro-Mechanical Systems (MEMS): Transducers that convert either phys-
ical movement into an electrical signal (called a micro-sensor) or visa-
versa (called a micro-actuator).

Metastable: A logic-level transition that becomes neither HIGH nor LOW followed by a
valid but undetermined state. It occurs briefly on the output of sequential logic
circuits like flip-flops when certain input timing specifications are not met.

Optical Interrupter switch: A type of optocoupler that allows the designer to exter-
nally interrupt the LED light from striking the phototransistor.

Optocoupler: A device having an LED and a phototransistor encased in the same
package. Illuminating the LED turns the transistor on, providing optical
coupling and isolation between two circuits.

Phototransistor: An optically sensitive transistor that is turned on when light strikes
its base region.

Positive Feedback: A technique employed by Schmitt triggers that involves taking a
small sample of the output of a circuit and feeding it back into the input of
the same circuit to increase its switching speed and introduce hysteresis.

Power-Up: The term used to describe the initial events or states that occur when
power is first applied to an IC or digital system.

Propagation Delay: The length of time that it takes for an input level change to pass
through an IC and appear as a level change at the output.
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Pull-Down Resistor: A resistor with one end connected to a LOW voltage level and
the other end connected to an input or output line so that when that line is
in the float condition (not HIGH or LOW), the voltage level on that line
will, instead, be pulled down to a LOW state.

Pull-Up Resistor: A resistor with one end connected to a HIGH voltage level and the
other end connected to an input or output line so that when that line is in
a float condition (not HIGH or LOW), the voltage level on that line will,
instead, be pulled up to a HIGH state.

Race Condition: The condition that occurs when a digital input level (1 or 0) is
changing states at the same time as the active clock edge of a synchronous
device, making the input level at that time undetermined.

RC Circuit: A simple series circuit consisting of a resistor and a capacitor used to
provide time delay.

Rectifier: An electronic device used to convert an ac voltage into a dc voltage.

Ripple: A small fluctuation in the output voltage of a power supply that is the result
of poor filtering and regulation.

Schmitt Trigger: A circuit used in digital electronics to provide ultrafast level transi-
tions and introduce hysteresis for improving jittery or slowly rising wave-
forms.

Setup Time: The length of time before the active clock edge that the input data to be
recognized (usually J and K ) must be held stable to ensure recognition.

Shaft Encoder Disk: A slotted disk mounted on the shaft of a motor. It is used in con-
junction with an optical interrupter switch to determine shaft position.

SPDT: The abbreviation for single pole, double throw. A SPDT switch switches a
single line to one of two possible output lines.

SPST Switch: The abbreviation for single pole, single throw. A SPST switch is used
to make or break contact in a single electrical line.

Switch Bounce: An undesirable characteristic of most switches when they physically
make and break contact several times (bounce) each time they are opened
or closed.

Threshold: The exact voltage level at the input to a digital IC that causes it to switch
states. In Schmitt trigger ICs, there are two different threshold levels: the
positive-going threshold (LOW to HIGH), and the negative-going thresh-
old (HIGH to LOW).

Transfer Function: A plot of Vout versus Vin that is used to graphically determine the
operating specifications of a Schmitt trigger.

Voltage Regulator: An electronic device or circuit that is used to adjust and control a
voltage to remain at a constant level.

Zener Breakdown: The voltage across the terminals of a zener diode when it is con-
ducting current in the reverse-biased direction.

Problems

Section 1
1. Sketch the Q output waveform for a 74LS76 given the input waveforms
shown in Figure P1 [use 

tPHL = 0 ns].tPLH = 0 ns,th(H) = 0 ns,
th(L) = 0 ns,ts(H) = 20 ns,ts(L) = 20 ns,
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Figure P1
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tb tc
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te tf
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Figure P3

2. Repeat Problem 1 for the waveforms shown in Figure P2.

3. Using actual specifications for a 74LS76, label the propagation delay
times on the waveforms shown in Figure P3.

4. Repeat Problem 3 for the waveforms shown in Figure P4. Use specifica-
tions for a 74109 in the toggle mode (J = 1, K = 0).
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SD

K

Q
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1
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Figure P6

5. Describe the problem that may arise when using the 7432 OR gate to
delay the clock signal into the flip-flop circuit of Figure 14.

6. Sketch the output at and Q for the flip-flop circuit shown in Figure
P6. (Ignore propagation delays in the 74LS76.)

CpD

7. Redraw the waveforms given in Problem 6 if the 35-ns delay tap is used
instead of the 25-ns tap.

8. (a) Sketch the output at DD and Q for the flip-flop circuit shown in
Figure P8. (Ignore propagation delays in the 7474.) (b) Connect DD to the
30-ns tap, and repeat part (a). See Figure P8.

C

C

C
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Sections 2 and 3
9. One particular Schmitt trigger inverter has a positive-going threshold of
1.9 V and a negative-going threshold of 0.7 V. Its VOH (typical) is 3.6 V
and VOL (typical) is 0.2 V. Sketch the transfer function (Vout versus Vin) for
this Schmitt trigger.

10. If the input waveform (Vin) shown in Figure P10 is fed into the Schmitt
trigger described in Problem 9, sketch its output waveform (Vout).
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11. If the waveform shown in Figure P11 is fed into a 7414 Schmitt trigger
inverter, sketch Vout and determine the duty cycle of Vout.

0.4 V

Vin

0 V

0.8 V
1.2 V
1.6 V
2.0 V

0 V

Vout

2.4 V

Figure P11

0.4 V

Vin

0 V

0.8 V
1.2 V
1.6 V
2.0 V

0 V

Vout

2.4 V
2.8 V

0.6 V

3.8 V

Figure P12

12. If the Vin and Vout waveforms shown in Figure P12 are observed on a
Schmitt trigger device, determine its characteristics and sketch the transfer
function (Vout versus Vin).

Section 4
13. The Q output of the 74LS76 in Figure 37 is used to drive an LED.
Sometimes when the switch is closed, the LED toggles to its opposite state,
but sometimes it does not. Discuss the probable cause and a solution to the
problem.

T
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Section 5
14. Occasionally, instead of using a pull-up resistor, a pull-down resistor is
required because a floating connection must be held LOW, as shown in
Figure P14. Why can’t a resistor be used for this purpose? Could a

resistor be used? How would the use of a 74HCT74 improve the sit-
uation?
100@�
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Section 6
15. A problem arises in a digital system that you have designed. Using a
multimeter, you find that none of your ICs is receiving 5-V VCC power.
Your 5-V power supply is the one given in Figure 43. Outline a procedure
that you would follow to troubleshoot your power supply.

16. Design a 60-pulse-per-second TTL-level pulse generator similar to
that in Figure 44 using an optocoupler instead of the zener diode.

17. In Figure 47, assume that the phototransistor has an ON resistance of
and an OFF resistance of Determine the voltage at point A

when the light is striking, and then not striking, the phototransistor.

18. You are asked to troubleshoot the alarm circuit in Figure 47, which is
not working. You find that the voltage at Cp is stuck at 0.2 V for both light
and dark conditions. The voltage at point A is also stuck at approximately
1.0 V. You then take the inverters out of the circuit, test them, and deter-
mine that they are working. While the inverters are out, you notice that the
voltage at point A jumped up to 4.8 V. When you shine a light on the pho-
totransistor, it drops to 0.2 V! Looking further, you notice that a 7414 was
substituted for the 74HCT14. What is the problem?

19. A good choice for an alarm in Figure 47 is a 5-V piezo buzzer. The
problem is that it takes approximately 10 mA to operate the buzzer and the
7474 can only source 0.4 mA. Any ideas?

20. Assume that the ON and OFF resistances of the phototransistor in a
4N35 optocoupler are ON, OFF. Determine the actual values
of Vout in Figure 48.

21. If the relay used in Figure 52 has a coil resistance of 100 determine
the coil current when the MOSFET is ON. (Assume that RDS(ON) = 0.2 �.)

�,

1@M�1@k�

1 M�.1 k�

D

T

D

D

TC
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Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic diagrams.

22. Find the section of the watchdog timer schematic that shows U14:A,
U15:A, and U14:B. Assume that pins 2 and 13 of U15:A are both HIGH
and that U14:A is initially reset. Apply a positive pulse on the line labeled
WATCHDOG__SEL.

(a) Discuss the possible setup time problems that may occur with U14:B.

(b) Discuss how the situation changes if pin 1 of U15:A is already HIGH
and the positive pulse comes in on pin 2 instead.

23. On a separate piece of paper, draw the circuit connections to add a
bank of eight LEDs with current-limiting resistors to the octal D flip-flop,
U5, in the 4096/4196 schematic.

24. On a separate piece of paper draw the connections to input the follow-
ing values to port PA of the 68HC11 microcontroller in the HC11D0 mas-
ter board schematic.

(a) Monitor light/no light conditions by using a light-sensitive phototran-
sistor connected to PA1.

(b) Interface the 0-V/15-V (LOW/HIGH) levels from a 4050B CMOS
buffer to PA3 via an optocoupler.

25. S2 in grid location B-1 in the HC11D0 schematic is a set of seven
pull-up resistors contained in a single DIP. They all have a common

connection to VCC, as shown. Explain their purpose as they relate to the
U12 DIP-switch package and the MODA, MODB inputs to the 68HC11
microcontroller.

26. On a separate piece of paper, add the circuitry to provide on
sheet 2 of the 4096/4196 schematic. (Tap off of the signal
provided.)

MultiSIM® Exercises

E1. Load the circuit file for Section 3a. The subcircuit labeled “Schmitt1”
is a Schmitt trigger device similar to Figure 29 with unknown characteris-
tics. Varying the potentiometer R will increase and decrease Vin so that you
can determine the switching points and Determine the switching
thresholds so that you can sketch and label the voltage levels on a transfer
function similar to Figure 28.

E2. Load the circuit file for Section 3b. The subcircuit labeled “Schmitt1”
is a Schmitt trigger device similar to Example 11 with unknown character-
istics. The Function Generator is used to provide a varying Vin as the oscil-
loscope monitors Vin and Vout.

(a) From the expanded oscilloscope display, determine Voh,
and Vol, and sketch a transfer function.

(b) Press the B/A button in the Time Base Section to display ChB
versus ChA. This is the transfer function. Does it match the results
from part (a)?

E3. Load the circuit file for Section 3c. The subcircuit labeled “Schmitt1”
is a Schmitt trigger device similar to Example 11 with unknown character-
istics.

Vt- ,Vt+ ,

Vt- .Vt+

+UNREG
+5 V

10@k�
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DS

C DS

CS

DS

C
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(a) Connect a varying voltage into Vin and measure Vin/Vout so that you
can sketch a transfer function for the device. What are 
Voh, and Vol?

(b) Replace the varying voltage source with a triangle wave from a
function generator. Use an oscilloscope to display the Vin, Vout
waveforms and transfer function. Do the values match? Show
your instructor.

Vt- ,Vt+ ,
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Answers to Review Questions

1. False

2. False

3. It means that the input levels
don’t have to be held beyond
the active clock edge.

4. Propagation delay, output

5. To enable proper setup and
hold times

6. Capacitor

7. Positive-going threshold,
negative-going threshold,
hysteresis

8. The switching threshold on a
positive-going input signal is
at a higher level than the
switching threshold on a
negative-going input signal.

This is called hysteresis. The
output is steady as long as the
input noise does not exceed
the hysteresis voltage.

9. Input, output

10. It is caused by the springing
action of the contacts, and it
can cause false triggering of a
digital circuit.

11.
12. 7812

13. It cuts off the negative cycle of
the sine wave and limits the
positive cycle to 4.3 V.

14. Because the ICs to which they
are connected can sink more
current than they can source

10 k�

C

C

FPGA Problems

1. Review the methods presented in Example 7 for measuring the propa-
gation delays of an FPGA. Repeat this procedure for a JKFF feeding an
OR2 gate. Develop simulation waveforms similar to those in the example
to exercise the logic (be sure that in the simulator settings options you
leave the mode as the default value timing because setting mode as
functional strips away the propagation delays). Measure the following
values:

(a) tPHL(cp-to-q)

(b) tPLH(n_sd-to-q)

(c) tPLH(d-to-x)

2. Repeat problem C1 for the LPM_FF presented in Example 10–21. Mea-
sure the following values:

(a) tPHL(cp-to-q[4])

(b) tPLH(aload-to-q[4])

(c) tPLH(aclear-to-q[4])

V
H

D
L
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15. Home alarm, because the
alarm is latched in the ON
state until the flip-flop is
manually reset

16. The clock signal would be nor-
mally HIGH and drop LOW
when interrupted, and the 

flip-flop would latch when the
signal returned HIGH.

17. The output side is electrically
isolated from the input side.

18. The current capability of the out-
put is too low to trigger the relay.

Answers to Odd-Numbered Problems

1.

Cp

K

Q

RD

3.

5. Proper circuit operation depends on tp of
the 7432 being The worst-case tp
is specified as 15 ns, but the actual tp may
be less. If it’s actually less than 10 ns, the
circuit won’t operate properly.

�10 ns.

tf = 30 nstc = 20 ns
te = 20 nstb = 30 ns
td = 30 nsta = 20 ns

7.

9.

CpD

J, K

Q

RD
35 ns

25 ns

CLOCK

3.6 V

0.2 V

0.7 V 1.9 V

Vout

Vin

2.4 V

0.2 V

Vout

1.7 V

0.9 V
0.4 V

0
3.4 V

Vin

tHI = 1.8 volts change
tLOW = 2.2 volts change

DC = 45%

11.

13. It is caused by switch bounce. If the switch
bounces an even number of times, the LED
will be off. A debounce circuit would
correct the problem.

15. Check the output of the 7805 for dc.
Check the fuse. If the fuse is OK, you
should check for approximately 12.6 V ac
at the transformer secondary and 20 V dc
at the output of the diode bridge and
the input to the 7805.

17. Light: 
Dark: 

19. The 7474 can sink 16 mA. Connect the
positive lead of the buzzer to and the
negative lead to When Q is HIGH, the
buzzer is energized via the LOW output.

21. Icoil = 240 mA

Q
Q.

+5 V

VA = 4.55 V
VA = 0.0495 V

+ >-

+5 V
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23.

25.The switches of U12 and the pull-up resistors
are used to place either a HIGH or LOW
on the MODA and MODB lines. To place a
HIGH on one of these lines, the correspon-
ding switch must be open. A closed switch
pulls the line to ground.

E1. Vt -  = 1.3 VVt +  = 1.6 V,

Rlim
330

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

+5V

0V
1.3V  1.6V

+5V

0V
0.83 V  1.3 V

E3. (a)
Voh = 5 V, Vol = 0 V

Vt -  = 0.83 VVt +  = 1.3 V,

(b) Yes
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Counter Circuits and VHDL
State Machines

OUTLINE

1 Analysis of Sequential Circuits
2 Ripple Counters: JK FFs and VHDL Description
3 Design of Divide-by-N Counters
4 Ripple Counter ICs
5 System Design Applications
6 Seven-Segment LED Display Decoders: The 7447 IC and VHDL

Description
7 Synchronous Counters
8 Synchronous Up/Down-Counter ICs
9 Applications of Synchronous Counter ICs

10 VHDL and LPM Counters
11 Implementing State Machines in VHDL

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Use timing diagrams for the analysis of sequential logic circuits.
• Design any modulus ripple counter and frequency divider using J-K flip-flops.
• Describe the difference between ripple counters and synchronous counters.
• Solve various counter design applications using 4-bit counter ICs and external

gating.
• Connect seven-segment LEDs and BCD decoders to form multidigit numeric 

displays.
• Cascade counter ICs to provide for higher counting and frequency division.

INTRODUCTION

Now that we understand the operation of flip-flops and latches, we can apply our
knowledge to the design and application of sequential logic circuits. One common ap-
plication of sequential logic arrives from the need to count events and time the dura-
tion of various processes. These applications are called sequential because they follow
a predetermined sequence of digital states and are triggered by a timing pulse or clock.

To be useful in digital circuitry and microprocessor systems, counters normally
count in binary and can be made to stop or recycle to the beginning at any time. In a

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 12 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.

558



recycling counter, the number of different binary states defines the modulus (MOD) of
the counter. For example, a counter that counts from 0 to 7 is called a MOD-8 counter.
For a counter to count from 0 to 7, it must have three binary outputs and one clock trig-
ger input, as shown in Figure 1.

Normally, each binary output will come from the Q output of a flip-flop. Flip-
flops are used because they can hold, or remember, a binary state until the next clock
or trigger pulse comes along. The count sequence of a 0 to 7 binary counter is shown
in Table 1 and Figure 2.

Before studying counter circuits, let’s analyze some circuits containing logic
gates with flip-flops to get a feeling for the analytical process involved in determining
the output waveforms of sequential circuits.

Q0

Clock or
input

trigger

MOD-8
binary
counter

Binary
output (Increments by one
            for each input pulse.)

22

Q2 Q1

21 20

The input can be a repetitive 
clock waveform or a 
trigger source like
the motor encoder 
explained 
earlier.

*Figure 1 Simplified block diagram of a MOD-8 binary counter.

Q0

0

0 1 0 1 0 1 0 1 0 1 0 1

Q1 0 10 0 0 1 0 11 1 0 1

1 01 0 0 0110000

1 2 3 4 5 6 7 0 1 2 3 etc.

Q2

Figure 2 Waveforms for a MOD-8 binary counter.

TABLE 1 Binary Count Sequence of a MOD-8 Binary Counter

Q2 Q1 Q0 Count

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4

Eight different binary states

1 0 1 5
1 1 0 6
1 1 1 7
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3

and so on

w

*Visit the text companion website for podcast lectures on this and other material.
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1 Analysis of Sequential Circuits

To get our minds thinking in terms of sequential analysis, let’s look at an example that
mixes combinational logic gates with flip-flops and whose operation is dictated by a
specific sequence of input waveforms, as shown in Example 1.

COUNTER CIRCUITS AND VHDL STATE MACHINES

E X A M P L E  1

The 7474 shown in Figure 3 is a positive edge-triggered D flip-flop. The
waveforms shown in Figure 4 are applied to the inputs at A and Cp. Sketch
the resultant waveform at D, Q, and X.Q,

X

A

RD

D

Cp

SD

1

Q

RD

 7474

Q

Cp

Figure 3

Cp 0 1 2 3

RD

A

D

Q

Q

X

(D = AQ)

(Q = state of D before the
positive clock edge)

(X = AQ)

3 5

Figure 4
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Cp 0 1 2 3

RD

A

D

Q

Q

X

D = AQ

X = AQ

Figure 5

When a J-K flip-flop is used, we have to consider the level at J and K at the ac-
tive clock edge as well as any asynchronous operations that may be taking place.
Examples 3 and 4 illustrate the timing analysis of sequential circuits utilizing J-K flip-
flops.

COUNTER CIRCUITS AND VHDL STATE MACHINES

Solution:

1. during the 0 period because of 

2. D is equal to X is equal to AQ (therefore, the level at D and X will
change whenever the inputs to the AND gates change, regardless of the
state of the input clock).

3. At the positive edge of pulse 1, D is HIGH, so Q will go HIGH and 
will go LOW and remain there until the positive edge of pulse 2.

4. During period 1, D will equal and X will equal AQ, as shown.

5. At the positive edge of pulse 2, D is LOW, so the flip-flop will Reset
and remain there until the positive edge of pulse 3.

6. At the positive edge of pulse 3, D is HIGH, so the flip-flop will Set
(Q = 1; Q = 0).

(Q = 0; Q = 1)

AQ

Q

A Q;

RD.Q = 0, Q = 1

The timing analysis in Examples 1 and 2 was done by observing the level on D
before the positive clock edge and realizing that D follows the level of AQ.

E X A M P L E  2

Using the same circuit of Example 1, sketch the waveforms at D, Q, and
X, given the input waves shown in Figure 5.

Q,

Solution:
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Common
Misconception

Students often think that
both flip-flops are triggered
from .Cp0

E X A M P L E  3

The 74ALS112 shown in Figure 6 is a negative edge-triggered flip-flop.
The waveforms in Figure 7 are applied to the inputs at A and Sketch
the resultant waveforms at J1, K1, Q0, and Q1. Notice that the clock input to
the second flip-flop comes from Q0. Also, K1 = AQ0.J1 = AQ1,

Cp0.

1

A

Q0 Cp

SD

1

RD

 74ALS112

SD

Q1Cp0

SD

1

RD

 74ALS112

SD

Q0

Q0J0

K0

Cp0

1

Cp1

Q1

Q1J1

K1

This clock input
comes from Q0

Figure 6

Q1

Cp0 0 1

J1 = AQ1

K1 = AQ0

2 3 4 5 6 7

SD

J1

Q0

K1

A

Hold Toggle Hold Reset

Figure 7

1. Because and then Q0 will toggle at each negative edge
of 

2. The second flip-flop will be triggered at each negative edge of the
Q0 line.

3. The levels at J1 and K1 just before the negative edge of the Q0 line will
determine the synchronous operation of the second flip-flop.

4. After Q0 and Q1 are determined for each period, the new levels for J1
and K1 can be determined from and K1 = AQ0.J1 = AQ1

Cp0.
K0 = 1,J0 = 1

Solution:
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2 Ripple Counters: JK FFs and VHDL Description

Flip-flops can be used to form binary counters. The counter output waveforms discussed
in the beginning of this chapter (Figure 2) could be generated by using three flip-flops
cascaded together (cascade means to connect the Q output of one flip-flop to the clock
input of the next). Three flip-flops are needed to form a 3-bit counter (each flip-flop will
represent a different power of 2: 22, 21, 20). With three flip-flops, we can produce 23 dif-
ferent combinations of binary outputs The eight different binary outputs from
a 3-bit binary counter will be 000, 001, 010, 011, 100, 101, 110, and 111.

If we have a 4-bit binary counter, we would count from 0000 up to 1111, which
is 16 different binary outputs. As it turns out, we can determine the number of different
binary output states (modulus) by using the following formula:

To form a 3-bit binary counter, we cascade three J-K flip-flops, each operating in
the toggle mode, as shown in Figure 9. The clock input used to increment the binary
count comes into the input of the first flip-flop. Each flip-flop will toggle every time
its clock input receives a HIGH-to-LOW edge.

Now, with the knowledge that we have gained by analyzing the sequential cir-
cuits in Section 1, it should be easy to determine the output waveforms of the 3-bit bi-
nary ripple counter of Figure 9.

When we analyze the circuit and waveforms, we see that Q0 toggles at each neg-
ative edge of Q1 toggles at each negative edge of Q0, and Q2 toggles at each nega-
tive edge of Q1. The result is that the outputs will “count” repeatedly from 000 up to 111
and then 000 to 111, as shown in Figure 10(a). The term ripple is derived from the fact
that the input clock trigger is not connected to each flip-flop directly but, instead, has
to propagate down through each flip-flop to reach the next. 

For example, look at clock pulse 7. The negative edge of causes Q0 to toggle
LOW . . . which causes Q1 to toggle LOW . . . which causes Q2 to toggle LOW. There

Cp0

Cp0,

Cp

modulus = 2N,  where N = number of flip@flops

(23
= 8).

COUNTER CIRCUITS AND VHDL STATE MACHINES

E X A M P L E  4

Repeat Example 3 for the waveforms shown in Figure 8.

K1 = AQ0

SD

Cp0 0 1 2 3 4 5 6 7 8

A

J1

K1

Q0

Q1

Toggle Toggle Hold Hold Toggle

Asynchronous
Set

Asynchronous
Set

J1 = AQ1

Figure 8

Solution:
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111

1

Cp0

SD

RD

 74LS76

Q

Q0J

K

Cp0

1

Binary output

222120

RD

1

Cp1

SD

RD

 74LS76

Q

Q1J

K

1

1

Cp2

SD

RD

 74LS76

Q

Q2J

K

1

Connect unused
asynchronous inputs HIGH

Figure 9 3-bit binary ripple counter.

000

001

010

100

(b)

011101

110

RD = 1

RD = 1

111

RD = 1 RD = 1

RD = 0

RD = 1 RD = 1

RD = 1

RD = 1

Figure 10 The 3-bit binary ripple counter: (a) waveforms; (b) state diagram.

Cp0 0 1 2 3 4 5 6 7 8 9

20

RD

21

22

000

0

001

1

010

2

011

3

100

4

101

5

110

6

111

7

000

0

001

1

Initialize flip-flops to 000

*

* Each negative edge causes the next flip-flop to toggle.

(a)

Common
Misconception

Because counters are
drawn left-to-right, the
LSB of the binary output
appears on the left, which
is the opposite of what we
are used to.

Team
Discussion

If is included as an
output, what is the new
modulus of the counter?

Cp0
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will definitely be a propagation delay between the time that goes LOW until Q2 fi-
nally goes LOW. Because of this delay, ripple counters are called asynchronous coun-
ters, meaning that each flip-flop is not triggered at exactly the same time.

Another way to observe the count sequence is by using a state diagram, as shown
in Figure 10(b). This drawing shows the Q output levels after each negative transition of

Each clockwise arrow represents a clock pulse that causes a state change in Q.
Synchronous counters can be formed by driving each flip-flop’s clock by the

same clock input. Synchronous counters are more complicated, however, and will be
covered after we have a thorough understanding of asynchronous ripple counters.

The propagation delay inherent in ripple counters places limitations on the max-
imum frequency allowed by the input trigger clock. The reason is that if the input clock
has an active trigger edge before the previous trigger edge has propagated through all
the flip-flops, you will get an erroneous binary output.

Let’s look at the 3-bit counter waveforms in more detail, now taking into account the
propagation delays of the 74LS76 flip-flops. In reality, the 20 waveform will be delayed
to the right (skewed) by the propagation of the first flip-flop. The 21 waveform will be
skewed to the right from the 20 waveform, and the 22 waveform will be skewed to the right
from the 21 waveform. This is a cumulative effect that causes the 22 waveform to be skewed
to the right of the original waveform by three propagation delays. [Remember, how-
ever, that the propagation delay, even for slow flip-flops like the 74LS76, is in the 20-ns
range, which will not hurt us until the input clock period is very short, 100 to 200 ns (5 to
10 MHz).] Figure 11 illustrates the effect of propagation delay on the output waveform.

From Figure 11, we can see that the length of time that it takes to change from bi-
nary 011 to 100 (3 to 4) will be

As we cascade more and more flip-flops to form higher-modulus counters, the
cumulative effect of the propagation delay becomes more of a problem. The approxi-
mate maximum frequency ( fmax) of a ripple counter due to the accumulation of propa-
gation delays can be determined using the following formula:

fmax =

1

N * tp

tPHL1 + tPHL2 + tPLH3 = 30 ns + 30 ns + 20 ns = 80 ns

Cp0

Cp.

Cp0

COUNTER CIRCUITS AND VHDL STATE MACHINES

tPHL1 + tPHL2

tPHL1tPHL1

0 1 2 3

20

RD

21

22

tPLH1

74LS76: tPLH
tPHL

= 20 ns
=  30 ns

tPLH2
tPHL1 + tPLH2

tPLH1

tPHL2

tPHL1 + tPHL2 + tPLH3

tPLH3

(30 ns + 30 ns + 20 ns)

tPLH1 ≡ propagation delay, clock-to-Q
for flip-flop 1

Cp0 4

Figure 11 Effect of propagation delay on ripple counter outputs.

Team
Discussion

For 80 ns during period 4,
the output is invalid. How
does this affect the
minimum clock period that
can be used?

where and
propagation delay of each flip-flop (Cp-to-Q)tp = average

N = number of flip@flops,
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1 1 1 1

1

Cp

SD

RD
Q

QJ

K

Cp0

1

20

RD

1

Cp

SD

RD
Q

QJ

K

1

21

1

Cp

SD

RD
Q

QJ

K

1

22

1

Cp

SD

RD
Q

QJ

K

1

23

(a)

Figure 12 MOD-16 ripple counter: (a) Block diagram; (b) waveforms; (c) counter displayed
on a logic analyzer.

Cp0 0

20

RD

21

22

0000

0
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0001

1

0010

2

0011

3

0100

4

0101

5

0110

6

0111

7

1000

8

1001

9

1010

10

1011

11

1100

12

1101

13

1110

14

1111

15

0000

0

0001

1

23

(b)

*

* Count naturally recycles to 0000

(c)

Team
Discussion

On paper, connect a four-
input NOR gate to the
20–23 outputs in Figure 12.
Sketch the output of the
NOR gate, including
glitches (short-duration
error pulses) that occur
due to propagation delay.
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A MOD-16 ripple counter can be built using four flip-flops. Figures
12(a) and (b) show the circuit design and waveforms for a MOD-16 ripple counter. From
the waveforms, we can see that the 21 line toggles at every negative edge of the 20 line,
the 22 line toggles at every negative edge of the 21 line, and so on, down through each
successive flip-flop. When the count reaches 15 (1111), the next negative edge of 
causes all four flip-flops to toggle and changes the count to 0 (0000). Figure 12(c) is a
photograph of the MOD-16 waveforms displayed on an eight-trace logic analyzer. 

Cp0

(24
= 16)
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~1PR

Cp′

Q0 Q1 Q2

~1CLR

1J4 15

2

5 V

3 74LS76

14

1

16
1CLK

1K

1Q

~1Q

~2PR

~2CLR

2J9 11

7

8 74LS76
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6
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2CLK

2K

2Q

~2Q

Q3

C

1

F

Q T

~2PR

~2CLR

2J9 11

Logic
Analyzer

7

8 74LS76

10

6

12
2CLK

2K

2Q

~2Q

~1PR

~1CLR

1J4 15

2

3 74LS76

14

1

16
1CLK

1K

1Q

~1Q
+

Figure 13 Using the MultiSIM® logic analyzer to obtain the waveforms for a MOD-16 rip-
ple counter.

M O D - 1 6  R I P P L E  C O U N T E R  S I M U L AT I O N

Figure 13 shows a MultiSIM® simulation of a MOD-16 Ripple Counter. The asynchronous Set and
Reset (PR and CLR) are disabled by connecting them to V. The clock input and Q outputs
(Q0, Q1, Q2, Q3) are connected to the logic analyzer to obtain the counter waveforms. Since the

(Cp¿)+5
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Down-Counters
On occasion, there is a need to count down in binary instead of counting up. To form a
down-counter, simply take the binary outputs from the outputs instead of the Q outputs,
as shown in Figure 14. The down-counter waveforms are shown in Figure 15.

Q
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1

Cp0

SD

RD

Q

QJ

K

Cp0

1

Binary output

222120

1

RD

1

Cp

SD

RD

Q

QJ

K

1

1

1

Cp

SD

RD

Q

QJ

K

1

1

Use the
complement outputs
to form a
down-counter.

Figure 14 MOD-8 ripple down-counter.

Cp0 0 1 2 3 4 5 6 7 8 9

20

RD

21
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101

5

100

4

011

3

010

2

001

1

000

0

111

7

110

6

10

101

5

Figure 15 MOD-8 down-counter waveforms.

74LS76 is a dual JK flip-flop the number 1 precedes all inputs and outputs of the first half of the IC
chip and the number 2 for the second half. (Two 74LS76 ICs are used in this circuit.)

MultiSIM Exercise:

(b) Drag the #1 and #2 vertical cursors to measure the time period of so that you can calculate its
frequency. The time period shows in the box labeled “T1-T2.” (It should be approximately 1 ms,
yielding a frequency of 1 kHz.)

(c) Repeat for Q0, Q1, Q2, and Q3.

Cp¿

(a) Load the file fig 12_13 from the text companion website. Double-click the logic analyzer to ex-
pand its size, and then turn on the power switch. Carefully analyze the waveforms to be sure that
they show a MOD-16 counting from 0000 up to 1111.
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When you compare the waveforms of the up-counter of Figure 10 to the
down-counter of Figure 15, you can see that they are exact complements of each
other. That is easy to understand because the binary output is taken from instead
of Q.

VHDL Description of a Mod-16 Up-Counter
Four-bit MOD-16 counters can be implemented in CPLDs using a VHDL description
as shown in Figure 16. The inputs used here (n_cp and n_rd ) are the same as Figure 12

and . The q output is declared as a BUFFER instead of an OUTPUT because q
is used in an assignment statement where it is treated as an input on
the right side and an output on the left side. Since the integer RANGE is 0 to 15, q will
be assigned 4 output ports: q0, q1, q2, and q3.

(q 6=  q + 1;)
 RD)(Cp

Q

COUNTER CIRCUITS AND VHDL STATE MACHINES

4-bit output

Input and output

Asynchronous Reset has priority

Negative clock edge
Input to equation
Output to FPGA pins

(a)

Figure 16 The MOD-16 up-counter: (a) VHDL listing; (b) block symbol file (bsf ).

(b)

The IF statement first checks to see if n_rd is LOW. If it is, q is set to 0 and con-
trol passes to the END IF statement. Or, if there is a negative clock edge, q is incre-
mented by 1.

Figure 17 shows the results of a simulation of the synthesized program. After
the initial reset, it counts 0 to 15 just as the MOD-16 constructed from four J-K flip-
flops did. [To see q0 (the LSB) on the top you may have to choose: Tools
Options Waveform editor View Group & bus bits Show least sig-
nificant first.]

++++

+

V
H

D
L
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Review Questions

1. When analyzing digital circuits containing basic gates combined with
sequential logic like flip-flops, you must remember that gate outputs can
change at any time, whereas sequential logic only changes at the active
clock edges. True or false?

2. For a binary ripple counter to function properly, all J and K inputs must
be tied ___________ (HIGH, LOW), and all and inputs must be tied
___________ (HIGH, LOW) to count.

3. What effect does propagation delay have on ripple counter outputs?

4. How can a ripple up-counter be converted to a down-counter?

3 Design of Divide-by-N Counters

Counter circuits are also used as frequency dividers to reduce the frequency of periodic
waveforms. For example, if we study the waveforms generated by the MOD-8 counter
of Figure 10, we can see that the frequency of the 22 output line is one-eighth of the fre-
quency of the input clock line. This concept is illustrated in the block diagram of
Figure 18, assuming that the input frequency is 24 kHz. So, as it turns out, a MOD-8
counter can be used as a divide-by-8 frequency divider, and a MOD-16 can be used as
a divide-by-16 frequency divider. Notice that the duty cycle of each of the outputs in
Figures 10 and 13 is 50%.

Cp0

RDSD

COUNTER CIRCUITS AND VHDL STATE MACHINES

Figure 17 Simulation of the Mod-16 up-counter.

8MOD-
counter from
Figure 12-10Clock in at Cp0 ( fin = 24 kHz) Output at 22 ( fout = 3 kHz)

Figure 18 Block diagram of a MOD-8 counter used as a divide-by-8 frequency divider.
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Figure 19 A divide-by-5 (MOD-5) binary counter: (a) block diagram; (b) waveforms;
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000

0

Number 5 glitch

(b)

What if we need a divide-by-5 (MOD-5) counter? We can modify the MOD-8
counter so that when it reaches the number 5 (101) all flip-flops will be Reset. The new
count sequence will be 0–1–2–3–4–0–1–2–3–4–0–, and so on. To get the counter to
Reset at number 5 (binary 101), you will have to monitor the 20 and 22 lines and, when
they are both HIGH, put out a LOW Reset pulse to all flip-flops. Figure 19(a) shows a
circuit that can do this for us. 

As you can see, the inputs to the NAND gate are connected to the 20 and 22 lines,
so when the number 5 (101) comes up, the NAND puts out a LOW level to Reset all
flip-flops. The waveforms in Figure 19(b) and the state diagram of Figure 19(c) illus-
trate the operation of the MOD-5 counter of Figure 19(a).

As we can see in Figure 19(b), the number 5 will appear at the outputs for a short
duration, just long enough to Reset the flip-flops. The resulting short pulse on the 20

line is called a glitch. Do you think you could determine how long the glitch is?
(Assume that the flip-flop is a 74LS76 and the NAND gate is a 7400.) 

Because tPHL of the NAND gate is 15 ns, it takes that long just to drive the in-
puts LOW. But, then it also takes 30 ns (tPHL) for the LOW on to Reset the Q out-
put to LOW. Therefore, the total length of the glitch is 45 ns. If the input clock period
is in the microsecond range, then 45 ns is insignificant, but at extremely high clock fre-
quencies, that glitch could give us erroneous results. Also notice that the duty cycle of
each of the outputs is not 50% anymore.

RD

RD

Team
Discussion

Besides the 22 output, what
other output can provide a
divide-by-5 signal?

Common
Misconception

As a frequency divider, this
circuit has a single input
and a single output. As a
MOD-5 counter, all three
outputs are used.
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Any modulus counter (divide-by-N counter) can be formed by using external
gating to Reset at a predetermined number. The following examples illustrate the de-
sign of some other divide-by-N counters. 
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101

000

001

010

100

(c)

011

110

This state is
a glitch of
about 45 ns.

6 and 7 are
shown in case
the counter
is initialized
to that
state at
power up.

RD = 1

111

RD = 1

RD = 1

RD = 1

RD = 0

RD = 1

RD = 1

RD = 1

RD = 1

Figure 19 (Continued ) (c) state diagram.

M O D - 5  C O U N T E R  S I M U L AT I O N

Figure 20 shows a MultiSIM® simulation of a MOD-5 Ripple Counter. The NAND gate is connected
to Q0 and Q2 so that the count is reset when is reached. The four-trace oscilloscope is used
so that we can monitor and Q2 concurrently. An analysis of the Q waveforms shows the
following binary count sequence: 000–001–010–011–100–000 and so forth. Also notice that a glitch
appears momentarily on the Q0 line as the number 510 is output. This HIGH on Q0 lasts only long
enough for the NAND gate to reset the three flip-flops.

MultiSIM Exercise:

(b) Decrease the Timebase setting from to 100 ns/Div and scroll through the display until
you find the glitch on Q0. Use the vertical cursors to measure its width. (It should be approxi-
mately 22 ns as seen in the box labeled “T2-T1.”)

(c) Scroll back to the transition of 310 to 410 (the count changes from 0112 to 1002). Measure tPHL of
-to-Q0. (It should be approximately 20 ns.)

(d) Measure tPHL of Q0 to Q1.

(e) Measure tPLH of Q1 to Q2.

Cp¿

1 ms/Div

Cp¿, Q0, Q1,
(1012)510

(a) Load the file fig 12_20 from the text companion website. Double-click the oscilloscope to ex-
pand its size, and then turn on the power switch to get a single trace, and then turn it off. Carefully
analyze the waveforms to be sure that they show a MOD-5 counting from 000 up to 100, with a
glitch at 101(510).
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Figure 20 Using the MultiSIM® four-channel oscilloscope to obtain the waveforms for a
MOD-5 ripple counter.
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Design a MOD-6 ripple up-counter that can be manually Reset by an ex-
ternal push button.

Solution: The ripple up-counter is shown in Figure 21. The count se-
quence will be 0–1–2–3–4–5. When 6 (binary 110) is reached, the output
of the AND gate will go HIGH, causing the NOR gate to put a LOW on the

line, resetting all flip-flops to zero.
As soon as all outputs return to zero, the AND gate will go back to a

LOW output, causing the NOR and to return to a HIGH, allowing the
counter to count again.

This cycle continues to repeat until the manual Reset push button is
pressed. The HIGH from the push button will also cause the counter to
Reset. The pull-down resistor will keep the input to the NOR gate
LOW when the push button is in the open position. 
V100� = 1.6 mA * 100 � = 0.160 V K LOW.]

[IIL (NOR) = -1.6 mA,
100@�

RD

RD

11

1

Cp

SD

RD

Q

QJ

K

Cp0

1

222120

1

1

Cp

SD

RD

Q

QJ

K

1

1

Cp

SD

RD

Q

QJ

K

1

22

21

A HIGH on either input
forces a Reset.

RD

100 Ω

+5 V (1)
Manual
Reset

Six (110)}

Figure 21

Team
Discussion

Why do we need such a
small value for the pull-
down resistor? What if we
use a resistor?10@k�

E X A M P L E  6

Design a MOD-10 ripple up-counter with a manual push button Reset.

Solution: The ripple up-counter is shown in Figure 22. Four flip-flops are
required to give us a possibility of binary states would not
be enough). We want to stop the count and automatically Reset when 10
(binary 1010) is reached. This is taken care of by the AND gate feeding
into the NOR, making the line go LOW when 10 is reached. The count
sequence will be 0–1–2–3–4–5–6–7–8–9–0–1–, and so on, which is a
MOD-10 up-counter. (The number 10 is only a glitch and is not considered
to be part of the output count.)

RD

(23
= 824

= 16
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Figure 22

E X A M P L E  7

Design a MOD-6 down-counter with a manual push button Reset (the
count sequence should be 7–6–5–4–3–2–7–6–5–, and so on).

Solution: The down-counter is shown in Figure 23. First, by pressing the
manual Reset push button, all flip-flops will Reset, making the counter out-
puts, taken from the ’s, to be 1 1 1. The count sequence that we want is
7–6–5–4–3–2, then Reset to 7 again when 1 is reached (binary 001). When
1 is reached, that is the first time that 21 and 22 are both LOW. The NOR
gate connected to 21 and 22 will give a HIGH output when both of its inputs
are LOW, causing the line to go LOW. RD

Q

Common
Misconception

A LOW on normally
makes the outputs 000, 
but in this case, it makes
them 111.
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1110

SD

RD

Cp

K1

1 1

1

Manual
preset

+5 V (1)

100 Ω

Q

QJ
SD

RD

Cp

K1

1

Q

QJ
SD

RD

Cp
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Figure 24

E X A M P L E  8

Design a MOD-5 up-counter that counts in the sequence 6–7–8–9–10–
6–7– 8–9–10–6–, and so on.

Solution: The up-counter is shown in Figure 24. By pressing the manual
Preset push button, the 21 and 22 flip-flops get Set while the 20 and 23 flip-
flops get Reset. This will give the number 6 (binary 0110) at the output. In
the count mode, when the count reaches 11 (binary 1011), the output of the
AND gates goes HIGH, causing the line to go LOW and recycling
the count to 6 again. 

Preset

Helpful 
Hint

It is useful to list out the
bit configurations for the
numbers 6 through 11.

E X A M P L E  9

Design a down-counter that counts in the sequence 6–5–4–3–2–6–5–4–3–
2–6–5–, and so on.

Solution: The down-counter is shown in Figure 25. When the line
goes LOW, the 20 flip-flop is Set, and the other two flip-flops are Reset
(this gives a 6 at the outputs). As the counter counts down toward zero,
the 21 and 22 will both go LOW at the count of 1 (binary 001), and the

line will then go LOW again, starting the cycle over again.Preset

Q

Preset

COUNTER CIRCUITS AND VHDL STATE MACHINES
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Figure 25

Helpful 
Hint

This example illustrates
three important
concepts: the latching
capability of the 7474, a
MOD-5 counter, and
driving an LED.

E X A M P L E  1 0

Design a counter that counts 0–1–2–3–4–5 and then stops and turns on an
LED. The process is initiated by pressing a start push button.

Solution: The required counter is shown in Figure 26. When power is first
applied to the circuit (power-up), the capacitor will charge up toward 5 V.
It starts out at a zero level, however, which causes the 7474 to Reset

The LOW at QD will remain there until the start button is
pressed. With a LOW at QD, the three counter flip-flops are all held in the
Reset state (binary 000). The output of the NAND gate is HIGH, so the
LED is OFF. 

When the start button is pressed, QD goes HIGH and stays HIGH after
the button starts bouncing and is released. With QD HIGH, the counter
begins counting: 0–1–2–3–4–5. When 5 is reached, the output of the
NAND gate goes LOW, turning on the LED. The current through the LED
will be (5 V - 1.7 V)>330 � = 10 mA. The NAND gate can sink a maxi-
mum of 16 mA (IOL = 16 mA), so 10 mA will not burn it out.

The LOW output of the NAND gate is also fed to the input of the
AND gate, which will disable the clock input. Because the clock cannot get
through the AND gate to the first flip-flop, the counter stays at 5, and the
LED stays lit.

If you want to Reset the counter to zero again, you could put a push
button in parallel across the capacitor so that, when it is pressed, QD will go
LOW and stay LOW until the start button is pressed again.

(QD = 0).

Helpful 
Hint

The practical application 
of circuits with odd count
sequences such as this is
questionable. They are here
because they provide an
excellent way to develop
your analytical skills.
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Figure 26
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E X A M P L E  1 1

VHDL Description of a MOD-10 Up-Counter

Make one change to the MOD-16 counter of Figure 16 to change it to a
MOD-10.

Solution: The modified VHDL program is shown in Figure 27. Notice that
the IF statement resets q to 0 if there is a LOW n_rd or if the count has
reached 10. A simulation of the design is shown in Figure 28. Notice the
glitch on the ql line at the mark. This is because for one iteration of
the PROCESS loop q equals 10, but then the next time around it is reset to
0. [To see q0 (the LSB) on the top you may have to choose: Tools
Options Waveform editor View Group & bus bits Show
least significant first. Also, to see the glitch the simulation must be in the
timing mode. Before running the simulation choose: Assignments
Settings Simulator Settings Simulation Mode: Timing OK.]+++

+

++++

+

10@ms
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Glitch at q = 10

Figure 28 Simulation of the MOD-10 up-counter of Example 11 (Timing simulation mode).

Modification for Mod-10

(a)

Figure 27 The MOD-10 up-counter of Example 11: (a) VHDL listing; (b) block
symbol file (bsf ).

(b)
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Reset q at the
end of #9 period

(a)

Figure 29 The glitch-free MOD-10 up-counter of Example 12: (a) VHDL listing; 
(b) block symbol file (bsf ).

E X A M P L E  1 2

VHDL Description of a Glitch-Free Counter

Change the MOD-10 counter so that the number 10 never appears at the
output. This will eliminate the glitch on the q1 output.

Solution: The modified VHDL program is shown in Figure 29. Instead 
of checking for 10 and then resetting, this program resets q when 

(b)

No glitch after q = 9

Figure 30 Simulation of the glitch-free MOD-10 up-counter of Example 12 (Timing
simulation mode).
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Review Questions

5. A MOD-16 counter can function as a divide-by-16 frequency divider by
taking the output from the ___________ output.

6. To convert a 4-bit MOD-16 counter to a MOD-12 counter, the flip-flops
must be Reset when the counter reaches the number ___________ (11, 12,
13).

7. Briefly describe the operation of the Manual Reset push-button circuitry
used in the MOD-N counters in this section.

4 Ripple Counter ICs

Four-bit binary ripple counters are available in a single IC package. The most popular
are the 7490, 7492, and 7493 TTL ICs. 

Figure 31 shows the internal logic diagram for the 7493 4-bit binary ripple counter.
The 7493 has four J-K flip-flops in a single package. It is divided into two sections: a di-
vide-by-2, and a divide-by-8. The first flip-flop provides the divide-by-2 with its in-
put and Q0 output. The second group has three flip-flops cascaded to each other and
provides the divide-by-8 via the input and Q1Q2Q3 outputs. To get a divide-by-16, you
can externally connect Q0 to so that all four flip-flops are cascaded end to end, as
shown in Figure 32. Notice that two Master Reset inputs (MR1, MR2) are provided to
asynchronously Reset all four flip-flops. When MR1 and MR2 are both HIGH, all Q’s will
be Reset to 0. (MR1 or MR2 must be held LOW to enable the count mode.)

Cp1

Cp1

Cp0

COUNTER CIRCUITS AND VHDL STATE MACHINES

there is an active clock edge and the count is currently on 9. This eliminates
the short appearance of the number 10 on the q outputs. If you zoom in on the

area of the simulation in Figure 30 you will not see a glitch for the
count goes directly from 9 to 0.
10 ms

Helpful 
Hint

The 74293 and 74290 are
electrically identical to the
7493 and 7490, except Vcc

and GND are moved to the
outside corners of the chip.
Also, the 74393 and 74390
are dual 4-bit counters.
Check the Internet to
determine what subfamilies
are available.
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Figure 31 Logic diagram and pin configuration for a 7493 4-bit ripple counter IC.
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With the MOD-16 connection, the frequency output at Q0 is equal to one-half the
frequency input at . Also, 

The 7493 can be used to form any modulus counter less than or equal to MOD-
16 by utilizing the MR1 and MR2 inputs. For example, to form a MOD-12 counter,
simply make the external connections shown in Figure 33.

The count sequence of the MOD-12 counter will be 0–1–2–3–4–5–6–7–8–
9–10–11–0–1, and so on. Each time 12 (1100) tries to appear at the outputs, a
HIGH–HIGH is placed on MR1–MR2, and the counter resets to zero.

Two other common ripple counter ICs are the 7490 and 7492. They both have
four internal flip-flops like the 7493, but through the application of internal gating,
they automatically recycle to 0 after 9 and 11, respectively.

The 7490 is a 4-bit ripple counter consisting of a divide-by-2 section and a
divide-by-5 section (see Figure 34). The two sections can be cascaded together to 

fQ1 =
1
4 fCp0, fQ2 =

1
8 fCp0, and fQ3 =

1
16 fCp0.Cp0

1

Cp

RD

QJ
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1

Cp0
(clock input)

Q0

1

Cp

RD

QJ

K

1
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QJ

K

1

Q2

1

Cp

RD
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K
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Q3

Cp1

MR1 MR2

7493

MOD-16 connection

Figure 32 A 7493 connected as a MOD-16 ripple counter.
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Figure 33 External connections to a 7493 to form a MOD-12 counter.
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form a divide-by-10 (decade or BCD) counter by connecting Q0 to externally. The
7490 is most commonly used for applications requiring a decimal (0 to 9) display.

Notice in Figure 34 that, besides having Master Reset inputs (MR1–MR2), the
7490 also has Master Set inputs (MS1–MS2). When both MS1 and MS2 are made HIGH,
the clock and MR inputs are overridden, and the Q outputs will be asynchronously Set
to a 9 (1001). This is a very useful feature because, if used, it ensures that after the first
active clock transition, the counter will start counting from 0.

The 7492 is a 4-bit ripple counter consisting of a divide-by-2 section and a divide-
by-6 section (see Figure 35). The two sections can be cascaded together to form a di-
vide-by-12 (MOD-12) by connecting Q0 to and using as the clock input. The
7492 is most commonly used for applications requiring MOD-12 and MOD-6 fre-
quency dividing, such as in digital clocks. You can get a divide-by-6 frequency divider
simply by ignoring the input of the first flip-flop and, instead, bringing the clock in-
put into which is the input to the divide-by-6 section. (One peculiarity of the 7492
is that when connected as a MOD-12, it does not count sequentially from 0 to 11.
Instead, it counts from 0 to 13, skipping 6 and 7, but still functions as a divide-by-12.)

Cp1

Cp0

Cp0Cp1

Cp1
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Figure 34 Logic diagram and pin configuration for a 7490 decade counter.
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E X A M P L E  1 4

Make the necessary external connections to a 7492 to form a divide-by-6
frequency divider 

Solution: The frequency divider is shown in Figure 37.

(  fout =
1
6  

fin ).

E X A M P L E  1 3

Make the necessary external connections to a 7490 to form a MOD-10
counter.

Solution: The MOD-10 counter is shown in Figure 36.
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The square wave at fout will be
at 1/6 the frequency of Cp1.

Figure 37

Team
Discussion

Sketch the fin and fout

waveforms that you would
observe on a dual-trace
oscilloscope.
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E X A M P L E  1 5

Make the necessary external connections to a 7490 to form a MOD-8
counter (0 to 7). Also, upon initial power-up, set the counter at 9 so that, af-
ter the first active input clock edge, the output will be 0 and the count se-
quence will proceed from there.

Solution: The MOD-8 counter is shown in Figure 38. The output of the
7414 Schmitt inverter will initially be HIGH when power is first turned on
because the capacitor feeding its input is initially discharged to zero. This
HIGH on MS1 and MS2 will Set the counter to 9. Then, as the capacitor
charges up above 1.7 V, the Schmitt will switch to a LOW output, allowing
the counter to start its synchronous counting sequence. The inverter on
MR1 is necessary to keep the counter from Resetting when the outputs are
at 9 

Q0 is connected to so that all four flip-flops are cascaded. When
the counter reaches 8 (1000), the MR1 and MR2 lines will equal 1–1, caus-
ing the counter to Reset to 0. The counter will continue to count in the
sequence 0–1–2–3–4–5–6–7–0–1–2, and so on, continuously.

Cp1

(Q0, Q3 = 1, 1).
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Figure 38

Review Questions

8. What is the highest modulus of each of the following counter ICs: 7490,
7492, 7493?

9. Why does the 7493 counter IC have two clock inputs?

10. What happens to the Q-outputs of the 7490 counter when you put 1’s
on the MS inputs?
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5 System Design Applications

Integrated-circuit counter chips are used in a multitude of applications dealing with
timing operations, counting, sequencing, and frequency division. To implement a com-
plete system application, output devices such as LED indicators, seven-segment LED
displays, relay drivers, and alarm buzzers must be configured to operate from the
counter outputs. The synchronous and asynchronous inputs can be driven by such de-
vices as a clock oscillator, a push-button switch, the output from another digital IC, or
control signals provided by a microprocessor.

COUNTER CIRCUITS AND VHDL STATE MACHINES

E X A M P L E  1 6

For example, let’s consider an application that requires an LED indicator to
illuminate for 1 s once every 13 s to signal an assembly line worker to per-
form some manual operation.

Solution: To solve this design problem, we first have to come up with a
clock oscillator that produces 1 pulse per second (pps).

The first part of Figure 39(a), which is used to produce the 60-pps
clock, was described in detail in Section  from the chapter, Practical
Considerations for Digital Design. To divide the 60 pps down to 1 pps, we
can cascade a MOD-10 counter with a MOD-6 counter to create a divide-
by-60 circuit.

The 7490 connected as a MOD-10 is chosen for the divide-by-10 sec-
tion. If you study the output waveforms of a MOD-10 counter, you can see
that Q3 will oscillate at a frequency one-tenth of the frequency at Then,
if we use Q3 to trigger the input clock of the divide-by-6 section, the over-
all effect will be a divide-by-60. [The 7492 is used for the divide-by-6 sec-
tion simply by using as the input and taking the 1-pps output from Q3,
as shown in Figure 39(a).]

Cp1

Cp0.

120 V
60 Hz

1 kΩ

1 kΩ

12.6 V
60 Hz

IN749
Zener

Q0

7490
Cp1

Cp0

MR1 MR2 MS1 MS2

Q1 Q2 Q3

60 pps

Q0

7492
Cp1

Cp0

MR1 MR2

Q1 Q2 Q3

1 pps

Divide-by-10 section Divide-by-6 section

7414
Schmitt

6 pps

(a)

*

* Divide-by-2 section not used

Figure 39 (a) Circuit used to produce 1 pps;
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The next step in the system design is to use the 1-pps clock to enable
a circuit to turn on an LED for 1 s once every 13 s. It sounds like we need
a MOD-13 counter (0 to 12) and a gating scheme that turns on an LED
when the count is on the number 12. A 7493 can be used for a MOD-13
counter, and a NAND gate can be used to sink the current from an LED
when the number 12 occurs. Figure 39(b) shows the
necessary circuit connections.

Notice in Figure 39(b) that a MOD-13 is formed by connecting Q0
to and resetting the counter when the number 13 is reached, result-
ing in a count of 0 to 12. Also, when the number 12 is reached, the
NAND gate’s output goes LOW, turning on the LED. 

330 � = 10 mA].(5 V - 1.7 V)/
[ILED =

Cp1

(Q2 = 1, Q3 = 1)

Figure 39 (Continued ) (b) circuit used to illuminate an LED once every 13 s.

2322

330 Ω

+5 V
20

Q0

7493
Cp1

Cp0

MR1 MR2

Q1 Q2 Q3

Reset at
no. 13

23

21

23

2220

(b)

22

LED

LOW out for
no. 12

1 pps from
Fig.   39a
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Design a circuit to turn on an LED for 20 ms once every 100 ms. Assume
that you have a 50-Hz (50-pps) clock available.

Solution: Because 20 ms is one-fifth of 100 ms, we should use a MOD-5
counter such as the one available in the 7490 IC. To determine which out-
puts to use to drive the LED, let’s look at the waveforms generated by a
7490 connected as a MOD-5 counter.

Remember that the second section of a 7490 is a MOD-5 counter (0
to 4). If the input frequency is 50 Hz, each count will last for 20 ms

as shown in Figure 40(a).
Notice that the Q3 line goes HIGH for 20 ms once every 100 ms. So

if we just invert the Q3 line and use it to drive the LED, we have the solu-
tion to our problem! Figure 40(b) shows the final solution.

(1>50 Hz = 20 ms),
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Figure 40 (a) Output waveforms from a MOD-5 counter driven by a 50-Hz input
clock; (b) solution to Example 17.

E X A M P L E  1 8

Design a three-digit decimal counter that can count from 000 to 999.

Solution: We have already seen that a 7490 is a single-digit decimal (0 to 9)
counter. If we cascade three 7490s together and use the low-order counter to
trigger the second digit counter and the second digit counter to trigger the
high-order-digit counter, they will count from 000 up to 999. (Keep in mind
that the outputs will be binary-coded decimal in groups of 4. In Section 6, we
will see how we can convert the BCD outputs into actual decimal digits.)

If you review the output waveforms of a 7490 connected as a MOD-
10 counter, you can see that at the end of the cycle, when the count changes
from 9 (1001) to 0 (0000), the 23 output line goes from HIGH to LOW.
When cascading counters, you can use that HIGH-to-LOW transition to
trigger the input to the next-highest-order counter. That will work out great
because we want the next-highest-order decimal digit to increment by 1
each time the lower-order digit has completed its 0-through-9 cycle (i.e.,
the transition from 009 to 010). The complete circuit diagram for a 000-to-999
BCD counter is shown in Figure 41.

Helpful 
Hint

Review MOD-10
waveforms to see why the
23 signal is used to clock
each successive BCD digit.

Cp1 1 2 3 4 5 6 7 8 9

Q1

0

20 ms

1

20 ms
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3
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20 ms

0

20 ms

1

20 ms

2

20 ms

3

20 ms
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20 ms

10

0

20 ms

11

Q2

Q3
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Q0
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MR1 MR2 MS1 MS2

Q1 Q2 Q3

330 Ω

+5 V

LED

7404
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Input
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*
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Figure 41 Cascading 7490s to form a 000-to-999 BCD output counter.
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E X A M P L E  1 9

Design and sketch a block diagram of a digital clock capable of displaying
hours, minutes, and seconds.

Solution: First, we have to design a 1-pps clock to feed into the least sig-
nificant digit of the seconds counter. The seconds will be made up of two
cascaded counters that count 00 to 59. When the seconds change from 59
to 00, that transition will be used to trigger the minutes digits to increment
by 1. The minutes will also be made up of two cascaded counters that count
from 00 to 59. When the minutes change from 59 to 00, that transition will
be used to trigger the hours digits to increment by 1. Finally, when the
hours reach 12, all counters should be Reset to 0. The digital clock will dis-
play the time from 00:00:00 to 11:59:59.

Figure 42 is the final circuit that could be used to implement a digital
clock. A 1-pps clock (similar to the one shown in Figure 39) is used as the
initial clock trigger into the least significant digit (LSD) counter of the sec-
onds display. This counter is a MOD-10 constructed from a 7490 IC. Each
second this counter will increment. When it changes from 9 to 0, the
HIGH-to-LOW edge on the 23 line will serve as a clock pulse into the most
significant digit (MSD) counter of the seconds display. This counter is a
MOD-6 constructed from a 7492 IC.

After 59 s, the 22 output of the MOD-6 counter will go HIGH to
LOW [once each minute (1 ppm)], triggering the MOD-10 of the minutes
section. When the minutes exceed 59, the 22 output of that MOD-6 counter
will trigger the MOD-10 of the hours section.

The MOD-2 of the hours section is just a single toggle flip-flop hav-
ing a 1 or 0 output. The hours section is set up to count from 0 to 11. When
12 is reached, the AND gate resets both hours counters. The clock display
will, therefore, be 00:00:00 to 11:59:59.

If you want the clock to display 1:00:00 to 12:59:59 instead, you will
have to check for a 13 in the hours section instead of 12. When 13 is
reached, you will want to Reset the MOD-2 counter and Preset the MOD-
10 counter to a 1. Presettable counters such as the 74192 are used in a case
like this. (Presettable counters are covered later in this chapter.)

The decoders are required to convert the BCD from the counters into
a special code that can be used by the actual display device. Digit displays
and decoders are discussed in Section 6. 

Team
Discussion

Discuss ways that you
might modify the clock
generator circuit to
provide a “fast-forward”
feature for setting the
time.
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Figure 42 Block diagram for a digital clock.

E X A M P L E  2 0

Design an egg-timer circuit. The timer will be started when you press a
push button. After 3 minutes, a 5-V, 10-mA dc piezoelectric buzzer will
begin buzzing.

Solution: The first thing to take care of is to divide the 1-pps clock previ-
ously designed in Figure 39 (a) down to a 1-ppm clock. At 1 ppm, when the
count reaches 3, the buzzer should be enabled and the input clock disabled.
An automatic power-up Reset is required on all the counters so that the
minute counter will start at zero. A D latch can be utilized for the pushbut-
ton starter so that after the push button is released, the latch remembers and
will keep the counting process going.

The circuit of Figure 43 can be used to implement this design. When
power is first turned on, the automatic Reset circuit will Reset all counter out-
puts and Reset the 7474, making With HIGH, the OR gate will stay
HIGH, disabling the clock from getting through to the first 7492.

When the start push button is momentarily depressed, will go LOW,
allowing the 1-pps clock to reach The first two counters are connected
as a MOD-6 and a MOD-10 to yield a divide-by-60, so we have 1 ppm avail-
able for the last counter, which serves as a minute counter. When the count
reaches 3 in the last 7490, the AND gate goes HIGH, disabling the clock in-
put. This causes the 7404 to go LOW, providing sink current for the buzzer
to operate. The buzzer is turned off by turning off the main power supply.

Cp1.
Q

QQ = 1.

MR
MOD-2

MR
MOD-10 MOD-6 MOD-10 MOD-6 MOD-10

Decoder Decoder Decoder Decoder Decoder Decoder

0-1
Display

0-9
Display

0-5
Display

0-9
Display

0-5
Display

0-9
Display

1 pphr 1 pp min 1 pps

1-pps clock
generator

from
Fig.  39a

60-Hz ac
power
input

Hours 00 to 11 Minutes 00 to 59 Seconds 00 to 59
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Review Questions

11. How could you form a divide-by-60 using two IC counters?

12. When cascading several counter ICs end to end, which Q-output drives
the clock input to each successive stage?

6 Seven-Segment LED Display Decoders: The 7447 
IC and VHDL Description

In Section 5, we discussed counter circuits that are used to display decimal (0 to 9)
numbers. If a counter is to display a decimal number, the count on each 4-bit counter
cannot exceed 9 (1001). In other words, the counters must be outputting binary-coded
decimal (BCD). BCD is a 4-bit binary string used to represent the 10 decimal digits. To
be useful, however, the BCD must be decoded by a decoder into a format that can be
used to drive a decimal numeric display. The most popular display technique is the
seven-segment LED display.

A seven-segment LED display is actually made up of seven separate light-emitting
diodes in a single package. The LEDs are oriented so as to form an 8 . Most seven-seg-
ment LEDs have an eighth LED used for a decimal point.

The job of the decoder is to convert the 4-bit BCD code into a seven-segment
code that will turn on the appropriate LED segments to display the correct decimal
digit. For instance, if the BCD is 0111 (7), the decoder must develop a code to turn on
the top segment and the two right segments (7 ).

Common-Anode LED Display
The physical layout of a seven-segment LED display is shown in Figure 44. This fig-
ure shows that the anode of each LED (segment) is connected to the supply.
Now, to illuminate an LED, its cathode must be grounded through a series-limiting re-
sistor, as shown in Figure 45. The value of the limiting resistor can be found by know-
ing that the voltage drop across an LED is 1.7 V and that it takes approximately 10 mA
to illuminate it. Therefore,

Rlimit =

5.0 V - 1.7 V

10 mA
= 330 �

+5@V

COUNTER CIRCUITS AND VHDL STATE MACHINES

dp

d

e

g

f
a

+5 V

c

b

(a)

dp

+5 V

a b c d e f g

(b)

All anodes connect to +5 V

Anode
Cathode

Figure 44 Seven-segment common-anode LED display: (a) physical layout; (b) schematic;  
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a
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f
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Ldp Rdp

(1)

(2)

*(3)

a

f

Ldp

e

(6)

(7)

(14)

(13)

(11)

(10)

(9)

(8)

g

c

Rdp

d

Anodes*

b

* Pin 3 is connected internally
to pin 14.

(c)

Anodes

Figure 44 (Continued ) (c) pin configuration; (d) numeric designations.   

Rlimit
= 330 Ω

a

+5 V

I =
5 V − 1.7 V

330 Ω
= 10 mA

Figure 45 Illuminating the a segment.

0 1 2 3 4 5 6 7 8 9

(d)

Each segment in the display unit is illuminated in the same way. Figure 44(d) shows
the numerical designations for the 10 allowable decimal digits.

Common-anode displays are active-LOW (LOW-enable) devices because it takes
a LOW to turn on (illuminate) a segment. Therefore, the decoder IC used to drive a
common-anode LED must have active-LOW outputs.

Common-cathode LEDs and decoders are also available but are not as popular
because they are active-HIGH, and ICs typically cannot source (1 output) as much cur-
rent as they can sink (0 output).
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BCD-to-Seven-Segment Decoder/Driver ICs*
The 7447 is the most popular common-anode decoder/LED driver. Basically, the 7447
has a 4-bit BCD input and seven individual active-LOW outputs (one for each LED
segment). As shown in Figure 46, it also has a lamp test input for testing all seg-
ments, and it also has ripple blanking input and output.

To complete the connection between the 7447 and the seven-segment LED, we
need seven resistors (eight if the decimal point is included) for current limiting.
Dual-in-line package (DIP) resistor networks are available and simplify the wiring
process because all seven (or eight) resistors are in a single DIP.

Figure 47 shows typical decoder–resistor–DIP–LED connections. As an exam-
ple of how Figure 47 works, if a MOD-10 counter’s outputs are connected to the BCD
input and the count is at six (0110BCD), the following will happen:

1. The decoder will determine that a 0110BCD must send the outputs
LOW will be HIGH for 6 ).

2. The LOW on those outputs will provide a path for the sink current in the
appropriate LED segments via the resistors (the 7447 can sink up to
40 mA at each output).

3. The decimal number 6 will be illuminated, together with the decimal point
if the dp switch is closed. 8

330@�

(a, b
c, d, e, f, g

330@�

(LT)

*Very versatile CMOS seven-segment decoders are the 4543 and its high-speed version, the 74HCT4543. The 4543 provides
active-HIGH or active-LOW outputs and can drive LED displays as well as liquid-crystal displays (LCDs). LCDs are used in low-
power battery applications such as calculators and watches. Their segments don’t actually emit light, but instead, the individual
liquid-crystal segments will polarize to become either opaque (black) or transparent (white) to external light.

 BCD
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Figure 47 Driving a seven-segment LED display: (a) logic circuit connections; 

5 13

4 12

3 11

7 10

1 9

2 15

6 14

 BCD
input

RBI

RBO

LT

A0

A1

A2

A3

a

b

c

d

e

f

g

7447 Seven-segment
outputs

     Vcc = pin 16
GND = pin 8

Figure 46 Logic symbol for a 7447 decoder.
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Figure 47 (Continued) (b) photo of the actual circuit on a breadboard and a printed circuit.

(b)

S E V E N - S E G M E N T  L E D  D I S P L AY  S I M U L AT I O N

Figure 48 shows a MultiSIM® simulation of a seven-segment LED display
driven by a BCD decoder. In the illustration, the C switch is HIGH, 
making the BCD input 0100, which is The decoder determines which410.

VCC

5 V 5 V

VCC

5 V

CA

A B C D E F G

A

B

C

74LS47

Digital
ground 330 Ω

Common-anode
LED display

A
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OG

7 
1 
2 
6

13 
12 
11 
10 
9 
15 
14

3 
5 
4

D

VCC

~LT
~RBI
~BI/RBO

Figure 48 Using MultiSIM® to test a BCD decoder with seven-segment display.
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Three-Digit Display
A complete three-digit decimal display system is shown in Figure 49. The three coun-
ters in the figure are connected as MOD-10 counters with the input clock oscillator
connected to the least significant counter. The three counters are cascaded by connect-
ing the Q3 output of the first to the of the next, and so on.

Notice that the decimal point of the LSD is always on, so the counters will, there-
fore, count from .0 up to 99.9. If the clock oscillator is set at 10 pps, the LSD will in-
dicate tenths of seconds. Also notice that the ripple blanking inputs and outputs 
and are used in this design. They are active LOW and are used for leading-zero
suppression. For example, if the display output is at 1.4, would you like it to read 01.4
or 1.4? To suppress the leading zero and make it a blank, ground the terminal of
the MSD decoder. How about if the output is at .6? Would you like it to read 00.6, 0.6,
or .6? To suppress the second zero when the MSD is blank, simply connect the of
the MSD decoder to the of the second digit decoder. The way this works is that if
the MSD is blank (zero suppressed), the MSD decoder puts a LOW out at This
LOW is connected to the of the second decoder, which forces a blank output (zero
suppression) if its BCD input is zero.

The and can also be used for zero suppression of trailing zeros. For ex-
ample, if you have an eight-digit display, the ’s and ’s could be used to auto-
matically suppress the number 0046.0910 to be displayed as 46.091.

Intelligent LED displays are also available. These displays contain an integrated
logic circuit in the same package with the LEDs. For example, the TIL306 has a built
in BCD counter, a 4-bit data latch, a BCD-to-seven-segment decoder, and the drive cir-
cuitry along with the display LEDs. For displaying hexadecimal digits, the TIL311 can
be used. It doesn’t contain a counter like the TIL306, but it does have a latch, decoder,
and driver along with the LED display. It accepts a 4-bit hex input and displays the 16
digits 0 through F.

Driving a Multiplexed Display with a Microcontroller
Multidigit LED or LCD displays are commonly used in microprocessor systems. To
drive each digit of a six-digit display using separate, dedicated drivers would require six
8-bit I/O ports. Instead, a multiplexing scheme is usually used. Using the multiplexing
technique, up to eight digits can be driven by using only two output ports. One output
port is used to select which digit is to be active, whereas the other port is used to drive
the appropriate segments within the selected digit. Figure 50 shows how two I/O ports
of an 8051 microcontroller can be used to drive a six-digit multiplexed display. 

The displays used in Figure 50 are common-cathode LEDs. To enable a digit to
work, the connection labeled COM must be grounded. The individual segments are then
illuminated by supplying via a limiting resistor to the appropriate segment.

It takes approximately 10 mA to illuminate a single segment. If all segments in
one digit are on, as with the number 8, the current in the COM line will be 70 mA. The
output ports of the 8051 can only sink 1.6 mA. This is why we need the PNP transis-
tors set up as current buffers. When port 1 outputs a 0 on bit 0, the first PNP turns on,
shorting the emitter to collector. This allows current to flow from the supply
through the limiting resistor, to the a segments. None of the a segments will150@�

+5@V

150@�+5 V

RBORBI
RBORBI

RBI
RBO.

RBI
RBO

RBI

RBO)
(RBI

Cp0

of its seven outputs to drop LOW. Those LOW outputs provide a current
sink path to ground through the resistors to illuminate the b, c, f, and
g segments that display the number 4.

330@�
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MultiSIM Exercise: Load the file fig12_48 from the text companion web-
site. Place all switches in the LOW position to display the number 0. Next, test
all of the possible BCD digits from 0000 up to 1001 for valid displays.
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illuminate unless one of the digits’ COM lines is brought LOW. To enable the LSD,
port 2 will output a 0 on bit 0, which shorts the emitter to collector of that transistor.
This provides a path for current to flow from the COM on the LSD to ground. The
assembly-language program to provide those port outputs is:

MOV P1, 0FE (P1 d 1111 11102)

MOV P2, 0FE (P2 d 1111 11102)

Notice that enabling both the segment and the digit requires an active-LOW sig-
nal. To drive all six digits, we have to scan the entire display repeatedly with the ap-
propriate numbers to be displayed. For example, to display the number 123456, we
need to turn on the segments for the number 1 (b and c) and then turn on the MSD. We
then turn off all digits, turn on the segments for the number 2 (a, b, g, e, and d), and
turn on the next digit. We then turn off all digits, turn on the segments for the number
3, and turn on the next digit. This process repeats until all six digits have been flashed
on once. At that point, the MSD is cycled back on, followed by each of the next digits.
By repeating this cycle over and over again, the number 123456 appears to be on all
the time. This process of decoding the segments and scanning the digits is performed
by software instructions written for the 8051 output ports.

VHDL Description of the Seven-Segment Decoder
The decoding feature of the 7447 IC can easily be described in VHDL using the
Selected Signal Assignment or Case statement. The 7447 decodes a 4-bit BCD input
into seven individual active-LOW outputs. The active-LOW outputs are then con-
nected to a common-anode seven-segment LED to display the 10 decimal digits (0 to
9). Before designing a BCD decoder, it is helpful to draw a truth table to identify which
outputs go LOW for each BCD input combination (see Table 2).

For example, comparing the table entry for the decimal number 0 to the numeric
designations given back in Figure 44(d) shows us that all segments should be ON ex-
cept the g segment. (Since we are connecting to a common-anode display, turning a
segment ON requires a LOW.) Compare the remainder of Table 2 to the designations
given in Figure 44(d).

The VHDL program in Figure 51 uses a Selected Signal Assignment statement
to assign the appropriate output levels for each BCD input. Internal SIGNAL vectors
are declared for bcd_in and out_segs. Before using bcd_in in the SELECT statement,
it is assigned the concatenation of all four BCD bits (A3 & A2 & A1 & A0) input from
the CPLD input ports. After the out_segs selected signal assignments are complete,
they are separated out to the individual output pins (na, nb, nc, nd, ne, nf, and ng) us-
ing seven assignment statements.

Figure 52 shows a simulation of the BCD decoding operation. 
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TABLE 2 Truth Table for a BCD to Seven-Segment Decoder

A3 A2 A1 A0 na nb nc nd ne nf ng

0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 0
0 1 1 0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 1 0 0

V
H

D
L
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Separate internal SIGNAL vector
into individual outputs

Concatenate 4 inputs
into internal SIGNAL

a segment (active-LOW)

g segment (active-LOW)

(a)

Figure 51 A BCD to seven-segment decoder: (a) VHDL listing; (b) block symbol file (bsf ).

Figure 52 Simulation of the BCD to seven-segment decoder.

(b)
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Review Questions

13. Seven-segment displays are either common anode or common cath-
ode. What does this mean?

14. List the active segments, by letter, that form the following digits on a
seven-segment display: 5, 0.

15. Why are series resistors required when driving a seven-segment LED
display?

16. The 7447 IC is used to convert ___________ data into ___________
data for common-___________ LEDs.

17. Liquid-crystal displays (LCDs) use more power but are capable of
emitting a brighter light than LEDs. True or false?

18. What is the advantage of using a multiplexing scheme for multidigit
displays like the one shown in Figure 50?

7 Synchronous Counters

Remember the problems we discussed with ripple counters due to the accumulated
propagation delay of the clock from flip-flop to flip-flop? (See Figure 11.) Well, syn-
chronous counters eliminate that problem because all the clock inputs ’s) are tied to
a common clock input line, so each flip-flop will be triggered at the same time (thus,
any Q output transitions will occur at the same time).

If we want to design a 4-bit synchronous counter, we need four flip-flops, giving
us a MOD-16 (24) binary counter. Keep in mind that because all the inputs receive
a trigger at the same time, we must hold certain flip-flops from making output transi-
tions until it is their turn. To design the connection scheme for the synchronous
counter, let’s first study the output waveforms of a 4-bit binary counter to determine
which flip-flops are to be held from toggling, and when. 

From the waveforms in Figure 53(a), we can see that the 20 output is a continu-
ous toggle off the clock input line. The 21 output line toggles on every negative edge of
the 20 line, but because the 21’s input is also connected to the clock input, it must
be held from toggling until the 20 line is HIGH. This can be done simply by tying the
J and K inputs to the 20 line, as shown in Figure 53(b).

The same logic follows through for the 22 and 23 output lines. The 22 line must
be held from toggling until the 20 and 21 lines are both HIGH. Also, the 23 line must
be held from toggling until the 20 and 21 and 22 lines are all HIGH.

To keep the appropriate flip-flops in the hold or toggle condition, their J and K
inputs are tied together and, through the use of additional AND gates, as shown in
Figure 53(b), the J-K inputs will be both 0 or 1, depending on whether they are to be in
the hold or toggle mode.

From Figure 53(b), we can see that the same clock input is driving all four flip-
flops. The 21 flip-flop will be in the hold mode until the 20 output goes
HIGH, which will force J1-K1 HIGH, allowing the 21 flip-flop to toggle when the next
negative clock edge comes in.

Now, observe the output waveforms [Figure 53(a)] while you look at the circuit
design [Figure 53(b)] to determine the operation of the last two flip-flops. From the
waveforms, we see that the 22 output must not be allowed to toggle until 20 and 21 are
both HIGH. Well, the first AND gate in Figure 53(b) takes care of that by holding J2-
K2 LOW. The same method is used to keep the 23 output from toggling until the 20 and
21 and 22 outputs are all HIGH.

(J1 = K1 = 0)

Cp0

Cp

(Cp

COUNTER CIRCUITS AND VHDL STATE MACHINES

Common
Misconception

Students sometimes
mistakenly think that the
propagation delay of the
AND gates would keep the
outputs from switching at
the same time.
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As you can see, the circuit is more complicated, but the cumulative effect of
propagation delays through the flip-flops is not a problem as it was in ripple counters.
This is because all output transitions will occur at the same time, because all flip-flops
are triggered from the same input line. (There is a propagation delay through the AND
gates, but it will not affect the Q outputs of the flip-flops.)

As with ripple counters, synchronous counters can be used as down-counters by
taking the output from the outputs and can form any modulus count by resetting the
count to zero after some predetermined binary number has been reached.

Q
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Clock
input

20

21

22

23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Cp

Q0

QRD

1

J0

K0

Cp

Q1

QRD

J1

K1

Cp

Q2

QRD

J2

K2

Cp

Q3

QRD

J3

K3

23222120

Reset
Clock
input

(b)

(a)

Figure 53 4-bit MOD-16 synchronous counter: (a) output waveforms; 
(b) circuit connections.

E X A M P L E  2 1

Design a MOD-6 synchronous binary up-counter.

Solution: A MOD-6 counter will count 0–1–2–3–4–5–0–1–, and so on.
To count to 5, we will need three flip-flops and will have to Reset the
count to zero when the number 6 (1102) is reached, as shown in the circuit
in Figure 54.
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System Design Application
Synchronous binary counters have many applications in the timing and sequencing of
digital systems. The following design will illustrate one of these applications.
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Cp

Q

QRD

1

J

K

Cp

Q

QRD

J

K

Cp

Q

QRD

J

K

222120

Clock
input

100 Ω

21

22

Manual
reset

+5 V

Figure 54

E X A M P L E  2 2

Let’s say that your company needs a system that will count the number of
hours of darkness each day. The senior design engineer for your company
will be connecting his microcontroller-based system to your counter out-
puts after you are sure that your system is working correctly. After the
counter outputs are read, the microcontroller will issue a LOW Reset pulse
to your counter to Reset it to all zeros sometime before sunset.

Solution: You decide to use a synchronous counter but realize that it may
be dark outside for as many as 18 h per day. A 4-bit counter will not count
high enough, so first you have to come up with the 5-bit synchronous
counter design that is shown in Figure 55. That was not hard; you just had
to add one more AND gate and a flip-flop to a 4-bit counter.

From analog electronics, you remembered that a phototransistor has
varying resistance from collector to emitter, depending on how much light
strikes it. The phototransistor that you decide to use has a resistance of

when it is in the dark and when it is in the daylight. Your final
circuit design is shown in Figure 55.

Explanation of Figure 55: Let’s start with the 5-bit synchronous
counter. With the addition of the last AND gate and flip-flop, it will be ca-
pable of counting from 0 up to 31 (MOD-32). The manual Reset push but-
ton, when depressed, will Reset the counter to zero.

The phototransistor collector-to-ground voltage will be almost zero
during daylight because the collector-to-emitter resistance acts almost like a

10 �10 M�
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Review Questions

19. What advantage do synchronous counters have over ripple counters?

20. Because each flip-flop in a synchronous counter is driven by the same
clock input, what keeps all flip-flops from toggling at each active clock
edge?

21. The 5-bit synchronous counter in Figure 55 counts continuously, day
and night, but is ignored by the microcontroller during the day. True or
false?

8 Synchronous Up/Down-Counter ICs

Four-bit synchronous binary counters are available in a single IC package. Two popu-
lar synchronous IC counters are the 74192 and 74193. They both have some features
that were not available on the ripple counter ICs. They can count up or down and can
be preset to any count that you desire. The 74192 is a BCD decade up/down-counter,
and the 74193 is a 4-bit binary up/down-counter. The logic symbol used for both coun-
ters is shown in Figure 56.

short. (Depending on the transistor used, the ON resistance may be as low
as The Schmitt inverters are used to give a sharp HIGH-to-LOW and
LOW-to-HIGH at sunset and sunrise to eliminate any false clock switching.
Schmitt triggers are most commonly available as inverting functions, so two
of them are necessary so that a LOW at the collector will come through as a
LOW at point A.

The LOW at point A during the daylight will hold all the MOD coun-
ters (divide-by-N’s) at zero so that at the beginning of sunset the waveform
at point B will start out LOW and take one full hour before it goes HIGH to
LOW, triggering the first transition at Q. During the nighttime, point B will
oscillate at one pulse per hour, incrementing the counter once each hour. At
sunrise, point A goes LOW, forcing all MODs LOW and disabling the
clock. The counter outputs at Q0 to Q4 will be read by the microcontroller
during the day and then Reset.

10 �.)

CPU

     VCC = Pin 16
GND = Pin 8

D0 D1 D2 D3

MR

CPD

PL

Q0 Q1 Q2 Q3

11 15 1 10 9

14 3 2 6 7

5

4

12

13

TCU

TCD

Figure 56 Logic symbol for the 74192 and 74193 synchronous counter ICs.

Helpful 
Hint

The 74HC192 and
74HC193 are high-speed
CMOS counters. They
function the same but are
faster and use less power.
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There are two separate clock inputs: CpU for counting up, and CpD for count-
ing down. One clock must be held HIGH while counting with the other. The binary
output count is taken from Q0 to Q3, which are the outputs from four internal J-K
flip-flops. The Master Reset (MR) is an active-HIGH Reset for resetting the Q out-
puts to zero.

The counter can be preset by placing any binary value on the parallel data in-
puts (D0 to D3) and then driving the Parallel Load line LOW. The parallel load
operation will change the counter outputs regardless of the conditions of the clock
inputs. 

The Terminal Count Up and Terminal Count Down are normally
HIGH. The is used to indicate that the maximum count is reached and the count
is about to recycle to zero (carry condition). The line goes LOW for the 74193
when the count reaches 15 and the input clock (CpU) goes HIGH to LOW. remains
LOW until CpU returns HIGH. This LOW pulse at can be used as a clock input to
the next-higher-order stage of a multistage counter.

The output for the 74192 is similar, except that it goes LOW at 9 and
LOW CpU (see Figure 57). The Boolean equations for therefore, are as 
follows:

The Terminal Count Down is used to indicate that the minimum count is
reached and the count is about to recycle to the maximum (15 or 9) count (borrow con-
dition). Therefore, goes LOW when the down-count reaches zero and the input
clock (CpD) goes LOW (see Figure 59). The Boolean equation at is

The function table shown in Table 3 can be used to show the four operating
modes (Reset, Load, Count up, and Count down) of the 74192/74193.

The best way to illustrate how these chips operate is to exercise all their functions
and observe the resultant waveforms, as shown in the following examples.

LOW at TCD = Q0 Q1 Q2 Q3 CpD  (74192 and 74193)

TCD

TCD

(TCD)

 LOW at TCU = Q0Q3CpU  (74192)

 LOW at TCU = Q0Q1Q2Q3CpU  (74193)

TCU,
TCU

TCU

TCU

TCU

TCU

(TCD)(TCU)

(PL)

COUNTER CIRCUITS AND VHDL STATE MACHINES

TABLE 3 Function Table for the 74192/74193 Synchronous Counter ICa

Operating
Inputs Outputs

Mode MR CpU CpD D0 D1 D2 D3 Q0 Q1 Q2 Q3

Reset H L L L L L H L
H H L L L L H H

Parallel load L L L L L L L L L L L H L
L L H L L L L L L L L H H
L L L H H H H H H H H L H
L L H H H H H H H H H H H

Count up L H H Count up H H
Count down L H H Count down H H

aH = HIGH voltage level; L = LOW voltage level; * = don’t care; c = LOW@to@HIGH clock transition.

****c

****c

*

*

*

*

******

******

TCDTCUPL
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E X A M P L E  2 3

Draw the input and output timing waveforms for a 74192 that goes through
the following sequence of operation:

1. Reset all outputs to zero.

2. Parallel load a 7 (0111).

3. Count up five counts.

4. Count down five counts.

Solution: The timing waveforms are shown in Figure 57.

0 1 2 3

4 5 6 7

MR

D0

0 7 8 9 0 1 2 1 0 9 8 7

Count downCount up
PresetClear

Sequence
illustrated

PL

D1

D2

D3

CpU

Q0

CpD

Q1

Q2

Q3

TCU

TCD

Outputs

Data

*1

*2

*2

Notes
1. Master Reset (MR) overrides Parallel Load (PL) and Cp inputs.
2. When counting up, count-down input must be HIGH; when counting down,
    count-up input must be HIGH.
3. TC follows the clock during the terminal count.

Don’t care

*3

*3

2

Figure 57 Timing waveforms for the 74192 used in Example 23.

Common
Misconception

Students often mistakenly
draw the LOW at for
the entire terminal count
clock period instead of 
only while the clock is
LOW.

TC
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Solution:

COUNTER CIRCUITS AND VHDL STATE MACHINES

13

Notice that the LOW pulse is only
one half-period wide.

TCD

14 15 0 1 2 1 0 15 14

TCU

Q3

Q2

Q1

Q0

4 5 6CpD

0 1 2 3CpU

PL

Figure 59

E X A M P L E  2 4

Draw the output waveforms for the 74193 shown in Figure 58, given the
waveforms shown in Figure 59. (Initially, set 

and MR = 0.)D3 = 1,
D0 = 1, D1 = 0, D2 = 1,

CPU

D0 D1 D2 D3

MR

CPD

PL

Q0 Q1 Q2 Q3

TCU

TCD

1 0 1 1

Figure 58 Circuit connections for Example 24.

E X A M P L E  2 5

Design a decimal counter that will count from 00 to 99 using two 74192
counters and the necessary drive circuitry for the two-digit display.
(Display circuitry was explained in Section 5.)

Solution: The 74192s can be used to form a multistage counter by con-
necting the of the first counter to the CpU of the second counter. 
will go LOW, then HIGH, when the first counter goes from 9 to 0 (carry).
This LOW-to-HIGH edge can be used as the clock input to the second
stage, as shown in Figure 60.

TCUTCU
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74190/74191 Synchronous Counter ICs
Other forms of synchronous counters are the 74190 and 74191. The 74190 is a BCD
counter (0 to 9), and the 74191 is a 4-bit counter (0 to 15). They have some different
features and input/output pins, as shown in Figure 61.

COUNTER CIRCUITS AND VHDL STATE MACHINES

U/D

D0 D1 D2 D3

CP

PL

Q0 Q1 Q2 Q3

RC

TC

CE

11 15 1 10 9

3 2 6 7

13

12

5

14

4

    VCC = Pin 16
GND = Pin 8

Figure 61 Logic symbol for the 74190/74191 synchronous counters.

The 74190/74191 can be preset to any count by using the Parallel Load
operation. It can count up or down by using the input. With it will
count up, and with it will count down. The Count Enable input is an
active-LOW input used to enable/inhibit the counter. With the counter is
enabled. With the counter stops and holds the current states of the Q0 to Q3
outputs.

The Terminal Count output (TC) is normally LOW, but it goes HIGH when the
counter reaches zero in the count-down mode and 15 (or 9) in the count-up mode. The
ripple clock output follows the input clock (Cp) whenever TC is HIGH. In other
words, in the count-down mode, when zero is reached, will go LOW when Cp goes
LOW. The output can be used as a clock input to the next higher stage of a multi-
stage counter, just the way that the outputs of the 74192/74193 were used. In either
case, however, the multistage counter will not be truly synchronous because of the
small propagation delay from Cp to of each counter.

For a multistage counter to be truly synchronous, the Cp of each stage must be
connected to the same clock input line. The 74190/74191 counters enable you to do
this by using the TC output to inhibit each successive stage from counting until the pre-
vious stage is at its Terminal Count. Figure 62 shows how three 74191s can be con-
nected to form a true 12-bit binary synchronous counter.

In Figure 62, we can see that each counter stage is driven by the same clock,
making it truly synchronous. The second stage is inhibited from counting until the first
stage reaches 15. The second stage will then increment by 1 at the next positive clock
edge. Stage 1 will then inhibit stage 2 via the TC-to- connection while stage 1 is
counting up to 15 again. The same operation between stages 2 and 3 also keeps stage
3 from incrementing until stages 1 and 2 both reach 15.

CE

RC

TC
RC

RC
(RC)

CE = 1,
CE = 0,

(CE)U/D = 1,
U/D = 0,U/D

(PL)

Helpful 
Hint

The 74190- and 74160-
series counters have several
additional features and are
therefore more complicated
to use. If you have a data
book or access to the
Internet, this is a good
opportunity for you to try
to figure out the operation
of the counter by reading
the manufacturer’s
description instead of the
text.
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74160/61/62/63 Synchronous Counter ICs
Finally, another type of counter allows you to perform true synchronous counting
without using external gates, as we had to in Figure 62. The 74160/74161/
74162/74163 synchronous counter ICs have two Count Enable inputs (CEP and
CET ) and a Terminal Count output to facilitate high-speed synchronous counting.
The logic symbol is given in Figure 63. From the logic symbol, we can see that this
counter is similar to the previous synchronous counters, except that it has two active-
HIGH Count Enable inputs (CEP and CET ) and an active-HIGH Terminal Count
(TC) output. (There are other differences between this and other synchronous coun-
ters, but we will leave it up to you to determine those from studying the manufac-
turer’s data sheet on the web.)

COUNTER CIRCUITS AND VHDL STATE MACHINES

CEP

D0 D1 D2 D3

CP

PE

Q0 Q1 Q2 Q3

TCCET

9 3 4 5 6

14 13 12 11

15
7

2

10

     VCC = Pin 16
GND = Pin 8

1 MR

Figure 63 Logic symbol for the 74160/74161/74162/74163 synchronous counter.

Both Count Enables (CEP and CET) must be HIGH to count. The Terminal
Count output (TC) will go HIGH when the highest count is reached. TC will be forced
LOW, however, when CET goes LOW, even though the highest count may be reached.
This is an important feature that enables the multistage counter of Figure 64 to operate
properly.

Review Questions

22. What is the function of the and output pins on the 74193 syn-
chronous counter IC?

23. How do you change the 74190 from an up-counter to a down-counter?

24. The input to the 74190 synchronous counter is the Chip Enable
used to enable/disable the Q-outputs. True or false?

CE

TCDTCU
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9 Applications of Synchronous Counter ICs

The following applications will explain some useful design strategy and circuit opera-
tions using synchronous counter ICs.

COUNTER CIRCUITS AND VHDL STATE MACHINES

E X A M P L E  2 6

Design a counter that will count up 0 to 9, then down 9 to 0, then up 0 to 9
repeatedly using a synchronous counter and various gates.

Solution: Because the count is 0 to 9, a BCD counter will work. Also, we
want to go up, then down, then up, and so on, so it would be easy if we had
a reversible counter like the 74190 and just toggled the terminal each
time the Terminal Count is reached. Figure 65 could be used to implement
this circuit. When power is first applied, the 74190 will be Parallel Loaded
with a 5 (0101), and the direction line will be 1. (The 5 is chosen arbitrarily
because it is somewhere between the Terminal Counts 0 and 9.) The counter
will count down to 0, at which time TC will go HIGH, causing the flip-flop
to toggle and changing the direction to 0. With the clock oscillator still run-
ning, the counter will reverse and start counting up. When 9 is reached, TC
goes HIGH, again changing the direction, and the cycle repeats.

U/D

U/D
D0 D1 D2 D3PL

Q0 Q1 Q2 Q3

RC

TC

CE

1 0 1 0

NC

74190

Output

SD

RD

J

Cp

Cp

K Q

Q

1

1

1
Direction

Clock
oscillator

7414
1 kΩ

+5 V

0.001 μF

LOW-then-HIGH
at power-up

Figure 65 Self-reversing BCD counter (solution to Example 26).

E X A M P L E  2 7

Design and sketch the timing waveforms for a divide-by-9 frequency divider
using a 74193 counter.

Solution: We can use the Parallel Load feature of the 74193 to set the
counter at some initial value and then count down to zero. When we reach
zero, we will have to Parallel Load the counter to its initial value and count
down again, making sure the repetitive cycle repeats once every nine clock
periods. Figure 66 could be used to implement such a circuit. is fed
back into This means that when the Terminal Count is reached, thePL.

TCD
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LOW out of will enable the Parallel Load, making the outputs equal to
the D0 to D3 inputs (1001).

The time waveforms arbitrarily start at 1 and count down. Notice at
zero (Terminal Count) that goes LOW when CpD goes LOW (remember
that a LOW at . As soon as goes LOW, the
outputs return to 9, thus causing to go back HIGH again. Therefore, 
is a narrow pulse just long enough to perform the Parallel Load operation.

The down-counting resumes until zero is reached again, which causes
the Parallel Load of 9 to occur again. The pulse occurs once every ninth
CpD pulse; thus, we have a divide-by-9. (A different duty-cycle divide-by-9
can be obtained from the Q3 or Q2 outputs.) 

TCD

TCDTCD

TCDTCD = Q0 Q1 Q2 Q3 CpD)
TCD

TCD

Figure 66 Circuit design and timing waveforms for a divide-by-9 frequency di-
vider.

Helpful 
Hint

This circuit configuration
works fine as a frequency
divider, but not as a
counter, because the 0
and 9 appear for only
one-half of a period.

E X A M P L E  2 8

Design a divide-by-200 using synchronous counters.

Solution: The number 200 exceeds the maximum count of a single 4-bit
counter. Two 4-bit counters can be cascaded together to form an 8-bit
counter capable of counting 256 states (28

= 256).

Q0

1 0 9 8 7 6 5 4 3 2 1 0 9 8

CpD

Q1

Q2

Q3

TCD

TCD goes LOW once every ninth CpD pulse

TCD goes LOW, forcing
a parallel load, then
immediately returns HIGH.

CpU

D0 D1 D2 D3

MR

CpD

PL

Q0 Q1 Q2 Q3

TCU

TCD

74193
+5 V NC

Clock
oscillator

1 0 0 1

COUNTER CIRCUITS AND VHDL STATE MACHINES
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CpU

D0 D1 D2 D3

MR

PL

Q0 Q1 Q2 Q3

TCU

TCD1

74193
1 NC

Clock
oscillator

0 0 0 1

20 21 22 23

CpU

D0 D1 D2 D3

MR

PL

Q0 Q1 Q2 Q3

TCU

TCD2

74193
NC

0 0 1 1

24 25 26 27

CpD1 CpD2

1

Data input = 11001000 (20010)

Figure 67 8-bit divide-by-200 counter.

E X A M P L E  2 9

Use a 74163 to form a MOD-7 synchronous up-counter. Sketch the timing
waveforms.

Solution: The 74163 has a synchronous Reset feature—that is, a LOW
level at the Master Reset input will Reset all flip-flops (Q0 to Q3) at
the next positive clock edge. Therefore, what we can do is bring the Q1
and Q2 (binary 6) lines into a NAND gate to drive the line LOW when
the count is at 6. The next positive Cp edge would normally increase the
count to 7 but, instead, will Reset the count to 0. The result is a count from
0 to 6, which is a MOD-7.

Remember that with previous MOD-N counters we would look for
the number that was one greater than the last number to be counted, and
when we reached it, we would Reset the count to zero because we went be-
yond the modulus required. That method of resetting after the fact works,
but it lets a short-duration glitch (unwanted state) through to the outputs be-
fore resetting (see Figure 20). With the 74163, using a synchronous Reset,
as shown in Figure 68, we can avoid that problem.

MR
(Cp)

(MR)

The 74193 is a logical choice for a 4-bit counter. We can cascade two
of them together to form an 8-bit down-counter. If we preload with the bi-
nary equivalent of the number 200 and count down to zero, we can use the
borrow output to drive the Parallel Load line LOW to recycle
back to 200. Figure 67 shows the circuit connections to form this 8-bit di-
vide-by-200 counter. The two 74193 counters will start out at some un-
known value and start counting down toward zero. The borrow-out 
line will go LOW when the count reaches zero and CpD2 is LOW. As soon
as goes LOW, a Parallel Load of number 200 takes place, making

go back HIGH again. Therefore, is just a short glitch, and the
number zero will appear at the outputs for just one-half of a clock period,
and the number 200 will appear the other one-half of the same clock pe-
riod. The remainder of the numbers will follow a regular counting se-
quence (199 down to 1), giving us 200 complete clock pulses between the
LOW pulses on If the short glitch on is not wide enough as a
divide-by-200 output, it could be widened to produce any duty cycle with-
out affecting the output frequency by using a one-shot multivibrator pulse
stretcher.

TCD2TCD2.

TCD2TCD2

TCD2

(TCD2)

(PL)(TCD2)
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10 VHDL and LPM Counters

As seen in some of the previous sections, VHDL is an efficient method for designing
counters. In this section we will use VHDL to duplicate many of the counter features
that we’ve used with the fixed-function 7400-series ICs such as Parallel Load, up/down
counting, and Count Enable. We will also learn to use the LPM counters that are avail-
able in the Quartus® II software.

VHDL Up-Counter
Figure 69 gives the VHDL listing for a 4-bit up-counter that also provides asynchro-
nous Reset and Parallel Load. It is designed to function similar to the 74193, featuring
positive-edge clock triggering and asynchronous inputs that override the synchronous
up-counting. The n_pl is an active-LOW Parallel Load that loads the 4-bit counter
with the value input on the pl_data inputs. In the PORT assignments, notice that the
pl_data input and the q output are declared as integers with a RANGE of 0 to 15.
VHDL will automatically allocate a 4-bit data path for both to accommodate values up
to 15 (11112). The IF statements are set up so that if either asynchronous input is ac-
tive it will override the synchronous counting of cp pulses. As you can see, if n_rd is
active then q is reset to 0. If n_pl is active, then q is parallel loaded with pl_data. If nei-
ther are active, then q is incremented at each positive cp pulse.

COUNTER CIRCUITS AND VHDL STATE MACHINES

V
H

D
L

Q0

1Cp

Q1

Q2

Q3

MR

Synchronous
Reset points

2 3 4 5 6 7 8 9 10 11 120

Clock
oscillator

6 0 1 2 3 4 5 6 0 1 2 35

CEP
D0 D1 D2 D3

CP

PE

Q0 Q1 Q2 Q3

TC
CET NC

MR

Vcc (5 V)

Reset occurs at the positive edge
of Cp when this line is LOW.

74163

NC

Figure 68 Using the synchronous Reset on the 74163 to form a glitch-free
MOD-7 up-counter.
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The object of the simulation in Figure 70 is to exercise, or test, all of the operat-
ing features of the counter. It starts out with a reset pulse on n_rd to reset q to zero.
(The q outputs are shown in the waveform as a group having a hexadecimal radix.)
Notice that at each positive cp pulse, q is incremented by 1. This counting continues
until n_pl is asserted LOW near the mark. At that point, the positive clock edge
is overridden and q is parallel loaded with pl_data, which at that point is a hexadeci-
mal 1. The count-up continues from there until the next n_rd pulse at resets q
and then the n_pl pulse at sets q to 4.14.5 ms

8.5 ms

5.5@ms

COUNTER CIRCUITS AND VHDL STATE MACHINES

 4 bit 0000 to 1111

Asynchronous has priority

Positive edge trigger

(a)

Figure 69 A 4-bit up-counter with asynchronous Reset and Parallel Load: (a) VHDL listing;
(b) block symbol file (bsf).

Parallel load 1 Parallel load 4

Reset

Parallel
load

Figure 70 Simulation of the counter of Figure 69.

(b)
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VHDL Up/Down-Counter
With the addition of a few statements, we can include a Count Enable feature and provide
up/down direction control so that our counter functions like a 74191 IC counter. Figure 71
shows the VHDL program to accomplish this. We need to include two new control bits
called n_ce for “count enable” and u_d for up/down control. Notice in the architecture sec-
tion that if u_d is 0 then q is incremented (counts up), ELSE q is decremented. However,
neither operation is performed unless the active-LOW n_ce count enable is 0.

Since this program has so many IF-ELSE and ELSIF statements, it is important
to draw a flowchart to map out all of the branching that takes place (see Figure 72). The
first and second diamond-shaped decision boxes show that if either asynchronous op-
eration is performed, then control bypasses the synchronous check for a clock pulse
and instead passes to the END IF and then the END PROCESS. If both asynchronous
operations are NO, then the process checks for a positive cp edge, then a LOW n_ce,
then the level of u_d.

The simulation in Figure 73 was carefully developed to ensure that all of the
counter’s features were tested. The Reset and Parallel Load operations are similar to
the last counter, but the Count Enable and up/down control show the additional flexi-
bility of the logic implementation. Notice that for the first q is counting up be-
cause u_d is LOW (except for the parallel-load at . From to it
counts down (except for the Reset and Parallel-Load operations). The counting is dis-
abled with a HIGH on n_ce from to During that span of time, q re-
mains at 0 even though two positive clock edges occur.

12.75 ms.11.25 ms

16 ms7 ms4.25 ms)
7 ms,
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Clock enable

Asynchronous

Up/down control

(a)

Figure 71 A 4-bit up/down-counter with asynchronous Reset, Parallel Load, and Clock
Enable: (a) VHDL listing; (b) block symbol file (bsf ).

(b)
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q < = q – 1
Down

n_rd = 0
AND

n_pl = 1
?

IF
Yes

No

Yes

No

END IF

END PROCESS

PROCESS (cp, n_rd, n_pl)

q < = pl_data

q < = 0

ELSIF

Yes

No

ELSIF      cp
?

Yes

No q < = q + 1

IF u_d = 0
?

Yes

No

IF n_ce = 0
?

END IF

END IF

n_rd = 1
AND

n_pl = 0
?

parallel-
load

Reset

Up

Figure 72 Flowchart for the counter of Figure 71.

Reset

Parallel load

Clock

Clock enable

Up/down Up Down

Disable clock

Figure 73 Simulation of the counter of Figure 71.
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LPM Counter
The Library of Parameterized Modules has a predefined counter called LPM_COUNTER.
This gives us the maximum in flexibility by providing several asynchronous and syn-
chronous inputs as well as allowing us to specify the bus width and counter modulus.
The LPM_COUNTER symbol is inserted in a blank bdf screen and the MegaWizard is
used to define the I/O ports and counter definitions.

Figure 74 shows an LPM Mod-10 up/down-counter defined by the MegaWizard
with an asynchronous Set and Clear and a Count Enable. By reading the Help menu, it is
determined that port updown must be HIGH to count up and cnt_en must be HIGH to
enable the count. Asynchronous set and clear (aset and aclr) are both active-HIGH. The
value for aset contains the data value that will be loaded into the counter when aset is
asserted HIGH. This example is set up as a MOD-10 so the bus width was assigned a
value of 4 to accommodate the highest count, which will be 9(10012).

A simulation was developed in Figure 75 to exercise all of the features that are 
used in Figure 74. A HIGH pulse on aclr initially resets q to 0. The outputs then count up

COUNTER CIRCUITS AND VHDL STATE MACHINES

Figure 74 LPM up/down-counter with an asynchronous Set and Clear and a Count Enable.

Asynchronous Reset

Asynchronous Set q = 7

mod-10

Up Down

Figure 75 Waveform simulation of the LPM counter of Figure 74.
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at each positive pulse until aset is asserted HIGH at loading the number 7 into
the counter. As the count continues past 9, it rolls over to 0 because the modulus is set
to 10 (0 through 9). It continues to count up until updown goes LOW at 
reversing the count. Down-counting continues until cnt_en goes LOW at dis-
abling the count.

11 Implementing State Machines in VHDL

Many processes in digital electronics follow a predefined sequence of steps initiated by
a series of clock pulses. These processes can be driven by a single clock input and have
one or more outputs that respond in a particular order at each clock input pulse. Besides
the clock trigger, these processes often have other external stimuli that have an effect on
the state of the outputs. This sequence of events can be implemented in a logic system
called a state machine. The outputs of a state machine follow a predictable sequence,
triggered by a clock and other input stimulus.

State Machine for a Gray Code Sequencer
State machines can be implemented in VHDL by defining the correct sequence of
output states and then stepping through the states in a numerical order or in an or-
der dictated by the level of one or more control inputs. A simple illustration of a
state machine is for the implementation of a Gray code sequencer. You may recall
the Gray code was introduced as a means to encode positions on a rotating wheel in
such a way that as the wheel moves from one coded position to the next, only one
bit in the code changes. Table 4 shows the Gray code in a 3-bit system having eight
unique positions. Notice the order does not follow the same pattern as a binary
counter, so conventional coding schemes will not work. Think of the chart as hav-
ing eight states. State 0 (s0) is 000, state 1 (s1) is 001, state 2 (s2) is 011, and so on
as shown in Table 4.

14 ms,
8 ms,

4 ms,

COUNTER CIRCUITS AND VHDL STATE MACHINES

TABLE 4 3-Bit Gray Code Chart

State Gray Code

s0 000
s1 001
s2 011
s3 010
s4 110
s5 111
s6 101
s7 100

The VHDL program to implement a Gray code counter is shown in Figure 76.
The only input is clk, which is used to trigger each state change in the q outputs. The
outputs at q are a 3-bit vector, which will represent the Gray code from Table 4. The
main function of the state machine is to change from one state to the next as an input
trigger (clk in this case) is applied.

In this program, the states are given the names s0 through s7 in the TYPE state-
ment. This statement defines state_type as a new data type having the values s0, s1, s2,
s3, s4, s5, s6, and s7. This is called an enumeration type because it is a type whose
allowable values are all user-defined. The next program statement defines an internal
SIGNAL called state, which is declared as having the data type state_type that we just
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defined. (Notice the use of the colon preceding state_type. This is the same syntax that
we have been using to declare other types like std_logic or integer.) Later in the pro-
gram we will be assigning the data values s0 through s7 to the signal names state.

In the PROCESS loop, the CASE statement is executed after each positive
clock edge. The case assignments are made in such a way that if the present state is
s0 then the next state is s1, and so on. This has the effect of making the signal state
step to the next state at each positive clock edge. Notice that when the present state
is s7, then the next state is s0, which will cause state to cycle back to the beginning
of the sequence.

After each state has been assigned by the CASE assignment group, then a se-
lected signal assignment is used to output the correct Gray code to q based on the value
of state. For example, if state is s2, then q receives “011”; if state is s3, then q receives
“010”; and so on.

Figure 77 shows a simulation of the program. Notice that at each positive clock
edge, the q-outputs sequence to the next Gray code.

State Machine for a Stepper Motor

COUNTER CIRCUITS AND VHDL STATE MACHINES

Assign binary to q
based on value
of state.

Increment state
to next state.

Defines a new
data type having
the allowable
values s0-s7.

(a)

Figure 76 A Gray code counter: (a) VHDL listing; (b) block symbol file (bsf ).

(b)

Another common use for state machine design is for creating the logic circuitry to 
control stepper motors. Stepper motors are commonly found in computer disk 
drives and robotic mechanisms. Basically a stepper motor takes small 
angular “steps” based on the binary code output to it. Table 5 shows the binary codes
used to drive a stepper motor clockwise and counterclockwise. 
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For example, to step clockwise, the binary codes sent to the stepper will be 0001-0010-
0100-1000-0001-, and so on.

In state machine design we need to refer to the states as present-state and next-
state. For example, if counterclockwise rotation is desired and if the present state is s0,
then the next state is s1. If the present state is s1, then the next state is s2, and so on.
Table 6 lists the order of the states for the stepper motor.

Figure 78 provides a state diagram to show the state changes for the stepper mo-
tor sequencer. The direction control input is named dir. As you can see, when dir is
HIGH, the states sequence from s0 to s1 to s2 to s3 to s0, and so on. This will be a

Figure 77 Simulation of the Gray code counter of Figure 76.

TABLE 5 Binary Codes for Clockwise
and Counterclockwise
Stepper Motor Rotation

CW CCW

0001 (s0) 1000 (s3)
0010 (s1) 0100 (s2)
0100 (s2) 0010 (s1)
1000 (s3) 0001 (s0)
0001 (s0) 1000 (s3)
Etc. Etc.

TABLE 6 State Changes for Clockwise and Counterclockwise
Stepper Motor Rotation

Clockwise rotation Counterclockwise rotation

Present state Next state Present state Next state

s0 s1 s3 s2
s1 s2 s2 s1
s2 s3 s1 s0
s3 s0 s0 s3
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clockwise rotation as defined in Tables 5 and 6. With the direction will be
counterclockwise.

Figure 79 shows the VHDL program to implement a 4-bit stepper motor se-
quencer with direction control. The inputs are clk and dir and the output is a 4-bit vec-
tor named q. The state_type is defined with four values: s0, s1, s2, and s3. The internal

dir = 0

S0

0001
Transition arrow

State name

S2

0100

S3

1000

S1

0010 State output
value

dir = 1dir = 1

dir = 1dir = 1

Control input

dir = 0dir = 0

dir = 0dir = 0

Figure 78 State diagram for a stepper motor sequencer with direction control.

states increment

states decrement

(a)

Figure 79 State machine for a stepper motor sequencer with direction control: 
(a) VHDL listing; (b) block symbol file (bsf ).

(b)
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signal, state is declared as TYPE state_type and will be assigned values in the CASE
assignment group. The input dir is used to determine which group of CASE assign-
ments are made (i.e., the ones for clockwise rotation or counterclockwise rotation).
Keep in mind that the PROCESS loop is only executed if there is a logic level change
in clk because that is the only value provided in the sensitivity list. Once inside the
PROCESS loop, the first IF statement checks for a positive clk edge. If there is a posi-
tive edge, one of the eight possible CASE assignments will be executed and then con-
trol passes out of the PROCESS loop. The selected signal assignment then uses the
value of state to assign the next-state binary value to the q output vector.

Figure 80 shows a simulation of the stepper motor sequence sent to the q outputs.
Notice that the individual HIGH travels from q0 to q1 to q2 to q3 repeatedly until dir
is LOW, at which time the direction reverses.

clockwise counter-clockwise

Figure 80 Simulation of the stepper motor sequencer program of Figure 79.

State Machines with Multiple Control Inputs
Most computer peripherals require several control inputs and outputs to communicate
with the computer’s microprocessor. These handshaking signals ensure that data trans-
fer between the device and the microprocessor goes smoothly without interfering with
other devices. Typical control signal names are read, write, ready-to-receive, ready-to-
transmit, buffer-full, end-of-transmit, and parity-error. A common solution to these
complex timing and handshaking control signals is to implement a state machine in a
CPLD.

An example of a device that has to handshake with a microprocessor is an analog-
to-digital converter (ADC). To develop a state machine solution to the ADC interface
controller we need to know the basic operation of the ADC. We’ll use the 8-bit ADC in
Figure 81 for this example. The object is to input an analog voltage to the ADC and have
it determine what its 8-bit binary equivalent is. To complete this conversion, the follow-
ing steps must be performed:

1. The microprocessor must issue a “trigger” (t) to the ADC controller (an FPGA)
to start the process.

2. Upon receiving the trigger, the controller will issue a “start-convert” (sc)
pulse to the ADC.
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3. The ADC will read the analog input voltage and begin a process called “suc-
cessive approximation” to determine the binary equivalent of that analog
value.

4. When the ADC has completed its successive approximation, it will issue a
“data-ready” (dr) pulse to the controller.

5. Upon receiving the data-ready pulse, the controller will issue an “output
enable” (oe) pulse to the ADC enabling the ADC to transmit its 8-bit result
to the data bus. This completes the process.

The sequential process of the controller is illustrated in the state diagram of
Figure 82. This diagram shows four states: idle, start, waiting, and read. Before the
process begins and after the process is complete, the controller is in the idle state with

and The loop outside of the idle state indicates that the process flow
stays in that state as long as This means that it stays in the idle state as long
as the trigger (t) is 0 (dr is a don’t-care). The transition arrow leaving the idle state
indicates that the process moves to the start state when the trigger is applied as spec-
ified by is still a don’t-care). The start state issues the following
outputs: and (The HIGH on sc performs a “start-conversion” in the
ADC.)

The transition out of the start state specifies This is called an
unconditional transition because both inputs are don’t-cares. The process moves to
the next state called waiting. The waiting state resets sc to 0 and keeps oe at 0. Since
the external loop on this state says then the process remains here as long as

(It is waiting for the ADC to issue a HIGH data-ready signal.)
As soon as the ADC completes its analog conversion, it outputs a HIGH on dr.

According to the state diagram, as soon as the process transitions to the read
state. The read state issues a HIGH on oe (allowing the ADC to output its binary data
to the data bus) and then does an unconditional transition back to the idle state, where
it remains until another trigger is applied.

dr = 1

dr = 0.
t,dr = x,0

(t,dr = x,x).

oe = 0.sc = 1
t,dr = 1,x (t = 1, dr

t,dr = 0,x.
oe = 0.sc = 0

tclk

d0

d7

clk

d0

d7

A

dr
sc
oe

Microprocessor

clk

t

dr
sc
oe

ADCCPLD

Analog input

clk

8-Bit data bus

8-Bit digital
output

clk = System clock
t = Trigger

dr = Data ready
sc = Start conversion
oe = Output enable

Figure 81 Block diagram of the state machine implementation of an ADC controller.
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The VHDL program to implement this state machine is given in Figure 83. The
CASE statement passes control to one of the four different states: idle, start, waiting,
or read. The program logic is coded to match the state diagram exactly. For example,
WHEN in the idle case, IF t is 0 then the state remains idle, and sc and oe are set to 0.
ELSIF t is 1 (trigger applied) THEN the state is changed to start and sc is set to 1, start-
ing the ADC conversion.

After any CASE assignments are made, program control passes to the END
CASE, END IF, END PROCESS statements and awaits the next active edge of clk. As
you can see, the CASE assignments for the start state and the read state are uncondi-
tional (no IF clause) and each changes the state to the next state name. The waiting
state checks the status of dr and sets oe to 1 if dr is 1. (This means that the outputs are
enabled if the data is ready.)

The simulation file for the ADC controller is shown in Figure 84. It shows that
the ADC controller is triggered at the mark and again at the mark. When t
is HIGH and the first positive clock edge arrives at sc goes HIGH and the state
changes to state 1 (start). At the next positive clock edge there is an unconditional
change to state 2 (waiting). The process now waits for the data ready (dr) to go HIGH,
which it does at the mark. When dr is HIGH and the first positive clock edge ar-
rives at oe goes HIGH and the state changes to state 3 (read). Now the system
has completed one complete analog-to-digital conversion and the microprocessor has
received the 8-bit binary result via the data bus. At the next clock edge, the state
changes to state 0 (idle), where it remains until the next trigger is applied at 9 ms.

5.5@ms,
5 ms

1.5 ms,
9@ms1@ms
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idle
sc = 0
oe = 0

transition to
next state
when t = 1

start
conversion

t, dr = x, 1 t, dr = x, x

t, dr = x, x t, dr = 1, x

waiting
sc = 0
oe = 0

start
sc = 1
oe = 0

read
sc = 0
oe = 1

unconditional
transition

t, dr = 0, x

t, dr = x, 0

idle while t = 0

waiting while dr = 0

enable output of
ADC so μp can
read data

Figure 82 State diagram of the ADC controller process.
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Stay in idle until t = 1

Move to start
and set sc = 1

Stay in waiting
 until dr = 1

Move to read
and set oe = 1

Unconditional state
change to waiting

Unconditional state
change to idle

(a)

Figure 83 State machine implementation of an ADC controller: (a) VHDL listing; (b) block symbol file (bsf).

(b)
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idle waiting

start read

Figure 84 Simulation file for the ADC controller.

E X A M P L E  3 0

The handshaking and interface requirements of an automated teller ma-
chine (ATM) are often fulfilled by implementing a state machine in an
FPGA. Figure 85 shows the block diagram of the interconnections between
an ATM, an FPGA controller, and a thermal printer.

tclk

clk

ATM

clk

PrinterFPGA

clk

Data bus

clk = System clock
q = Query to print
t = Transmit data
r = Ready to receive
b = Buffer full

r

b

s

q

t

q

r

b

s

s = Self test

8

Figure 85 Block diagram of an ATM-thermal printer interface.
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idle

ts = 00

qrb = 0xx

Transmit data to printer
while qrb = 110

transmit

ts = 10

waiting

ts = 00

self test

ts = 01

qrb = 110

qrb = 0xx qrb = 1xx

qrb = 111 qrb = 11x

qrb = 111 qrb = 10x
qrb = 10x

qrb = 110

qrb = 0xx

qrb = 10x

qrb = 0xx

Idle until query is asserted

Printer self test
will issue HIGH
r when ready

Wait for buffer
to clear

Figure 86 State diagram for the ATM-thermal printer interface.

The order of operation is as follows:

1. When the ATM has information to print, it makes the Query (q) line HIGH.

2. When the FPGA controller sees a HIGH q, it issues a HIGH Self-Test
(s) to have the printer perform a self-test of its print mechanism.

3. When the self-test completes successfully, the printer returns a HIGH
on Ready-to-Receive (r).

4. With r HIGH the controller issues a HIGH on Transmit-Data (t), which
tells the ATM system to send the 8-bit parallel data to the printer. The
ATM continues to hold q HIGH as long as there are data to print. When
the stream of data on the data bus ends, the printer issues a LOW on r.

5. The printer has a Buffer-Full (b) signal that signifies that it has re-
ceived too much data in its internal holding buffer and has to catch up
on its printing duties before it can accept any more data. In this case,
the ATM must wait until b goes back LOW before continuing to print.

6. While waiting for the buffer to clear, or while transmitting data, if r
goes LOW, signifying that the printer is NOT Ready-to-Receive, the
controller must return to the self-test state and postpone printing until
r goes back HIGH.

Assignment:

(a) Draw a state diagram of the flow between the four states: idle, selftest,
transmit, and waiting.

(b) Write the VHDL to implement the design.

(c) Create a simulation file that tests the normal sequence of printing and
then a printing sequence that is interrupted by a Buffer-Full and then a
LOW Ready-to-Receive.

Solution: The state diagram is in Figure 86, the VHDL program is in
Figure 87, and its simulation is shown in Figure 88.
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Idle until
q = 1

Continue selftest
until r = 1

Return to idle
if q goes LOW

Return to idle
if q goes LOW

Return to selftest
if r goes LOW

Transmit data
while b = 0

Go to waiting
if b goes HIGH

Return to idle
if q goes LOW

Return to selftest
if r goes LOW

Return to transmit
if buffer clears

Keep waiting
until buffer clears

(a)

Figure 87 The ATM-thermal printer interface: (a) VHDL listing; (b) block symbol file (bsf ).

(b)
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Summary

In this chapter, we have learned that

1. Toggle flip-flops can be cascaded end to end to form ripple counters.

2. Ripple counters cannot be used in high-speed circuits because of the
problem they have with the accumulation of propagation delay through all
the flip-flops.

3. A down-counter can be built by taking the outputs from the ’s of a rip-
ple counter.

4. Any modulus (or divide-by) counter can be formed by resetting the ba-
sic ripple counter when a specific count is reached.

5. A glitch is a short-duration pulse that may appear on some of the output
bits of a counter.

6. Ripple counter ICs such as the 7490, 7492, and 7493 have four flip-
flops integrated into a single package providing 4-bit counter operations.

7. Four-bit counter ICs can be cascaded end to end to form counters with
higher than MOD-16 capability.

8. Seven-segment LED displays choose between seven separate LEDs
(plus a decimal point LED) to form the 10 decimal digits. They are con-
structed with either the anodes or the cathodes connected to a common pin.

9. LED displays require a decoder/driver IC such as the 7447 to decode
BCD data into a seven-bit code to activate the appropriate segments to illu-
minate the correct digit.

Q

Figure 88 Simulation of the ATM-thermal printer interface.

idle selftest transmit
selftest

transmit
waiting

transmit idle selftest transmit
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10. Synchronous counters eliminate the problem of accumulated propaga-
tion delay associated with ripple counters by driving all four flip-flops with
a common clock.

11. The 74192 and 74193 are 4-bit synchronous counter ICs. They have a
count-up/count-down feature and can accept a 4-bit parallel load of binary
data.

12. The 74190 and 74191 synchronous counter ICs are similar to the
74192/74193, except they are better for constructing multistage counters of
more than 4 bits. The 74160 series goes one step further and allows for
truly synchronous high-speed multistage counting.

13. VHDL can be used to implement MOD-N counters.

14. A seven-segment decoder can be effectively described in VHDL.

15. The Library of Parameterized Modules provides an LPM counter that
can be customized to perform many counting tasks.

16. State machines can be implemented in VHDL.

Glossary

Asynchronous Counter: See ripple counter.

Cascade: In multistage systems, when the output of one stage is fed directly into the
input of the next.

Common-Anode LED: A seven-segment LED display whose LED anodes are all
connected to a common point and supplied with Each LED seg-
ment is then turned on by supplying a LOW level (via a limiting resistor) to
the appropriate LED cathode.

Divide-by-N: The Q outputs in counter operations will oscillate at a frequency that is
at some multiple (N) of the input clock frequency. For example, in a divide-
by-8 (MOD-8) counter the output frequency of the highest-order Q (Q2) is
one-eighth the frequency of the input clock.

Enumeration Type: In VLDL, this is a data type whose allowable values are all user-
defined.

Glitch: A short-duration-level change in a digital circuit.

Liquid-Crystal Display (LCD): A low-power display technology that creates an im-
age by selectively making sections of its crystalline structure either opaque
or transparent to incident light. This forms dark and light segments that to-
gether create alphanumeric images.

Modulus: In a digital counter, the modulus is the number of different counter steps.

Next State: In a state machine, this is the next state to be performed in the process.

Oscillate: Change digital states repeatedly (HIGH–LOW–HIGH–LOW–, and so on).

+ 5 V.
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Parallel Load: A feature on some counters that allows you to load all 4 bits of a
counter at the same time, asynchronously.

Phototransistor: A transistor whose collector-to-emitter current and resistance vary
depending on the amount of light shining on its base junction.

Present State: In a state machine, this is the current state in the process.

Ripple Blanking: A feature supplied with display decoders to enable the suppression
of leading and trailing zeros.

Ripple Counter: Asynchronous counter. A multibit counter whose clock input trig-
ger is not connected to each flip-flop but, instead, has to propagate through
each flip-flop to reach the input of the next. The fact that the clock has to
“ripple” through from stage to stage tends to decrease the maximum oper-
ational frequency of the ripple counter.

Sequential: Operations that follow a predetermined sequence of digital states trig-
gered by a timing pulse or clock.

Seven-Segment LED: Seven light-emitting diodes fabricated in a single package. By
energizing various combinations of LED segments, the 10 decimal digits
can be displayed.

Skewed: A skewed waveform or pulse is one that is offset to the right or left with re-
spect to the time axis.

State Diagram: A drawing that shows the logic levels in a sequential circuit after
each trigger event.

State Machine: A logic system whose outputs follow a predictable sequence, trig-
gered by a clock and other input stimulus.

Synchronous Counter: A multibit counter whose clock input trigger is connected to
each flip-flop so that each flip-flop will operate in step with the same input
clock transition.

Terminal Count: The highest (or lowest) count in a multibit counting sequence.

Transition Arrow: In a state machine, this arrow points to the next state to be performed.

Unconditional Transition: In a state machine, this transition is made regardless of
any input conditions.

Up/Down-Counter: A counter that is capable of counting up or counting down.

Problems

Section 1
1. How are sequential logic circuits different from combinational logic
gate circuits?

2. The waveforms shown in Figure P2 are applied to the inputs at A,
and Cp. Sketch the resultant waveforms at D, Q, and X.Q,

RD,
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Cp 0 1 2 3 4 5 6

RD

A

Figure P3
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SD

RD

D

Cp

Q

Q
X

RD

Q

Cp

Q

A
X

1

7474

Cp 0 1 2 3 4 5 6

RD

A

D

Q

Q

X

Figure P2

3. Change the OR gate to a NAND and repeat Problem 2 for the input
waveforms shown in Figure P3.

4. The waveforms shown in Figure P4 are applied to the inputs at A,
and Sketch the resultant waveforms at J, K, Q, and 

5. Repeat Problem 4 for the input waveforms shown in Figure P5.

Q.RD.
Cp,
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Cp 0

RD

A

1 2 3 4 5 6 7 8 9

SD

RD

J

Cp

Q

Q

RD

Cp

A

1

74LS76

K

Figure P4

Cp 0

RD

A

1 2 3 4 5 6 7 8 9

Figure P5

Section 2
6. What is the modulus of a counter whose output counts from

(a) 0 to 7? (b) 0 to 18? (c) 5 to 0?
(d) 10 to 0? (e) 2 to 15? (f ) 7 to 3?

7. How may J-K flip-flops are required to construct the following coun-
ters?

(a) MOD-7 (b) MOD-8 (c) MOD-2

(d) MOD-20 (e) MOD-33 (f ) MOD-15

8. If the input frequency to a 6-bit counter is 10 MHz, what is the fre-
quency at the following output terminals?

(a) 20 (b) 21 (c) 22 (d) 23 (e) 24 (f) 25

9. Draw the timing waveforms at 20, 21, and 22 for a 3-bit binary up-
counter for 10 clock pulses.

10. Repeat Problem 9 for a binary down-counter.

11. What is the highest binary number that can be counted using the fol-
lowing number of flip-flops?

(a) 2 (b) 4 (c) 7 (d) 1

Cp,
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Section 3
12. In a 5-bit counter, the frequency at the following output terminals is
what fraction of the input clock frequency?

(a) 20 (b) 21 (c) 22 (d) 23 (e) 24

13. How many flip-flops are required to form the following divide-by-N
frequency dividers?

(a) Divide-by-4 (b) Divide-by-15

(c) Divide-by-12 (d) Divide-by-18

14. Explain why the propagation delay of a flip-flop affects the maximum
frequency at which a ripple counter can operate.

15. Sketch the 20, 21, and 22 output waveforms for the counter shown
in Figure P15. (Assume that flip-flops are initially Reset.)

Cp,

J

Cp

Q

Q

Cp

K

1

1

20

J

Cp

Q

Q

K

1

1

22

J

Cp

Q

Q

K

1

1

21

Figure P15
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16. Is the counter of Problem 15 an up- or down-counter, and is it a MOD-
8 or MOD-16?

17. Sketch the connections to a 3-bit ripple up-counter that can be used as
a divide-by-6 frequency divider.

18. Design a circuit that will convert a 2-MHz input frequency into a 0.4-
MHz output frequency.

19. Design and sketch a MOD-11 ripple up-counter that can be manually
Reset by an external push button.

20. Design and sketch a MOD-5 ripple down-counter with a manual Reset
push button. (The count sequence should be 7–6–5–4–3–7–6–5–, and so
on.)

21. Repeat Problem 20 for a count sequence of 10–9–8–7–6–10–
9–8–, and so on.

22. Design a MOD-4 ripple up-counter that counts in the sequence
10–11–12–13–10–11–12–, and so on.

23. Redesign the Reset circuitry of Figure 21 using a 7401 open-collector
NAND and an active-LOW push button with a pull-up resistor. (Use
no other gates.)

24. When you test your design for Problem 23, it works fine until you de-
press the push button. After that, it becomes a MOD-8 counter. When you
check the ICs, you find that a 7400 was used instead of the 7401. What
caused the MOD-6 counter to turn into a MOD-8?

10@k�

C

D

D

DC

DC

DC

D

T

C

C
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25. The circuit in Figure P25 is being considered as a replacement for the
Reset circuitry of Figure 21. Do you think that it will work? Why?

COUNTER CIRCUITS AND VHDL STATE MACHINES

10 kΩ

+5 V

Manual
Reset

To RD’s

21 22

Figure P25

Section 4
26. Describe the major differences among the 7490, 7492, and the 7493
TTL ICs.

27. Assume that you have one 7490 and one 7492. Show the external con-
nections that are required to form a divide-by-24.

28. Repeat Problem 27 using two 7492s to form a divide-by-36.

29. Using as many 7492s and 7490s as you need, sketch the external con-
nections required to divide a 60-pps clock down to one pulse per day.

30. Make the necessary external connections to a 7493 to form a MOD-10
counter.

Section 5
31. Design a ripple counter circuit that will flash an LED ON for 40 ms
and OFF for 20 ms (assume that a 100-Hz clock oscillator is available).
(Hint: Study the output waveforms from a MOD-6 counter.)

32. Design a circuit that will turn on an LED 6 s after you press a momen-
tary push button. (Assume that a 60-pps clock is available.)

33. What modification to the egg timer circuit of Figure 43 could be made
to allow you to turn off the buzzer without shutting off the power?

Section 6
34. Calculate the size of the series current-limiting resistor that could be
used in Figure 45 to limit the LED current to 15 mA instead of 10 mA.

35. In Figure 48, instead of using a resistor dip network, some designers
use a single limiting resistor in series with the 5-V supply and connect the
7447 outputs directly to the LED inputs to save money. It works, but the
display does not look as good. Can you explain why?

Section 7
36. What advantage does a synchronous counter have over a ripple
counter?

DC

D

DC

T
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37. Sketch the waveforms at 20, 21, and 22 for 10 clock pulses for the
3-bit synchronous counter shown in Figure P37.

Cp,
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Figure P37

38. The duty cycle of a square wave is defined as the time the wave is
HIGH, divided by the total time for one period. From the waveforms that
you sketched for Problem 37, find the duty cycle for the 22 output wave.

Sections 8 and 9
39. Sketch the timing waveforms at Q0, Q1, Q2, and Q3 for the
74192 counter shown in Figure P39.

TCU,TCD,C
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40. Sketch the timing waveforms at TC, Q0, Q1, Q2, and Q3 for the
74191 counter shown in Figure P40.

RC,
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Figure P40

41. Make all the necessary pin connections to a 74193 without 
using external gating to form a divide-by-4 frequency divider. Make it an
up-counter, and show the waveforms at and 

42. Using the synchronous Reset feature of the 74163 counter, make the
necessary connections to form a glitch-free MOD-12 up-counter.

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic
diagrams.

43. The 74161s in the Watchdog Timer schematic are used to form an 8-bit
counter.

(a) Which is the HIGH-order and which is the LOW-order counter?

(b) Is the parallel-load feature being used on these counters?

(c) How are the counters reset in this circuit?

44. On a separate piece of paper, redesign the counter section of the
Watchdog Timer schematic by replacing the 74161s with 74193s.

45. The 68HC11 microcontroller in the HC11D0 master board schematic
provides a clock output signal at the pin labeled E. This clock signal is used

Q3.CpU, TCU, Q0, Q1, Q2,

C

DC

DC

S

DS

CS D
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as the input to the LCD controller, M1 (grid location E-7). The frequency
of this signal is 9.8304 MHz, as dictated by the crystal on the 68HC11. To
experiment with different clock speeds on the LCD controller, you want to
divide that frequency by 2, 4, 8, and 16 before inputting it to pins 6 and 10.
Design a circuit using a 4-bit counter IC connected as a frequency divider
and a multiplexer IC to select which counter output is sent to the LCD con-
troller for its clock signal.

MultiSIM® Exercises

E1. Load the circuit file for Section 2a. This is a 4-bit binary counter.
Press P several times to observe the counting action.

(a) Which is the least-significant output?

(b) Connect the seven-segment display to the binary output lines. List the
digits that appear on the display as you press P repeatedly.

E2. Load the circuit file for Section 2b. This is a 4-bit binary counter.
Press P several times to observe the counting action. There seems to be a
problem. Any ideas? Fix the fault, and test your fix.

E3. Load the circuit file for Section 2c. This is a 4-bit binary counter.
Press P several times to observe the counting action. There seems to be a
problem. Any ideas? Fix the fault, and test your fix.

E4. Load the circuit file for Section 2d. The output of this 4-bit binary
counter can be observed on the Logic Analyzer (LA). The Word Generator
is used to perform an initial reset then apply clock pulses to the first flip-
flop.

(a) Is the count incremented on each negative or positive edge of Cp ?

(b) Besides Cp , which waveform has the highest frequency?

(c) What is the modulus of this counter?

E5. Load the circuit file for Section 2e. (RO1, RO2 are the same as MR1,
MR2)

(a) What is the modulus of this counter?

(b) What modification must be made to make it a MOD-12? Try it.

(c) You can’t see it on the Logic Analyzer, but one of the lines of your
Mod-12 will have a short-duration glitch on it. Which one will it be?
(It can be observed with the oscilloscope if you increase the Word
Generator frequency to 1 MHZ.)

E6. Load the circuit file for Section 4a. This counter is driven by a two
pulse-per-second clock.

(a) What is the modulus of this counter circuit?

(b) What modification needs to be done to form a Mod-12?

(c) What modification needs to be done to form a Mod-13? Try them.

E7. Load the circuit file for Section 4b.

(a) Design and make the connections necessary to form a 00 to 99
counter using two 7490s and two seven-segment displays.

(b) Make a modification to your circuit that will provide a “fast-forward”
feature that will change the count speed from 1 PPS to 10 PPS by
throwing a switch. (Limit yourself to a single clock input source for
your circuit.)

¿

¿
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(c) Make another modification to your circuit to “stop the count” when it
reaches a specific number, let’s say 23.

E8. Load the circuit file for Section 4c. Design a circuit to demonstrate
on a dual-trace oscilloscope the divide-by-6 capability of a 7492.

E9. Load the circuit file for Section 8a. The Word Generator is used to in-
ject signals into the 74192 up/down-counter. On a piece of paper, carefully
sketch the four waveforms MR, PL, Cpu, and Cpd, and then sketch what
you think Qa, Qb, Qc, Qd, and will look like. Check your an-
swer by connecting those six outputs to the Logic Analyzer.

FPGA Problems

C1. The VHDL program in Figure 16 is the implementation of a MOD-16
up-counter. Start a new project and load the files mod16up.vhd and

(a) Zoom the simulation display to determine the propagation delay from
n_cp to q0.

(b) Add a reset pulse (n_rd) to the simulation at and rerun the
simulation.

(c) Change the counter to a down-counter and rerun the simulation.

(d) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the down-counting operation and the asynchronous reset.
Use a debounced switch for n_cp. (The DE2 board has debounced push
buttons.)

C2. The VHDL program in Figure 27 is the implementation of a MOD-10
up-counter.

(a) Make the necessary changes to make it a positive edge-triggered
MOD-12 up-counter. Save this program as prob_c12_2.vhd.

(b) Test its operation by creating waveform simulations that demonstrate
its up-counting and asynchronous reset operations.

(c) Zoom in on the q2 waveform to determine the width of its glitch.

(d) Download your design to an FPGA IC. Discuss your observations of
the q output LEDs with your instructor as you demonstrate the up-
counting operation and the asynchronous reset. Use a debounced switch
for n_cp. (The DE2 board has debounced push buttons.)

C3. Modify Problem C2 to eliminate the glitch on the q2 waveform. (Hint:
see Example 12.) Save this program as prob_c12_3.vhd. Demonstrate its
glitch-free operation by creating simulation waveforms.

C4. The VHDL program in Figure 51 is a seven-segment decoder for com-
mon-anode displays.

(a) What changes need to be made to make it able to drive a common-
cathode display?

(b) Make the changes specified in part (a) and run a simulation to
demonstrate its operation.

5.0 ms

Tcu¿Tcd¿,
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mod16up.vwf from the text companion website. Save these files with the
new names prob_c12_1.vhd and prob_c12_1.vwf. Compile and simulate
this program. (Remember, the Entity name must be changed to the new
name in all three locations before attempting to compile.)
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(c) Add a new input to the decoder called ca_cc. When this line is HIGH,
perform decoding for a common-anode display, and when it is LOW,
perform decoding for a common-cathode display. Create a simulation file
to demonstrate its operation.

C5. Figure 69 is a 4-bit up-counter with asynchronous Reset and Parallel
Load features. Modify its simulation file to perform the following opera-
tions:

(a) Reset, then count up four pulses.

(b) Parallel Load an 8, and then count up four more pulses.

(c) Reset, then count up five more pulses.

(d) Parallel Load a 7, and then continue counting up for the remainder of
the clock pulses.

Hint: To draw narrow waveform pulses, change the grid size to 100 ns
by choosing Options -> Grid Size and enter 100 ns. Next, highlight the
area that you want to be LOW and press the 0 (LOW pulse) shortcut
key.]

C6. Figure 71 is a 4-bit up/down-counter with a Clock Enable and asyn-
chronous Reset and Parallel Load features. Modify its simulation file to per-
form the following operations:

(a) Reset, then count up four pulses.

(b) Parallel Load D16, and then count up four more pulses.

(c) Count down eight pulses then disable the clock for the
remainder of the clock pulses.

Hint: To draw narrow waveform pulses, change the grid size to 100 ns by
choosing Option -> Grid Size and enter 100 ns. Next highlight the area that
you want to be LOW and press the 0 (LOW pulse) shortcut key.]

C7. Add a terminal-count (tc) feature to the VHDL counter in Figure 71.
This output is similar to that provided by the 74191 of Section 8. [In the
count-up mode tc goes HIGH when 15 (F16) is reached, and in the count-
down mode it goes HIGH when 0 is reached.] Create a simulation file that
demonstrates its operation.

C8. Figure 74 shows the LPM_COUNTER set up as a MOD-10 up/down-
counter with asynchronous Set (aset) and Clear (aclr). Test its operation by
performing a simulation of the following steps:

(a) Aset a 7, then count down 4 pulses.

(b) Then clear and count down 4 more pulses.

(c) Then count up 6 pulses, aset a 7, then continue counting up to the end.

C9. Use an LPM_COUNTER to design a MOD-12 down-counter. De-
velop a simulation file to demonstrate its operation.

C10. Use an LPM_COUNTER to design a divide-by-60 frequency divider.
Develop a simulation file to demonstrate its operation. (Show the clock in-
put waveform and the single divide-by-60 output waveform.)

C11. Figure 76 shows a VHDL program that uses state machine design to
create a Gray code counter.

(a) Use a technique similar to that to develop a sequencer that counts up
for just the odd number (1–3–5–7–9–1–, etc.). Develop a simulation file
to demonstrate its operation.

(n_ce = 1)

COUNTER CIRCUITS AND VHDL STATE MACHINES
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(b) Add a direction control input so that you can change it from an odd
up-counter to an odd down-counter. Develop a simulation file to
demonstrate its operation.

C12. Figure 79 shows a VHDL program that uses state machine design to
create a stepper-motor driver. Instead of activating output 1, then 2, then 3,
then 4, then 1, repeatedly as shown, motor rotation half-steps can be made
by activating output 1, then (1 and 2), then 2, then (2 and 3), and so on, re-
peatedly (i.e., 0001-0011-0010-0110-0100-1100-1000-1001-0001-, and so
on).

(a) Rewrite the program to output half-steps for the stepper motor.

(b) Develop a simulation file to demonstrate its operation for both
forward and reverse directions.

C13. Figures 81, 82, 83, and 84 show how an ADC interface to a micro-
processor is implemented in VHDL using a state machine. For simplicity,
the circuit used all active-HIGH signals but in reality the control signals
used for ADCs are active-LOW.

(a) Modify Figures 81 and 82 assuming active-LOW signals for dr, sc,
and oe.

(b) Rewrite the VHDL program in Figure 83 using those active-LOW
signals.

(c) Redraw the simulation waveforms using those active-LOW signals.

C14. The state diagram in Figure 82 shows that as soon as data-ready (dr)
goes HIGH, control passes from the waiting state to the read state. The pur-
pose of the read state is to make oe LOW, which makes the ADC outputs
active so that the microprocessor can read the 8-bit digital data. A possible
problem arises because control then passes unconditionally to the idle state
at the next active clock edge. Depending on the speed of the microproces-
sor, this may be too short of a time duration for the data to be read. One way
to correct this problem is to monitor the trigger (t) signal from the micro-
processor. Once this signal is HIGH, it does not go back LOW until the en-
tire process is complete and the microprocessor has completed reading the
data bus. Modify the state diagram and VHDL program so that the transi-
tion to idle does not occur until trigger (t) goes LOW. Perform a simulation
of the modified program.

C15. Figures 85, 86, 87, and 88 show how an ATM interface to a printer is
implemented in VHDL using a state machine. For simplicity, the circuit
used all active-HIGH signals but in reality the control signals used for most
printers are active-LOW.

(a) Modify Figures 85 and 86 assuming active-LOW signals for r, b, s, t,
and q.

(b) Rewrite the VHDL program in Figure 87 using those active-LOW
signals.

(c) Redraw the simulation waveforms using those active-LOW signals.

C16. The state diagram for the ATM controller in Figure 86 shows that
when the transmission of data is complete, q goes LOW and the state tran-
sitions to idle. Make the necessary modifications to the state diagram and
the VHDL program so that when q goes LOW, a transition is made to a new
state called eject that sends a HIGH signal to the printer telling it to cut and
eject the paper. [The FPGA now has three outputs: t, s, and e (eject)]. Build
a simulation file to demonstrate its operation.

COUNTER CIRCUITS AND VHDL STATE MACHINES
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C17. A chemical tank flushing system consists of an FPGA controlling the
draining and refilling of a water tank that is used to dilute a chemical pro-
duction by-product that needs to be flushed periodically.

Process definition:

(a) In the standby state the holding tank is full of water.

(b) When a flush signal ( f ) is asserted, transition is made to the drain
state. The tank’s drain valve (dv) is activated, emptying all of the water
and chemical waste into a drain.

(c) When the tank is empty, a fluid-at-bottom signal (b) is issued from
the tank. A transition is made to the fill state.

(d) The tank’s fill-valve ( fv) is activated to refill the tank with clean
water until the fluid-at-top signal (t) is issued from the tank. A transition
is made back to the standby state.

The FPGA has the following I/O:

(a) Active-LOW “flush” signal input ( f ) from a push button to initiate
the process.

(b) Active-LOW “fluid-at-top” signal input (t) from the tank sensor to
signify that the fluid is at the top of the tank.

(c) Active-LOW “fluid-at-bottom” signal input (b) from the tank sensor
to signify that the fluid is totally drained from the tank.

(d) Active-HIGH “fill-valve” signal output ( fv) to the tank to open the fill
valve to allow the water to fill the tank.

(e) Active-HIGH “drain valve” signal output (dv) to the tank to open the
drain valve to allow the fluid to drain from the tank.

Assignment: Complete a block diagram, state diagram, VHDL program,
and simulation of the system.

COUNTER CIRCUITS AND VHDL STATE MACHINES

Answers to Review Questions

1. True

2. HIGH, HIGH

3. It places limitations on the
maximum frequency allowed
by the input trigger clock be-
cause each output is delayed
from the previous one.

4. By taking the binary output
from the outputs

5. 23

6. 12

7. When the push button is
pressed, 5 V is applied to the
NOR gate, driving its output
LOW. The pull-down
resistor will keep the input
LOW when the push button is
in the open position.

100@�

Q

8. MOD-10, MOD-12, MOD-16

9. One is for the divide-by-2 sec-
tion, and the other is for the
divide-by-8 section.

10.

11. By cascading a divide-by-10
with a divide-by-6

12. The Q associated with the
most significant bit

13. This means that all of the an-
odes or cathodes of the LED
segments are connected
together.

14. a c d f g, a b c d e f

15. To limit the current flowing
through the LED segments

Q2 = 0, Q3 = 1
Q0 = 1, Q1 = 0,
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16. Active-HIGH, active-LOW, anode

17. False

18. It reduces both the number of
I/O ports and data paths
needed.

19. They don’t have the problem of
accumulated propagation delay.

20. J and K inputs are tied together
and are controlled through the
use of an AND gate.

COUNTER CIRCUITS AND VHDL STATE MACHINES

21. False

22. They are the Terminal Count
pins, which are used to indi-
cate when the Terminal Count
is reached and the count is
about to recycle.

23.
24. False

U/D = 1

Answers to Odd-Numbered Problems

1. Sequential circuits follow a predetermined
sequence of digital states triggered by a
timing pulse or clock. Combination logic
circuits operate almost instantaneously
based on the levels placed at its inputs.

3.

11. (a) 3 (b) 15 (c) 127 (d) 1

13. (a) 2 (b) 4 (c) 4 (d) 5

15.

5.

7. (a) 3 (b) 3 (c) 1 (d) 5 (e) 6 (f) 4

9.

0Cp

RD

A

D

Q

Q

X

1 2 3 4 5 6

0 1 2 3

RD

Cp

A

J

K

Q

4 5 6 7 8 9

Q

0 1 2 3 4 5 6 7 8 9Cp

20

21

22

20

Cp

21

22

17.

Cp0

Q

RD

20

J

K

SD

1

1

1

Q

RD

21

J

K

SD

1

1

1

Q

RD

22

J

K

SD

1

1

1

19.

Cp0

20
1 21

1 22
1 1 23

+5 V

100 Ω

MOD - 11
UP
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Cp0

20

1

1 1

MOD - 5
DOWN

21 22

23

+5 V

100 Ω

1

21.

23.

21

+5 V

10 kΩ

22

to RD

25.

27.

Cp1
Q0 Q1 Q2 Q3

7490
Input

NC
Cp0 ÷2

Cp1
Q0 Q1 Q2 Q3

7492
Cp0 ÷12

Output
(÷24)

29.

100 Hz Cp1
Q0 Q1 Q2 Q3

7493
NC Cp0 MR1 MR2

NC 20 21 22

+5 V
330 Ω

10 ms
 = 100 Hz1

31.

10 pps7492
÷6

1 pps7490
÷10

10 ppm7492
÷6

1 ppm7490
÷10

10 pph7492
÷6

1 pph7490
÷10

2 ppd7492
÷12

7490
÷2

60pps
Input

1ppd
Output(24

ppd)

(60 pph)
(60
ppm)

33. Connect a RESET push button across the
capacitor. When momentarily

pressed, it will RESET the circuit to its
initial condition.

35. With all the current going through the
same resistor, as more segments are turned
ON, the voltage that reaches the segments
is reduced, making them dimmer. The dis-
played 8 is much dimmer than the I.

37.

0.001@mF

0 1 2 3CP
4 5 6 7 8 9

20

21

22

39.

0 1 2 3
CPU 4

0 1 2 3 4

9012345098765

CPD

PL
TCU

TCD

Q0

Q1
Q2

Q3

41.

CpU

D0 D1 D2 D3

74193
NC CpD

MR Q0 Q1 Q2 Q3

PL

1 1 0 1

TCU

TCD

Output

PL an 1110 when
TCU goes LOW

NC

Take ÷4 output
from Q2 or TCU

CpU

0 1 2 3

TCU

CpU
4 5 6 7

Q0

Q1

Q2

Q3
13 14 15 11 12 13 14 15 11 12 13

Yes, it will work. The inputs to the AND
are normally 1–1 until the push button is
pressed or the NAND output goes LOW.
If either AND input goes LOW, its output
goes LOW, resetting the counter. This is
an improvement over Figure 19
because the draws less current than
the resistor when the push button
is depressed.

100@�
10 k�
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43. (a) HIGH-order U10, LOW-order U9
(b) No (c) By a LOW at the output of
U3:B

45.
74151
I0 Z 5

(CLK OUT) TO 
PINS 6 & 10

OF M1
6 N/CZ

I1
I2
I3
I4
I5
I6
I7

4
3
2
1

3
2
6
7

15
14
13
12

FREQUENCY
SELECT

11
10

9
7

A
B
C
E

13 N/C

12
TCD
TCUE (CLK IN) N/C

74LS193
P0
P1
P2
P3

Q0
QB
QC
QD

15
1

10
9

5

+5

4
11
14

CU
CD
PL
MR

E1. (a) 2^0 (b) 0123456789ABCDEF

E3. Doesn’t count past 7. Bad MS flip-flop

E5. (a) Mod-10 (b) Connect NAND in-
puts to 2^3 and 2^2. (c) 2^2

E7. (a) Build a circuit similar to Figure
35.

(b) Use a third 7490 as div-by-10 with
10 pps driving its (The output
of that 7490 is 1 pps.) Make the in-
put to your 00 to 99 counter switch
between those two clock speeds.

CP0
¿.

MR

PL

2 1 0 9 8 7 8 9 0 1 2

Cpu

Cpd

Qa

Qb

Qc

Qd

Tcd'

Tcu'

(c) Place an AND gate before the first
input. Disable it with a NAND

gate that outputs a LOW when 23 is
reached.

E9.

Cp¿
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Shift Registers

OUTLINE

1 Shift Register Basics
2 Parallel-to-Serial Conversion
3 Recirculating Register
4 Serial-to-Parallel Conversion
5 Ring Shift Counters and Johnson Shift Counters
6 VHDL Description of Shift Registers
7 Shift Register ICs
8 System Design Applications for Shift Registers
9 Driving a Stepper Motor with a Shift Register

10 Three-State Buffers, Latches, and Transceivers
11 Using the LPM Shift Register and 74194 Macrofunction
12 Using VHDL Components and Instantiations

OBJECTIVES

Upon completion of this chapter, you should be able to:

• Connect J-K flip-flops as serial or parallel-in to serial or parallel-out multibit
shift registers.

• Draw timing waveforms to illustrate shift register operation.
• Explain the operation and application of ring and Johnson shift counters.
• Make external connections to MSI shift register ICs to perform conversions

between serial and parallel data formats.
• Explain the operation and application of three-state output buffers.
• Discuss the operation of circuit design applications that employ shift registers.

INTRODUCTION

Registers are required in digital systems for the temporary storage of a group of
bits. Data bits (1’s and 0’s) traveling through a digital system sometimes have to be
temporarily stopped, copied, moved, or even shifted to the right or left one or more
positions.

A shift register facilitates this movement and storage of data bits. Most shift reg-
isters can handle parallel movement of data bits, as well as serial movement, and can
also be used to convert from parallel to serial and from serial to parallel.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 13 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.

650



1 Shift Register Basics

Let’s take a look at the contents of a 4-bit shift register as it receives 4 bits of parallel
data and shifts them to the right four positions into some other digital device. The tim-
ing for the shift operations is provided by the input clock. The data bits will shift to the
right by one position for each input clock pulse, as shown in Figure 1.

In the figure, the group of four boxes is four D flip-flops comprising the 4-bit
shift register. The first step is to parallel load the register with a 1–0–0–0. Parallel load

Cp

 1

QD0

Clock

Clock
input

X

Serial
receiving

device

X X X

X = undetermined state

Cp

 0

QD

Cp

 0

QD

Cp

 0

QD

1000Parallel load a 1000:

Cp

 0

QD0

Clock

0 X X X

Cp

1

QD

Cp

 0

QD

Cp

 0

QD

Apply pulse 1:

 1

Cp

 0

QD0

Clock

0 0 X X

Cp

0

QD

Cp

 1

QD

Cp

 0

QD

Apply pulse 2:

 2

Cp

 0

QD0

Clock

0 0 0 X

Cp

0

QD

Cp

 0

QD

Cp

1

QD

Apply pulse 3:

 3

Cp

 0

QD0

Clock

1 0 0 0

Cp

0

QD

Cp

 0

QD

Cp

 0

QD

Apply pulse 4:

 4

Figure 1 Block diagram of a 4-bit shift register for parallel-to-serial conversion.
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means to load all four flip-flops at the same time. This is done by momentarily enabling
the appropriate asynchronous Set and Reset inputs.

Next, the first clock pulse causes all bits to shift to the right by 1 because the in-
put to each flip-flop comes from the Q output of the flip-flop to its left. Each succes-
sive pulse causes all data bits to shift one more position to the right.

At the end of the fourth clock pulse, all data bits have been shifted all the way
across, and now all four original data bits appear, in the correct order, in the serial re-
ceiving device. The connections between the fourth flip-flop and the serial receiving
device could be a three-conductor serial transmission cable (serial data, clock, and
ground).

Figure 1 illustrated a parallel-to-serial conversion. Shift registers can also be
used for serial-to-parallel, parallel-to-parallel, and serial-to-serial, as well as shift-
right, shift-left operations, as indicated in Figure 2(a). Each of these configurations
and an explanation of the need for a recirculating line are explained in upcoming sec-
tions.

Figure 2(b) shows how shift registers are commonly used in data communi-
cations systems. Computers operate on data internally in a parallel format. To com-
municate over a serial cable like the one used by the RS232 standard or a telephone
line, the data must first be converted (data conversion) to the serial format. For ex-
ample, for computer A to send data to computer B, computer A will parallel load 8 bits
of data into shift register A and then apply eight clock pulses. The 8 data bits output

(RD)(SD)

SHIFT REGISTERS

Serial in,
shift left

Serial out

Parallel in

Parallel out

Serial in,
shift right

Serial out

Parallel in

Shift right,
serial out

Serial in,
shift right

Parallel in

Shift right,
recirculate
data bits

Parallel out

Parallel in

Recirculating line

Computer
A

Parallel
data
lines

Shift
register A

Parallel-to-serial
and

serial-to-parallel

Serial
communication
line

Shift
register B

Serial-to-parallel
and

parallel-to-serial

Computer
B

Parallel
data
lines

(a)

(b)

Figure 2 Shift register operations: (a) types of data movement and conversion; (b) using
shift registers to provide serial communication between computers having parallel data.
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from shift register A will travel across the serial communication line to shift register B,
which is concurrently loading the 8 bits. After shift-register B has received all 8 data
bits, it will output them on its parallel output lines to computer B. This is a simplifica-
tion of the digital communication* that takes place between computers, but it illus-
trates the heart of the system, the shift register.

2 Parallel-to-Serial Conversion

Now let’s look at the actual circuit connections for a shift register. The data storage el-
ements can be D flip-flops, S-R flip-flops, or J-K flip-flops. We are familiar with J-K
flip-flops, so let’s stick with them. Most J-K’s are negative edge triggered (like the
74LS76) and will have an active-LOW asynchronous Set and Reset 

Figure 3 shows the circuit connections for a 4-bit parallel-in, serial-out shift reg-
ister that is first Reset, then parallel loaded with an active-LOW 7 (1000), and then
shifted right four positions.

Notice in Figure 3(a) that all inputs are fed from a common clock input. Each
flip-flop will respond to its J-K inputs at every negative clock input edge. Because
every J-K input is connected to the preceding stage output, then at each negative clock
edge each flip-flop will change to the state of the flip-flop to its left. In other words, all
data bits will be shifted one position to the right.

Now, looking at the timing diagram, in the beginning of period 1, goes LOW,
resetting Q0 to Q3 to zero. Next, the parallel data are input (parallel loaded) via the D0
to D3 input lines. (Because the inputs are active LOW, the complement of the num-
ber to be loaded must be used. The inputs must be returned HIGH before shifting
can be initiated.)

At the first negative clock edge,

Q0 takes on the value of Q1

Q1 takes on the value of Q2

Q2 takes on the value of Q3

Q3 is Reset by 

In effect, the bits have all shifted one position to the right. Next, the negative edges of
periods 2, 3, and 4 will each shift the bits one more position to the right.

The serial output data comes out of the right-end flip-flop (Q0). Because the LSB
was parallel loaded into the rightmost flip-flop, the LSB will be shifted out first. The
order of the parallel input data bits could have been reversed, and the MSB would have
come out first. Either case is acceptable. It is up to the designer to know which is first,
MSB or LSB, and when to sample (or read) the serial output data line.

3 Recirculating Register

Recirculating the rightmost data bits back into the beginning of the register can be
accomplished by connecting Q0 back to J3 and back to K3. This way, the origi-
nal parallel-loaded data bits will never be lost. After every fourth clock pulse, the
Q3 to Q0 outputs will contain the original 4 data bits. Therefore, with the addition
of the recirculating lines to Figure 3(a), the register becomes a parallel-in, serial, and
parallel-out. 

Q0

J = 0, K = 1

SD

SD

RD

Cp

(RD).(SD)

SHIFT REGISTERS

*An IC called the UART (universal asynchronous receiver transmitter) is used to perform the shift register operation and to create
the other control signals necessary for computer communication. That circuitry is used in cable and wireless communication.
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1

Cp

SD

RD
Q

QJ3

K3

0

Q3

RD

Cp

SD

RD
Q0

Q0J0

K0

Q0  

Cp

SD

RD
Q

QJ2

K2

Q2

Cp

SD

RD
Q

QJ1

K1

Q1

D0D1D2D3 (LSB)

Parallel data in
(active LOW)

(MSB)

Clock
input

(a)

1 2 3 4

RD

Parallel load 0111

Clock
input

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LSB MSB

Shift right

Reset Q0–Q3 to zero

Parallel input
(active LOW)

Serial output
line

(LSB first)

MSB

LSB

(b)

(Serial output)

Figure 3 (a) 4-bit parallel-in, serial-out shift register using 74LS76 J-K flip-flops; (b) wave-
forms produced by parallel loading a 7 (0 1 1 1) and shifting right by four clock pulses. (An
active-LOW 7 is 1000.)
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Helpful 
Hint

Can you appreciate the
story about the imaginary
“bit bucket” that is used to
catch the bits that drop out
of the Q0 output if the
clock is allowed to
continue?

S H I F T  R E G I S T E R  S I M U L AT I O N

Figure 4 shows a MultiSIM® simulation of a 4-bit shift register. Instead of
having a constant clock signal, normally open push buttons with pull-up re-
sistors are used to inject a LOW-to-HIGH pulse each time the button is
pressed. This gives the user the control to test the Set, Reset, and shift oper-
ation at human speeds while watching the individual display LEDs. The Q3
flip-flop has so it is Reset at each clock edge. Also at each
clock edge, Q2 receives the level of Q3, Q1 receives Q2 and Q0 receives Q1.

J = 0, K = 1

654



Review Questions

1. All flip-flops within a shift register are driven by the same clock input.
True or false?

2. What connections allow data to pass from one flip-flop to the next in a
shift register?

3. How are data parallel loaded into a shift register constructed from J-K
flip-flops?

4. If a hexadecimal C is parallel loaded into the shift register of Figure 3
and four clock pulses are applied, what is the state of the Q outputs? If re-
circulating lines are connected and the same operation occurs, what is the
state of the Q outputs?

4 Serial-to-Parallel Conversion

Serial-in, parallel-out shift registers can also be made up of J-K flip-flop storage and a
shift-right operation. The idea is to put the serial data in on the serial input line, LSB
first (or MSB first, depending on the direction of the shift) and clock the shift register
four times (for a 4-bit register), stop, and then read the parallel data from the Q0 to Q3

SHIFT REGISTERS

SET
J

KVCC

VCC

VCC

10 k

0

10 k 10 k

1

Q

~Q
RESET

SET
J

K

Q

~Q
RESET

SET
J

K

Q

~Q
RESET

SET
J

K

Q

~Q
RESET

S

R

C (clock)

Q3 Q2 Q1 Q0

Figure 4 Using MultiSIM® to illustrate the operations of a 4-bit shift register.

MultiSIM® Exercise:

(a) Load the file fig13_4 from the text companion website. Press the Reset
key (R) to insure that all Qs start at 0. Set the first flip-flop by pressing
S. Now, each time that you inject a clock pulse by pressing C, you will
see the ON LED shift to the right. Repeat this setting and shifting
process several times until you have a good feel for its operation.

(b) Make the necessary circuit modifications to convert the circuit to a
recirculating shift register.
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outputs. Figure 5(a) shows a 4-bit serial-to-parallel shift register converter. The serial
data are coming in on the left at DS. The flip-flops are connected in a shift-right fash-
ion. The inverter at DS is required to ensure that if then and the
first flip-flop will Set. Each of the other flip-flops takes on the value of the flip-flop to
its left at each negative clock edge.

Each bit of the serial input must be present on the DS line before the correspon-
ding negative clock edge. After four clock pulses, all 4 serial data bits have been
shifted into their appropriate flip-flop. At that time, the parallel output data can be read
by some other digital device.

If the clock were allowed to continue beyond four pulses, the data bits would con-
tinue shifting out of the right end of the register and be lost if you tried to read them again
later. This problem is corrected by the Strobe line. It is used to Enable-then-Disable the

J = 1, K = 0,DS = 1
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Q
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RD
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RD
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Parallel data output

Clock
input

(a)

0 1 2 3
Clock
input

Parallel data
output
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Serial input

Strobe

23 22 21 20

4 5

(b)

1 2 3 4

LSB MSB

1

1

1

0

X(Cp)

Strobe

DS

RD

20

21

22

23

X

SD SD SD SD

(Cp)

1 1 1

Serial input
(LSB first)

RD

1

Figure 5 (a) A 4-bit serial-to-parallel shift register; (b) waveforms produced by a serial-to-
parallel conversion of the binary number 0 1 1 1.
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Team 
Discussion

How critical is the timing
of the Strobe? What if it is
one pulse early, one pulse
late, one pulse too long?
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Figure 6 Ring shift counter: (a) circuit connections; (b) output waveforms.

clock at the appropriate time so that the shift-right process will stop. Using a Strobe
signal is a popular technique in digital electronics to Enable or Disable some function
during a specific time period.

5 Ring Shift Counters and Johnson Shift Counters

Two common circuits that are used to create sequential control waveforms for digital
systems are the ring and Johnson shift counters. They are similar to a synchronous
counter because the clock input to each flip-flop is driven by the same clock input.
Their outputs do not count in true binary but, instead, provide a repetitive sequence of
digital output levels. These shift counters are used to control a sequence of events in a
digital system (digital sequencer).

In the case of a 4-bit ring shift counter, the output at each flip-flop will be HIGH f
or one clock period, then LOW for the next three, and then repeat, as shown in Figure 6(b).

SHIFT REGISTERS

Team 
Discussion

How would you implement
this circuit using 7474 D
flip-flops?
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To form the ring shift counter of Figure 6(a), the output of each stage is fed to the J-K
input of the next stage, and the output of the last stage is fed back to the J-K input of
the first stage. Before applying clock pulses, the shift counter is preset with a 1–0–0–0.

Ring Shift Counter Operation (Figure 6)
The RC circuit connected to the power supply will provide a LOW-then-HIGH as soon
as the power is turned on, forcing a HIGH–LOW–LOW–LOW at Q0–Q1–Q2–Q3, which
is the necessary preset condition for a ring shift counter. At the first negative clock in-
put edge, Q0 will go LOW because just before the clock edge J0 was LOW (from Q3)
and K0 was HIGH (from At that same clock edge, Q1 will go HIGH because its
J-K inputs are connected to which were 1–0. The Q2 and Q3 flip-flops will re-
main Reset (LOW) because their J-K inputs see a 0–1 from the previous flip-flops. 

Now the ring shift counter is outputting a 0–1–0–0 (period 2). At the negative
edge of period 2, the flip-flop outputs will respond to whatever levels are present at
their J-K inputs, the same as explained in the preceding paragraph. That is, because
J2-K2 are looking back at (connected to) (1–0), then Q2 will go HIGH. All otherQ1@Q1

Q0@Q0,
Q3).

Q@Q
Q@Q
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Figure 7 Johnson shift counter: (a) circuit connections; (b) output waveforms.
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Team
Discussion

To see if you really
understand the circuit
operation, try to sketch the
waveforms if the cross-
connection is made
between the third and the
fourth flip-flop instead of
at the end.
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flip-flops are looking back at a 0–1, so they will Reset (LOW). This cycle repeats con-
tinuously. The system acts like it is continuously “pushing” the initial HIGH level at
Q0 through the four flip-flops.

The Johnson shift counter circuit is similar to the ring shift counter except that
the output lines of the last flip-flop are crossed (thus, an alternative name is twisted
ring counter) before feeding back to the input of the first flip-flop, and all flip-flops are
initially Reset, as shown in Figure 7.

Johnson Shift Counter Operation (Figure 7)
The RC circuit provides an automatic Reset to all four flip-flops, so the initial outputs
will all be Reset (LOW). At the first negative clock edge, the first flip-flop will Set
(HIGH) because J0 is connected to (HIGH) and K0 is connected to Q3 (LOW). The
Q1, Q2, and Q3 outputs will follow the state of their preceding flip-flop because of their
direct connection J-to-Q. Therefore, during period 2, the output is 1–0–0–0.

At the next negative clock edge, Q0 remains HIGH because it takes on the
opposite state of Q3, Q1 goes HIGH because it takes on the same state as Q0, Q2 stays
LOW, and Q3 stays LOW. Now the output is 1–1–0–0.

The sequence continues as shown in Figure 7(b). Notice that, during period 5, Q3
gets Set HIGH. At the end of period 5, Q0 gets Reset LOW because the outputs of Q3
are crossed, so Q0 takes on the opposite state of Q3.

Review Questions

5. What happens to the initial parallel-loaded data in the shift register of
Figure 5 if the Strobe line is never disabled?

6. To operate properly, a ring shift counter must be parallel loaded with
___________, and a Johnson shift counter must be parallel loaded with
___________.

6 VHDL Description of Shift Registers

The VHDL language provides the ultimate in flexibility in designing shift registers.
They can be defined as shift-left or shift-right simply by changing the order of the as-
signment statements in the architecture section. You can define parallel loading as syn-
chronous or asynchronous by the placement of the IF statement in the program. Other
features such as strobing the clock and recirculating the data bits can also be added to
the basic design.

Figure 8(a) shows a 4-bit shift-right shift register. An internal SIGNAL register
(reg) is declared and used to receive the shifted data at each clock pulse. Notice that the
leftmost register element [reg(3)] is loaded with ser_data, and each subsequent ele-
ment is loaded with the element from its left. This, in effect, shifts the data to the right.
After the shift to the right is made for all four register elements, the q-output vector is
loaded with the contents of reg. The simulation waveform shown in Figure 8(c) illus-
trates the data bits shifting to the right on each negative clock pulse. At the 2 ms clock
edge, the ser_data line is HIGH, which sets q3 HIGH. From then on, the data travels
to each lower element number (shifting right).

Figure 9(a) shows a 4-bit shift-right shift register with a parallel-load feature.
It is similar to the previous shift register but has an IF statement to check for a par-
allel-load operation. If pl � ‘1’ then the internal register is loaded with the data

Q3
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H

D
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SHIFT REGISTERS

Shift each bit to the right
at each clock edge

Declare an internal register that acts like four FFs

Send results to output

(a)

Figure 8 A serial-in shift-right shift register: (a) VHDL listing; (b) block symbol file (bsf );
(c) simulation waveforms.

(b)

(c)

present on the par_data inputs. Since this check is made before the check for the
clock edge, then it is asynchronous, having priority over the synchronous shifting
operation. The simulation waveforms shown in Figure 9(c) show the initial parallel
loading of the number 9, then the data bits shifting to the right on each negative
clock pulse.
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Parallel load overrides
synchronous n_cp operations

(a)

Figure 9 A parallel-load shift-right shift register: (a) VHDL listing; (b) block symbol file
(bsf ); (c) simulation waveforms.

(b)

Parallel load 9 then shift right

(c)
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7 Shift Register ICs

Four-bit and 8-bit shift registers are commonly available in IC packages. Depending on
your needs, practically every possible load, shift, and conversion operation is available
in a shift register IC.

Let’s look at four popular shift register ICs to get familiar with using our data
sheets and understanding the terminology and procedure for performing the various
operations.

The 74164 8-Bit Serial-In, Parallel-Out Shift Register
By looking at the logic symbol and logic diagram for the 74164 (see Figure 10), we can
see that it saves us the task of wiring together eight D flip-flops. The 74164 has two se-
rial input lines (DSa and DSb), synchronously read in by a positive edge-triggered clock
(Cp). The logic diagram [Figure 11(b)] shows both DS inputs feeding into an AND
gate. Therefore, either input can be used as an active-HIGH enable for data entry
through the other input. Each positive edge clock pulse will shift the data bits one po-
sition to the right. Therefore, the first data bit entered (either LSB or MSB) will end up
in the far right D flip-flop (Q7) after eight clock pulses. The is an active-LOW
Master Reset that resets all eight flip-flops when pulsed LOW.

MR
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Figure 10 The 74164 shift register IC: (a) logic symbol; (b) logic diagram.

E X A M P L E  1

Draw the circuit connections and timing waveforms for the serial-to-parallel
conversion of the binary number 11010010 using a 74164 shift register.

Solution: The serial-to-parallel conversion circuit and waveforms 
are shown in Figure 11. First, the register is cleared by a LOW on 
making The Strobe line is required to make sure that we getQ09Q7 = 0.

MR,

662



The 74165
The next IC to consider is the 74165 8-bit serial or parallel-in, serial-out shift register.
The logic symbol for the 74165 is given in Figure 12.

Just by looking at the logic symbol, you should be able to determine the opera-
tion of the 74165. The is an active-LOW terminal for performing a parallel load of
the 8 parallel input data bits. The is an active-LOW clock enable for starting/stopping
(shifting/holding) the shift operation by enabling/disabling the clock (same function as
the Strobe in Example 1).

The clock input (Cp) is positive edge triggered, so after each positive edge, the
data bits are shifted one position to the right. The serial output (Q7) and its complement

are available from the rightmost flip-flop’s outputs.(Q7)

CE
PL
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Figure 11 Serial-to-parallel conversion using the 74164 shift register IC.

only eight clock pulses. The serial data are entered on the DSb line, MSB
first. After eight clock pulses, the 8 data bits can be read at the parallel output
pins (MSB at Q7 and LSB at Q0).
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Figure 13 Logic symbol for the 74194 universal shift register.

The 74194
Another shift register IC is the 74194 4-bit bidirectional universal shift register. It is
called universal because it has a wide range of applications, including serial or parallel
input, serial or parallel output, shift left or right, hold, and asynchronous Reset. The
logic symbol for the 74194 is shown in Figure 13.
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Parallel input
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Serial input

Clock enable CE
(like strobe)

Parallel Load  PL

Figure 12 Logic symbol for the 74165 8-bit serial or parallel-in, serial-out register.

The major differences with the 74194 are that there are separate serial inputs for
shifting left or shifting right and that the operating mode is determined by the digital
states of the mode control inputs, S0 and S1. S0 and S1 can be thought of as receiving a
2-bit binary code representing one of four possible operating modes combina-
tions). The four operating modes are shown in Table 1.

(22
= 4

TABLE 1 Operating Modes of the 74194

Operating Mode S1 S0

Hold 0 0
Shift left 1 0
Shift right 0 1
Parallel load 1 1
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Figure 14 Typical clear–load–shift right–shift left–inhibit–clear sequence for a 74194.

A complete mode select-function table for the 74194 is shown in Table 2. Table 2
can be used to determine the procedure and expected outcome of the various shift regis-
ter operations.

From the function table, we can see that a LOW input to the Master Reset 
asynchronously resets Q0 to Q3 to 0. A parallel load is accomplished by making S0, and S1
both HIGH and placing the parallel input data on D0 to D3. The register will then be par-
allel loaded synchronously by the first positive clock (Cp) edge. The 4 data bits can then be
shifted to the right or left by making S0 S1 1–0 or 0–1 and applying an input clock to Cp.

A recirculating shift-right register can be set up by connecting Q3 back into DSR
and applying a clock input (Cp) with Also, a recirculating shift-left
register can be set up by connecting Q0 into DSL and applying a clock input (Cp) with

The best way to get a feel for the operation of the 74194 is to study the timing
waveforms for a typical sequence of operations. Figure 14 shows the input data, 

S1 = 1, S0 = 0.

S1 = 0, S0 = 1.

-

(MR)

SHIFT REGISTERS

TABLE 2 Mode Select-Function Table for the 74194a

Inputs Outputs

Operating Mode Cp S1 S0 DSR DSL Dn Q0 Q1 Q2 Q3

Reset (clear) L L L L L
Hold (do nothing) H lb lb q0 q1 q2 q3
Shift left H h lb l q1 q2 q3 L

H h lb h q1 q2 q3 H
Shift right H lb h l L q0 q1 q2

H lb h h H q0 q1 q2
Parallel load H h h dn d0 d1 d2 d3

voltage level; voltage level one setup time before the LOW-to-HIGH clock transition; voltage level;
voltage level one setup time before the LOW-to-HIGH clock transition; letters indicate the state of the referenced

input (or output) one setup time before the LOW-to-HIGH clock transition; * don’t care; clock transition.
bThe HIGH-to-LOW transition of the S0 and S1 inputs on the 74194 should take place only while CP is HIGH for conventional operation.

c = LOW@to@HIGH=

dn(qn) = lowercasel = LOW
L = LOWh = HIGHaH = HIGH

**c

**c(DSR S Q0, QN S QN + 1)
**c

**c(QN d QN + 1, Q3 d DSL)
**c

****

******

MR
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control waveforms, and the output (Q0 to Q3) waveforms generated by a clear–load–shift
right–shift left–inhibit–clear sequence. Study these waveforms carefully until you
thoroughly understand the setup of the mode controls and the reason for each state
change in the Q0 to Q3 outputs.

SHIFT REGISTERS

E X A M P L E  2

Draw the circuit connection and timing waveforms for a recirculating
shift right register. The register should be loaded initially with a hexa-
decimal D (1101).

Solution: The shift-right register is shown in Figure 15. First, the S0 and S1
mode controls are set to 1–1 for parallel loading D0 to D3. When the first
positive clock edge (pulse 0) comes in, the data present on D0 to D3 are
loaded into Q0 to Q3. Next, S0 and S1 are made 1–0 to perform shift-right
operations. At the positive edge of each successive clock edge, the data are
shifted one position to the right (Q0SQ1, Q1SQ2, Q2SQ3, Q3SDSR,
DSRSQ0). The recirculating connection from Q3 back to DSR keeps the data
from being lost. After each fourth clock pulse, the circulating data are back
in their original position. 1

0 1 2 3 4 5 6 7Cp

S0

8

S1

Q3

Q2

Q1

Q0

Shift right

Parallel load
1101

1
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Q1Q0 Q3

DSR
S0

Cp

S1

Recirculate data

Figure 15 4-bit recirculating shift-right register connections and waveforms
using the 74194.
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Figure 16 Using MultiSIM® to illustrate the operations of the 74LS194 shift register.

7 4 L S 1 9 4  S H I F T  R E G I S T E R  S I M U L AT I O N

Figure 16 shows a MultiSIM® simulation of a 74LS194 shift register cur-
rently in the shift-right mode. The four-channel oscilloscope is used to
monitor all four Q outputs concurrently. A constant 10-kHz clock signal is
applied to CLK and switches are provided on S0 and S1 to allow the operat-
ing mode to be changed during simulation.

MultiSIM Exercise:

(a) Load the file fig16 from the text companion website. Turn the power
switch ON and place all switches HIGH. Because S0-S1 are 1–1 you are
performing a parallel load which is connected to 1–0–0–0. (Notice on
the oscilloscope that the QA waveform is HIGH and the others are
LOW.) Now make S1 LOW by pressing 1 on the keyboard to move the
S1 switch down. The data are now shifting right and the waveforms
should look like those in Figure 16.

(b) Repeat part (a) for a shift-left.

Three-State Outputs
Another valuable feature available on some shift registers is a three-state output. The
term three-state (or tristate) is derived from the fact that the output can have one of
three levels: HIGH, LOW, or float. The symbol and function table for a three-state output
buffer are shown in Figure 17.
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From Figure 17, we can see that the circuit acts like a straight buffer 
when is LOW (active-LOW Output Enable). When the output is disabled

, the output level is placed in the float, or high-impedance state. In the
high-impedance state, the output looks like an open circuit to anything else connected
to it. In other words, in the float state the output is neither HIGH nor LOW and cannot
sink nor source current.

Three-state outputs are necessary when you need to connect the output of more
than one register to the same points. For example, if you have two 4-bit registers, one
containing data from device 1 and the other containing different data from device 2,
and you want to connect both sets of outputs to the same receiving device, one device
must be in the float condition while the other’s output is enabled, and vice versa. This
way, only one set of outputs is connected to the receiving device at any one time to
avoid a conflict.

The 74395A
To further illustrate the operation of three-state buffers, let’s look at a register that 
has three-state outputs and discuss a system design example that uses two 4-bit registers
to feed a single receiving device. The 74395A is a 4-bit shift (right) register with three-
state outputs, as shown in Figure 18. From the logic circuit diagram [Figure 18(b)], 

OE = HIGH)
OEinput)

(output =
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0
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OE (active LOW
output enable)

}
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Figure 17 Three-state output buffer symbol and function table.
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Figure 18 The 74395A 4-bit shift register with three-state outputs: (a) logic symbol; 
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we can see that the Q0 and Q3 outputs are “three-stated” and will not be allowed to pass
data unless a LOW is present at the Output Enable pin Also, a non-three-stated
output, is made available to enable the user to cascade with another register and shift
data bits to the cascaded register whether the regular outputs (Q0 to Q3) are enabled or not
(i.e., to cascade two 4-bit registers, would be connected to DS of the second stage).

Otherwise, the chip’s operation is similar to previously discussed shift registers.
The Parallel Enable (PE) input is active-HIGH for enabling the parallel data input (D0
to D3) to be synchronously loaded on the negative clock edge. DS is the serial data in-
put line for synchronously loading serial data, and is an active-LOW Master Reset.MR

Q¿3

Q¿3,
(OE).
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Figure 18 (Continued ) (b) logic circuit.

E X A M P L E  3

Sketch the circuit connections for a two-register system that alternately
feeds one register and then the other into a 4-bit receiving device. Upon
power-up, load register 1 with 0111 and register 2 with 1101.

Solution: The two-register system is shown in Figure 19. Notice that both
sets of outputs go to a common point. The three-state outputs allow us to do
this by only enabling one set of outputs at a time, so that there is no conflict
between HIGHs and LOWs. One way to alternately enable one register and
then the other is to use a toggle flip-flop and feed the Q output to the upper
Output Enable and the to the lower Output Enable, as shown in
Figure 19.

Also, upon initial power-up, we want to parallel load both 4-bit reg-
isters. To do this, the D0 to D3 inputs contain the proper bit string to be
loaded, and the Parallel Enable (PE) is held HIGH. Because the parallel-
load function is synchronous (needs a clock trigger), we will supply a
HIGH-then-LOW pulse to via the RC Schmitt circuit.Cp

Q(OE)
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Review Questions

7. To input serial data into the 74164 shift register, one DS input must be
held ___________ (HIGH, LOW) while the other receives the serial data.

8. What is the function of the input to the 74165 shift register?

9. Why is the 74194 IC sometimes called a “universal” shift register?

10. List the steps that you would follow to parallel load a hexadecimal B
into a 74194 shift register.

11. To make the 74194 act as a shift-left recirculating register, a connec-
tion must be made from ___________ to ___________ and S0 and S1 must
be ___________ ___________.

12. How does the operation of the Parallel Enable (PE) on the 74395A
shift register differ from the Parallel Load of the 74165?

13. The outputs of the 74395A shift register are disabled by making 
___________ (HIGH, LOW), which makes ___________
(HIGH, LOW, float).
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Figure 19 Two 4-bit, three-state output shift registers feeding a common
receiving device.
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8 System Design Applications for Shift Registers

Shift registers have many applications in digital sequencing, storage, and transmis-
sion of serial and parallel data. The following examples will illustrate some of these
applications.

SHIFT REGISTERS

E X A M P L E  4

Using a ring shift counter as a sequencing device, design a traffic light con-
troller that goes through the following sequence: green, 20 s; yellow, 10 s;
red, 20 s. Also, at night, flash the yellow light on and off continuously.

Solution: By studying the waveforms from Figure 6, you will notice that
if we add one more flip-flop to that 4-bit ring shift counter and use a
clock input of 1 pulse per 10 s, we could tap off the Q outputs using OR
gates to get a 20–10–20 sequence. Also, we could use a phototransistor to
determine night from day. During the night we want to stop the ring shift
counter and flash the yellow light. Figure 20 shows a 5-bit ring counter
that could be used as this traffic light controller. First, let’s make sure that
the green–yellow–red sequence will work properly during the daytime.
During the daytime, outdoor light shines on the phototransistor, making
its collector-to-emitter resistance LOW, placing a low voltage at the input
to the first Schmitt inverter, and causing a LOW input to OR gate 4. The
1-pps clock oscillator will pass through OR gate 4 into the MOD-10,
which divides the frequency down to one pulse per 10 s. The output from
the MOD-10 is used to drive the clock input to the 5-bit ring shift counter,
which will circulate a single HIGH level down through each successive
flip-flop for 10 s at each Q output, as shown in the timing waveforms.

OR gates 1, 2, and 3 are connected to the ring counter outputs in
such a way that the green light will be on if Q0 or Q1 is HIGH, which
occurs for 20 s. The yellow light will come on next for 10 s due to Q2 be-
ing on, and then the red light will come on for 20 s because either Q3 or
Q4 is HIGH.

At nighttime, the phototransistor changes to a high resistance, plac-
ing a HIGH at the input to the first Schmitt inverter, which places a HIGH
at OR gate 4. This makes its output HIGH, stopping the clock input oscil-
lations to the ring counter.

Also at nighttime, the LOW output from the first Schmitt inverter is
connected to the ring counter Resets, holding the Q outputs at 0. The HIGH
output from the second Schmitt inverter enables the AND gate to pass the
1-pps clock oscillator on to OR gate 2, causing the yellow light to flash.

At sunrise, the output from the first Schmitt inverter changes from
a LOW to a HIGH, allowing the ring counter to start again. This LOW-
to-HIGH transition causes an instantaneous surge of current to flow
through the RC circuit. That current will cause a HIGH at the input of
the third Schmitt inverter, which places a LOW at setting Q0 HIGH.
When the surge current has passed (a few microseconds), returns to
a HIGH, and the ring counter will proceed to rotate the HIGH level from
Q0 to Q1 to Q2 to Q3 to Q4 continuously, all day, as shown in the timing
waveforms.

SD0

SD0,
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Figure 20 A 5-bit ring shift counter used as a traffic light controller.

E X A M P L E  5

Design a 16-bit serial-to-parallel converter.

Solution: First, we have to look through a TTL data manual to see what
is available. The 74164 is an 8-bit serial-in, parallel-out shift register. Let’s
cascade two of them together to form a 16-bit register. Figure 21 shows 
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Clock
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DSa
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Q7
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Q6Q5Q4Q3Q2Q1Q0

MR

Master
Reset

MR

Figure 21 A 16-bit serial-to-parallel converter.

that the Q7 output is fed into the serial input of the second 8-bit register.
This way, as the data bits are shifted through the register, when they reach
Q7 the next shift will pass the data into Q0 of the second register (via DSa),
making it a 16-bit register. The second serial input (DSb) of each stage is
internally ANDed with the DSa input so that it serves as an active-HIGH
enable input.

E X A M P L E  6

Design a circuit and provide the input waveforms required to perform a
parallel-to-serial conversion. Specifically, a hexadecimal B (1011) is to be
parallel loaded and then transmitted repeatedly to a serial device LSB first.

Solution: By controlling the mode control inputs of a 74194, we
can perform a parallel load and then shift right repeatedly. The serial output
data are taken from Q3, as shown in Figure 22. The 74194 universal shift
register is connected as a recirculating parallel-to-serial converter. Each
time the Q3 serial output level is sent to the serial device, it is also recircu-
lated back into the left end of the shift register.

First, at the positive edge of clock pulse 0, the register is parallel
loaded with a 1011 (B16) because the mode controls are HIGH–
HIGH. (D3 is loaded with the LSB because it will be the first bit out when
we shift right.)

Next, the mode controls are changed to HIGH–LOW for a
shift-right operation. Now, each successive positive clock edge will shift

(S0 - S1)

(S0 - S1)

(S0 - S1)

1

74194

Q0
Q1
Q2
Q3

1
0

1
(LSB)

MR

DSL
S0 S1

D0
D1
D2
D3

Parallel
input
(B16)

1

(a)

Serial
device

Cp

DSR

Figure 22 A 4-bit parallel-to-serial converter: (a) circuit connections; 

Common
Misconception

This is a good circuit to
simulate in the lab using
push buttons, switches,
and LEDs. Students often
fail to realize the
importance of the order
of operation among

and
S0 � S1.
Cp, D0 � D3,
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the data bit one position to the right. The Q3 output will continuously have
the levels 1101–1101–1101–, and so on, which is a backward hexadecimal
B (LSB first). 

Q3 is the
serial output

0 1 2 3 4 5 6 7 8

Q3

Q1

Shift right
Parallel load

LSB LSB

Q2

Q0

(b)

S1

S0

CP

Figure 22 (Continued ) (b) waveforms.

E X A M P L E  7

Design an interface to an 8-bit serial printer. Sketch the waveforms re-
quired to transmit the single ASCII code for an asterisk (*). The ASCII
code for an asterisk is 010 1010. Let’s make the unused eighth bit (MSB) a
zero.

Solution: The circuit design and waveforms are shown in Figure 23. The
74165 is chosen for the job because it is an 8-bit register that can be paral-
lel loaded and then shifted synchronously by the clock input to provide the
serial output to the printer.

During pulse 0, the register is loaded with the ASCII code for an as-
terisk (the LSB is put into D7 because we want it to come out first). The
clock input is then enabled by a LOW on (Clock Enable). Each posi-
tive pulse on Cp from then on will shift the data bits one position to the
right. After the eighth clock pulse (0 to 7), the printer will have received all
8 serial data bits. Then, the line is brought HIGH to disable the syn-
chronous clock input. To avoid any racing problems, the printer will read
the Q7 line at each negative edge of Cp so that the level will definitely be a
stable HIGH or LOW, as shown in Figure 23.

At this point, you may be wondering how, practically, we are going to
electronically provide the necessary signals on the and lines. An exact
degree of timing must be provided on these lines to ensure that the register–
printer interface communicates properly. These signals will be provided by a
microprocessor and are called the handshaking signals.

Microprocessor theory and programming are advanced digital topics
and are not discussed in this text. For now, it is important for us to realize
that these signals are required and to be able to sketch their timing diagrams.

PLCE

CE

CE
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9 Driving a Stepper Motor with a Shift Register

A stepper motor makes its rotation in steps instead of a smooth, continuous motion as
with conventional motors. Typical stepping angles are or per step, requiring
24 or 48 steps, respectively, to complete one revolution. The stepping action is con-
trolled by digital levels that energize magnetic coils within the motor.

Because they are driven by sequential digital signals, it is a good application for
shift registers. For example, a shift register circuit could be developed to cause the
stepper motor to rotate at 100 rpm for 32 revolutions and then stop. This is useful for
applications requiring exact positioning control without the use of closed-loop feed-
back circuitry to monitor the position. Typical applications are floppy disk Read/Write
head positioning, printer type head and line feed control, and robotics.

There are several ways to construct a motor to achieve this digitally controlled
stepping action. One such way is illustrated in Figure 24. This particular stepper motor
construction uses four stator (stationary) coils set up as four pole pairs. Each stator
pole is offset from the previous one by The directions of the windings are such
that energizing any one coil will develop a north field at one pole and a south field at
the opposite pole. The north and south poles created by energizing coil 1 are shown in
Figure 24. The rotating part of the motor (the rotor) is designed with three ferromag-
netic pairs spaced apart from each other. (A ferromagnetic material is one that is
attracted to magnetic fields.) Because the stator poles are spaced apart, this makes
the next stator-to-rotor out of alignment.

In Figure 24, the rotor has aligned itself with the flux lines created by the
north–south stator poles of coil 1. To step the rotor clockwise, coil 1 is deenergized,15 �

15 �
45 �

60 �

45 �.

7.5 �15 �
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Figure 23 Circuit design and waveforms for the transmission of an ASCII char-
acter to a serial printer.

Inside 
Your PC

Stepper motors have the
ability to perform ex-
tremely precise movements.
Because of this, they are
used for the positioning of
the read/write heads in
floppy drives, hard drives,
CDs, and DVDs. 

Common
Misconception

Before you learned the
operation of a stepper
motor, you may have
thought that it was limited
to 16 steps per rotation,
because it has only four
binary inputs (24 � 16).
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and coil 2 is energized. The closest rotor pair to coil 2 will now line up with stator pole
pair 2’s flux lines. The next steps are made by energizing coil 3, then 4, then 1, then
2, and so on, for as many steps as you require. Figure 25 shows the stepping action
achieved by energizing each successive coil six times. Table 3 shows the digital codes
that are applied to the stator coils for clockwise and counterclockwise rotation.
Figure 26 shows a stepper motor with the motor removed to expose two of the stator
coils. 

The amount of current required to energize a coil pair is much higher than the ca-
pability of a 74194, so we will need some current-buffering circuitry similar to that
shown in Figure 27.

15 �15 �

15 �
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4

3

2

+5 V

4

S

3

2

60°
45°

1

1

Figure 24 A four-coil stepper motor with stator coil 1 energized. (From Digital and
Microprocessor Fundamentals, Fourth Edition, by William Kleitz, Prentice Hall, Upper
Saddle River, N.J., 2003.)
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Figure 25 Coil
energizing sequence for

clockwise steps.15 �

TABLE 3 Digital Codes for 15° Clockwise and Counterclockwise Rotation

Clockwise Counterclockwise
Coil Coil

1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

and so on and so on
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Figure 26 Stepper motor with the rotor removed to expose two of the stator coils.
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Figure 27 Drive circuitry for a four-coil stepper motor showing the number 1 coils energized.

Team
Discussion

Sketch the 74194
waveforms for the parallel
load and 8 pulses.

The output of the upper 7406 inverting buffer in Figure 28 is LOW, forward
biasing the base-emitter of the MJ2955 PNP power transistor. This causes the col-
lector–emitter to short, allowing the large current to flow through the number 1
coils to ground. The IN4001 diodes protect the coils from arcing over when the cur-
rent is stopped.

The 74194 is first parallel loaded with 0001 and then changed to a shift-right
operation by making Each positive clock edge shifts the ON bit one posi-
tion to the right. The Q outputs will follow the clockwise pattern shown in Table 3, caus-
ing the motor to rotate. The speed of revolution is dictated by the period of Cp.

S0, S1 = 1, 0.
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Stepper Motor Driver ICs
There are several integrated circuits available today to handle the stepper sequencing
and provide the high current drive capability required for a stepper motor. One such IC
is the UCN5804B manufactured by Allegro Microsystems, Inc., shown in Figure 28. It
is used to drive four-phase unipolar stepper motors in three different formats: one-
phase (wave drive), two-phase, and half-step.

The coil sequencing for the different formats is shown in Table 4. Because the
outputs of the IC are set up to provide a sink path to ground, a 0 indicates an energized
coil. The one-phase format is the same as previously described where the coils are en-
ergized A-B-C-D or D-C-B-A. The two-phase format energizes two coils at a time, pro-
viding the same step angle but a higher torque. The two-phase coil energizing
sequence is AB-BC-CD-DA (or reverse). The half-step format cuts the step angle in
half. It energizes the coils by alternating between the one-phase and the two-phase by
using the following sequence: A-AB-B-BC-C-CD-D-DA (and reverse).

Table 5 shows the logic level on the format control pins (9 and 10) to achieve
each of the drive formats.
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OutputA

OutputC

OutputD
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Figure 28 Pin configuration for the UCN5804B stepper-motor driver.

TABLE 5 Truth Table for 
Determining the 
Drive Format

Drive Format Pin 9 Pin 10

Two-phase L L
One-phase H L
Half-step L H
Step-inhibit H H

TABLE 4 Coil Sequencing for the
Different Drive Formats
[Active-LOW (sinking) 
outputs]

One-Phase Two-Phase Half-Step
ABCD ABCD ABCD

0111 0011 0111
1011 1001 0011
1101 1100 1011
1110 0110 1001

Repeat Repeat 1101
1100
1110
0110

Repeat
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Figure 29 shows the typical wiring for a UCN5804B driving a stepper motor. The
four output pins are labeled A, B, C, and D. Each output is capable of sinking up to 1.5
A so external power transistors are not required. Because the outputs are sinking, then
the coils need to have a common connection to VCC as shown (instead of ground).
Changing the level on the Direction pin provides clockwise/counterclockwise direc-
tion control. The step input can be any TTL-level oscillator whose frequency is used to
set the rotation speed of the stepper motor.

Review Questions

14. The traffic light controller of Figure 20 flashes the yellow light at night
because the level at the collector of the phototransistor is ___________
(LOW, HIGH), which ___________ (enables, disables) the AND gate.

15. What circuitry is responsible for parallel loading a 1 into the first flip-
flop of Figure 20 at the beginning of each day?

16. The serial-to-parallel converter in Figure 21 could also be used for se-
rial in to serial out. True or false?

17. How would the waveforms change in Figure 22 if Q3 were connected
to DSL instead of DSR?

18. How is the input used on the 74165 in Figure 23?

19. Is the stepper motor in Figure 27 turning clockwise or counterclock-
wise? How would you change its direction?

10 Three-State Buffers, Latches, and Transceivers

When we start studying microprocessor hardware, we’ll see a need for transmitting a
number of bits simultaneously as a group (data transmission). A single flip-flop will
not suffice. What we need is a group of flip-flops, called a register, to facilitate the
movement and temporary storage of binary information. The most commonly used
registers are 8 bits wide and function as either a buffer, latch, or transceiver.

CE
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step
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11

4

A

B

C

D

1

6
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motor
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5 12 13 15

16 2 7
A

B
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Figure 29 Typical wiring for the UCN5804B stepper-motor driver.
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Three-State Buffers
In microprocessor systems, several input and output devices must share the same data
lines going into the microprocessor IC. (These shared data lines are called the data
bus.) For example, if an 8-bit microprocessor interfaces with four separate 8-bit input
devices, we must provide a way to enable just one of the devices to place its data on the
data bus and disable the other three. One way this procedure can be accomplished is to
use three-state octal buffers (ICs containing eight buffers similar to the one discussed
in Figure 17).

In Figure 30, the second buffer is enabled, which allows the 8 data bits from in-
put device 2 to reach the data bus. The other three buffers, are disabled, thus keeping
their outputs in a float condition.

A buffer is simply a device that, when enabled, passes a digital level from its in-
put to its output unchanged. It provides isolation, or a buffer, between the input device
and the data bus. A buffer also provides the sink or source current required by any de-
vices connected to its output without loading down the input device. An octal buffer IC
has eight individual buffers within a single package.

D7

8-Bit
microprocessor

D0

Input
device

1

1

3-State
octal
buffer

Input
device

2

0

3-State
octal
buffer

Input
device

3

1

3-State
octal
buffer

Input
device

4

1

3-State
octal
buffer

Data
bus

Float

Float

Float

Figure 30 Using a three-state octal buffer to pass 8 data bits from input device 2 to the 
data bus.

Inside 
Your PC

In a modern PC, the input
devices needing access to
the microprocessor might
be: a DVD, a hard drive, a
USB port, and a keyboard.
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A popular three-state octal buffer is the 74LS244 shown in Figure 31. Notice that
the buffers are configured in two groups of four. The first group (group a) is controlled
by and the second group (group b) is controlled by OE is an abbreviation for
Output Enable and is active-LOW, meaning that it takes a LOW to allow data to pass
from the inputs (I) to the outputs (Y). Other features of the 74LS244 are that it has
Schmitt trigger hysteresis and very high sink and source current capabilities (24 and 15
mA, respectively). 

Octal Latches/Flip-Flops
In microprocessor systems, we need latches and flip-flops to remember digital states that
a microprocessor issues before it goes on to other tasks. Take, for example, a micro-
processor system that drives two separate 8-bit output devices, as shown in Figure 32.

To send information to output device 1, the microprocessor first sets up the data
bus with the appropriate data and then issues a LOW-to-HIGH pulse on line
C1. The positive edge of the pulse causes the data at of the flip-flop to be
stored at Because is tied LOW, its data are sent on to output device 1.
(The diagonal line with the number 8 above it is a shorthand method used to indicate
eight separate lines or conductors.)

Next, the microprocessor sets up the data bus with data for output device 2 and
issues a LOW-to-HIGH pulse on C2. Now the second octal D flip-flop is loaded with
valid data. The outputs of the D flip-flops will remain at those digital levels, thus al-
lowing the microprocessor to go on to perform other tasks.

Earlier in this text, we studied the 7475 transparent latch and the 7474 D flip-
flop. The 74LS373 and 74LS374 shown in Figure 33 operate similarly, except that they
were developed to handle 8-bit data operations. 

Transceivers
Another way to connect devices to a shared data bus is to use a transceiver (transmitter/
receiver). The transceiver differs from a buffer or latch because it is bidirectional. This
capability is necessary for interfacing devices that are used for both input and output
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Figure 31 Pin configuration for the 74LS244 three-state octal buffer.

Helpful 
Hint

It is instructive for you to
see the in a practical
microprocessor application.

�244
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Figure 32 Using octal D flip-flops to capture data that appear momentarily on a micro-
processor data bus.
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Figure 33 Logic symbol for the 74LS373 octal latch and the 74LS374 octal D flip-flop.
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to a microprocessor. Figure 34 shows a common way to connect an I/O device to a data
bus via a transceiver.

To make input/output device 1 the active interface, the (Chip Enable) line
must first be made LOW. If is HIGH, the transceiver disconnects the I/O device
from the bus by making the connection float.

After making LOW, the microprocessor then issues the appropriate level on
the line depending on whether it wants to send data to the I/O device or receive
data from the I/O device. If is made HIGH, the transceiver allows data to pass to
the I/O device (from A to B). If is made LOW, the transceiver allows data to pass
to the microprocessor data bus (from B to A).

To see how a transceiver is able to both send and receive data, study the internal
logic of the 74LS245 shown in Figure 35.

S/R
S/R

S/R
CE

CE
CE

11–S/R VCC20

2A0 CE – 019

3A1 B0 D0 (out)

D0 (in)

18

4A2 B117

5A3 B216

6A4 B315

7A5 B414

8A6 B513

9A7 B612

10GND B711

Figure 35 Pin configuration and internal logic of the 74LS245 octal three-state transceiver.
A single data bit (D0) is shown being sent from A0 to B0.
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Figure 34 Using an octal transceiver to interface an input/output device to an 8-bit data bus.
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Dual-Supply Voltage-Level Translation
Another variant of the 74LS245 is the 74LVC8T245 dual-supply voltage-level transla-
tor. Often in modern digital electronic circuits there arises a need to interface logic of
one voltage level to a different voltage level. Examples of this occur when interfacing
3.3-volt low-voltage CMOS logic devices with 5-volt TTL circuits. The 74LVC8T245
is an 8-bit transceiver having two distinct voltage supplies. In this case, one of the sup-
plies would be set to 3.3 volts and the other would be set to 5 volts. This way the
3.3-volt HIGH from the CMOS circuit would be boosted to a 5-volt level as required
by the TTL circuit. This operation also works in reverse, making the 5-volt TTL level
interface to the 3.3-volt requirement of the CMOS logic. Several other voltage levels,
all the way down to 1.2 volts, are also allowed.

There are several other configurations of translators that you can find by per-
forming an Internet search on “dual-supply voltage-level translator.”

Review Questions

20. The 74LS244 provides buffering for a total of ___________ signals.
The outputs are all forced to their float state by making ___________ and
___________ HIGH.

21. The 74LS374 octal D flip-flop is a ___________ device, whereas the
74LS244 octal buffer is a ___________ device (synchronous, asynchronous).

22. A transceiver like the 74LS245 is bidirectional, allowing data to flow
in either direction through it. True or false?

11 Using the LPM Shift Register and 74194
Macrofunction

The Quartus® II software provides a general-purpose shift register in its Library of
Parameterized Modules called LPM_SHIFTREG. When you launch the MegaWizard,
you’ll see many useful features such as bus width, serial and parallel input and output,
asynchronous and synchronous loading, and Clock Enable. Figure 36 shows a basic
configuration set up for serial in, shift-right with synchronous parallel loading. The
MegaWizard defines the width as 4, the direction as right, and the asynchronous value
to be parallel loaded as 12. By reading the help screen it is determined that if the

shift_c.bdf

Figure 36 LPM shift register connections.

V
H
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L
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terminal labeled aset is asserted during the active clock edge, the aset constant (12)
will be loaded into the register.

Figure 37 shows a simulation of the shift register. At the first positive clock edge,
the ser_data is HIGH and is loaded into q3. The data are then shifted right at each of
the next four clock edges. At 10 ms, pl is asserted, parallel-loading the value 12 into the
register. The data are then shifted right at each of the next clock edges.

Models for the 7400-series shift registers are provided by the Quartus® II 
software in the symbol library. The 74194 is used in Figure 38 as a “universal” shift
register. The left and right serial inputs (SLSI and SRSI) are both grounded so we will

Parallel load 12

Figure 37 Simulation of the LPM shift register of Figure 36.

Right-click then
insert symbol 74194

Figure 38 The 74194 macrofunction connected as a universal shift register.
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see ‘0’ serially input in each case. The parallel data is brought in as a bus and then
broken into individual elements d0, d1, d2, and d3. The outputs at q are left as indi-
vidual elements so that we can observe the shifting of the waveforms.

The waveform simulations are shown in Figure 39. Since s1-s0 are 1-1 the parallel
data 116 (0001) is loaded into the register. For the next four pulses, s1-s0 equals 0-1 caus-
ing the data to be shifted left at each positive clock edge. At 10.5 ms, C16 is parallel loaded
into the register. The remainder of the waveforms show the data being shifted right.

12 Using VHDL Components and Instantiations

A structural approach to writing VHDL programs employs the use of multiple
components connected together to form a complete program. The components are
predefined VHDL program modules that can be used repeatedly like subroutines in a
computer language. For example, the key component in a shift register is a D flip-flop.
Using the structural approach, the D flip-flop must first be defined at the beginning of
the VHDL program or it may be previously defined and stored in a library. Then in the
main body of the VHDL program, the component will be used repeatedly for each oc-
currence of a D flip-flop in the shift register. To use the previously defined component,
it must be declared in the beginning of the architecture, and then each instance of the
component is defined using the PORT MAP keyword to describe how it is connected
in the circuit. This is known as the component instantiation.

Figure 40 shows a block diagram of how the serial-in and cp inputs are con-
nected to the four dflipflop components, which then provide the 4-bit parallel output at

PL SL PL SR PL SR

Figure 39 Simulation of the 74194 shift register in Figure 38.

cp

serial_in

ff2

qd

dflipflop
clk

ff3

qd

dflipflop
clk

ff1

qd

dflipflop
clk

ff0

qd

dflipflop
clk

q0q1q2q3

Figure 40 Block diagram of a 4-bit serial-in, parallel-out shift register using component in-
stantiations.
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q3, q2, q1, and q0. Notice that the dflipflop component uses the spelling d, clk, and q
for its I/O and the overall shift register (shiftreg) uses the spelling serial_in, cp, q3, q2,
q1, and q0. The clock signal, cp, is connected to the clk inputs of all four dflipflop com-
ponents. The serial_in is input to ff3’s d input. Its q output is sent to q3, which also be-
comes the input to ff2’s d input, and so on for ff1 and ff0.

The complete VHDL program in Figure 41(a) shows how the component dflipflop
is defined and later used in four instances to form a 4-bit shift register. The dflipflop EN-
TITY-ARCHITECTURE group defines the D flip-flop as a positive edge-triggered com-
ponent similar to Example 10–9. The shiftreg ENTITY-ARCHITECTURE group
defines how the 4-bit serial-in, parallel-out shift register is connected using four in-
stances of the dflipflop component.

The ENTITY of the shiftreg uses the PORT keyword to declare the inputs
(serial_in, cp) and outputs (q3, q2, q1, q0) to the overall shift register. The outputs are
declared as BUFFER because they are used as inputs and outputs. (i.e., q3 is an output,
but it is also used as an input to d of ff2.)

component name

instantiation label

Keyword

D flip-flop 

Declare the  
use of the  
component  
dflipflop 
from above

Four 
instantiations

External I/O 
for shiftreg

I/O for each  
component dflipflop

This defines the internal and external connections

(a)

Figure 41 A 4-bit serial-in, parallel-out shift register using component instantiations: 
(a) VHDL listing; (b) block symbol file (bsf ).

(b)
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The ARCHITECTURE of the shiftreg declares the use of COMPONENT dflipflop
and then uses four instances of the dflipflop labeled ff3, ff2, ff1, and ff0. The keyword
PORT MAP is followed by a description of how the component is connected. The sym-
bol is used to signify an internal connection wire, not the direction of data flow. For
example, ff3 is an instance of the component dflipflop whose d input is connected to
serial_in and whose clock (clk) is connected to the common clock (cp) and whose q out-
put is connected to the parallel output q3. The remaining PORT MAP connections re-
quired to fulfill the design of Figure 40 are provided for ff2, ff1, and ff0 as shown.

Figure 42 shows a simulation of the serial-in, parallel-out shift register. It
illustrates that at each positive edge of cp, q3 receives the level of serial_in, q2 receives
the level of q3, and so on.

(= 7)

Note: serial_in q3, q3      q2, q2      q1, q1      q0

Figure 42 Simulation of the 4-bit shift register described in Figure 41.

ff2

qj

jkff

clk
q2

k

cp

vcc
q0

ff1

qj

jkff

clk
q1

k

ff3

qj

jkff

clk
q3

k

x y

ff0

qj

jkff

clk

k

Figure 43 Block diagram of a 4-bit synchronous counter using component 
instantiations.

E X A M P L E  8

Use the structured programming approach to design a 4-bit synchronous
counter using component instantiations as shown in Figure 43.

Solution: The VHDL solution for the 4-bit synchronous counter 
using component instantiations is given in Figure 44(a). You will notice
that the J-K flip-flop component ( jk_ ff ) was taken from the program
written for Example 14 from the chapter, Flip-Flops and Registers. 
The ARCHITECTURE of sync_count uses four instances of jk_ ff. 
An internal SIGNAL was required for defining the signals 
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J-K flip-flop 

Declare the  
use of the  
component  
jk_ff
from above

Four 
instantiations

External I/O 
for sync-count

I/O for each  
component jk_ff

Signal for internal interconnection

use 1's for jk of ff0

use x for jk of ff2

use y for jk of ff3

(a) (b)

Figure 44 A 4-bit synchronous counter using component instantiations for Example 8: (a)
VHDL listing; (b) block symbol file (bsf ).
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Summary

In this chapter, we have learned that

1. Shift registers are used for serial-to-parallel and parallel-to-serial con-
versions.

2. One common form of digital communication is for a sending computer
to convert its data from parallel to serial and then transmit over a telephone
line to a receiving computer, which converts back from serial to parallel.

3. Simple shift registers can be constructed by connecting the Q-outputs of
one J-K flip-flop into the J-K inputs of the next flip-flop. Several flip-flops
can be cascaded together this way, driven by a common clock, to form
multibit shift registers.

4. The ring and Johnson shift counters are two specialized shift registers
used to create sequential control waveforms.

5. Several multibit shift register ICs are available for the designer to
choose from. They generally have four or eight internal flip-flops and are
designed to shift either left or right and perform either serial-to-parallel or
parallel-to-serial conversions.

6. The 74194 is called a universal 4-bit shift register because it can shift in
either direction and can receive and convert to either format.

7. Three-state outputs are used on ICs that must have their outputs go to a
common point. They are capable of the normal HIGH/LOW levels but can
also output a float (or high-impedance) state.

8. The rotation of a stepper motor is made by taking small angular steps.
This is controlled by sequential digital strings often generated by a recircu-
lating shift register.

Figure 45 Simulation of the 4-bit synchronous counter of Example 8.

vcc (which is set to ‘1’ for input to the first jk_ ff ) and x and y (which are
the outputs of internal AND gates.)

Figure 45 shows the simulation of the circuit counting from 0000 up
to 1111 on the q-outputs.
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9. Three-state buffers, latches, and transceivers are an integral part of
microprocessor interface circuitry. They allow the microprocessor system
to have external control of 8-bit groups of data. The buffer can be used to
allow multiple input devices to feed a common point or to provide high
output current to a connected load. The latch can be used to remember
momentary data from the microprocessor that needs to be held for other
devices in the system. The transceiver provides bidirectional (input or
output) control of interface circuitry.

10. Instantiations of VHDL component modules can be linked together to
solve larger system design applications.

Glossary

Bidirectional: Allowing data to flow in either direction.

Buffer: A logic device connected between two digital circuits, providing isolation,
high sink and source current, and usually, three-state control.

Clock Enable: A separate input pin included on some ICs and used to enable or dis-
able the clock input signal.

Closed-Loop Feedback: A system that sends information about an output device
back to the device that is driving the output device to keep track of the par-
ticular activity.

Components: In VHDL it is a module or subprogram that can be declared as a part of
a larger design entity and used repeatedly.

Data Bit: A single binary representation (0 or 1) of digital information.

Data Bus: A group of 8, 16, or 32 lines or electrical conductors, usually connected to
a microprocessor and shared by a number of other devices connected to it.

Data Conversion: Transformation of digital information from one format to another
(e.g., serial-to-parallel conversion).

Data Transmission: The movement of digital information from one location to another.

Digital Sequencer: A system (like a shift counter) that can produce a specific series
of digital waveforms to drive another device in a specific sequence.

Ferromagnetic: A material in which magnetic flux lines can easily pass (high per-
meability).

Float: A digital output level that is neither HIGH nor LOW but, instead, is in a high im-
pedance state. In this state, the output acts like a high impedance with respect
to ground and will float to any voltage level that happens to be connected to it.

Flux Lines: The north-to-south magnetic field set up by magnets is made up of flux lines.

Handshaking: The communication between a data sending device and receiving de-
vice that is necessary to determine the status of the transmitted data.

High-Impedance State: See float.

Instantiation: An implementation of a VHDL program module that is defined by
specifying the inputs and outputs of a previously defined component.

Mode Control: Input pins available on some ICs used to control the operating func-
tions of that IC.

Octal: When referring to an IC, octal means that a single package contains eight logic
devices.
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Output Enable: An input pin on an IC that can be used to enable or disable the out-
puts. When disabled, the outputs are in the float condition.

Parallel Enable: An IC input pin used to enable or disable a synchronous parallel
load of data bits.

Pole Pair: Two opposing magnetic poles situated opposite each other in a motor hous-
ing and energized concurrently.

PORT MAP: A keyword in VHDL that is used to define the internal connections be-
tween inputs, outputs, and internal signals.

Recirculating: In a shift register, instead of letting the shifting data bits drop out of
the end of the register, a recirculating connection can be made to pass the
bits back into the front end of the register.

Register: Two or more flip-flops (or storage units) connected as a group and operated
simultaneously.

Rotor: The rotating part of the stepper motor.

Shift Counter: A special-purpose shift register with modifications to its connections
and preloaded with a specific value to enable it to output a special sequence
of digital waveforms. It does not count in true binary but, instead, is used
for special sequential waveform generation.

Shift Register: A storage device containing two or more data bits and capable of
moving the data to the left or right and performing conversions between se-
rial and parallel.

Stator Coil: A stationary coil, mounted on the inside of the motor housing.

Step Angle: The number of degrees that a stepper motor rotates for each change in the
digital input signal (usually or 

Stepper Motor: A motor whose rotation is made in steps that are controlled by a dig-
ital input signal.

Strobe: A connection used in digital circuits to enable or disable a particular function.

Structural: A VHDL design method that employs the technique of linking together
instantiations of VHDL component modules to solve larger system design
applications.

Three-State Output: A feature on some ICs that allows you to connect several out-
puts to a common point. When one of the outputs is HIGH or LOW, all
others will be in the float condition (the three output levels are HIGH,
LOW, and float).

Transceiver: A data transmission device that is bidirectional, allowing data to flow
through it in either direction.

Transparent Latch: An asynchronous device whose outputs hold onto the most re-
cent digital state of the inputs. The outputs immediately follow the state of
the inputs (transparent) while the trigger input is active and then latch onto
that information when the trigger is removed.

Problems

Sections 1 Through 4
1. In Figure P1, will the data bits be shifted right or left with each clock
pulse? Will they be shifted on the positive or negative clock edge?

7.5 �).15 �
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2. If the register of Figure P1 is initially parallel loaded with
and what will the output at Q3 to Q0 be

after two clock pulses? After four clock pulses?

3. Repeat Problem 2 for 

4. Change Figure P1 to a recirculating shift register by connecting Q0 back
to J3 and back to K3. If the register is initially loaded with

what is the output at Q3 to Q0:

(a) After two clock pulses?

(b) After four clock pulses?

5. Outline the steps that you would take to parallel load the binary equiva-
lent of a hex B into the register of Figure P1.

6. To use Figure P1 as a parallel-to-serial converter, where are the data in-
put line(s) and data output line(s)?

7. Repeat Problem 6 for a serial-to-parallel converter.

Section 5
8. What changes have to be made to the circuit of Figure P1 to make it a
Johnson shift counter?

9. How many flip-flops are required to produce the waveform shown in
Figure P9 at the Q0 output of a ring shift counter?

D3 - D0 = 1001,
Q0

J3 = 1, K3 = 0.

D0 = 0,D3 = 0, D2 = 1, D1 = 0,

SHIFT REGISTERS

Clock
input

Cp

RD

J3 Q3

K3 Q3

SD

Cp

RD

J2 Q2

K2 Q2

SD

Cp

RD

J1 Q1

K1 Q1

SD

Cp

RD

J0 Q0

K0 Q0

SD

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Parallel data input

J3 = 0

K3 = 1

RD

Figure P1

Q0

1
Clock
input 2 3 4 5 6 7 8 90

Figure P9
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10. Repeat Problem 9 for the waveforms shown in Figure P10.
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Q0

1
Clock
input 2 3 4 5 6 7 8 90

Figure P11

Q0

1
Clock
input 2 3 4 5 6 7 8 90

Figure P10

11. Which flip-flop(s) of a 4-bit ring shift counter must be initially Set to
produce the waveform shown in Figure P11 at Q0?

12. Sketch the waveforms at Q2 for the first seven clock pulses generated
by the circuit shown in Figure P12.

13. In Figure P12, connect the automatic Reset line to the three inputs
instead of the three inputs, and sketch the waveforms at Q2 for the first
seven clock pulses.

14. Sketch the waveforms at Cp, Q0, Q1, and Q2 for seven clock pulses for
the ring shift counter shown in Figure P14.

RD

SD

Clock
input

Cp

RD

D0 Q0

Q

SD

Cp

RD

D1 Q1

Q

SD

Cp

RD

D2 Q2

Q

SD

Q2

R

Automatic
Reset

1 1 1

C

VCC

Figure P12

C

C

C
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X

1
Clock
input 2 3 4 5 6 7 8 9 11 12 13 14 15 1610

Y

Z

Figure P15

15. Using the Johnson shift counter output waveforms in Figure 7, add
some logic gates to produce the waveforms at X, Y, and Z shown in Figure
P15.

16. Redesign the Johnson shift counter of Figure 7(a) using 7474 D flip-
flops in place of the J-K flip-flops.

Sections 7 and 8
17. What modification could be made to the circuit in Figure 20 to cause
the yellow light to flash all day on Sundays? (Assume that someone will
throw a switch at the beginning and end of each Sunday.)

18. Sketch the output waveforms at Q0 to Q3 for the 74194 circuit shown
in Figure P18. Also, list the operating mode at each positive clock edge.

Cp

RD

D0 Q0

SD

Cp

RD

D1 Q1

SD

Cp

RD

D2 Q2

SD

R

1

C

1 1

Q0 Q1 Q2

Cp

VCC

Figure P14

D

D
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0Cp 1 2 3 4 5 6 7 8 9

MR

S0

Operating
mode

S1

Q0

Q1

Q2

Q3

Figure P19

0 0 0 0

D0 D1 D2 DSL

Q0 Q1 Q2

74194

Cp
Q3MR

11

D3

S0

S1

MR

DSR

0Cp 1 2 3 4 5 6 7 8 9

MR

S0

Operating
mode

S1

Q0

Q1

Q2

Q3

Figure P18

19. Repeat Problem 18 for the input waveforms shown in Figure P19.
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0 0 0

D0 D1 D2 DSL

Q0 Q1 Q2

74194

Cp
Q3MR

0

D3

S0

S1

0Cp 1 2 3 4 5 6 7 8 9

S0

Operating
mode

S1

Q0

Q1

Q2

Q3

DSR

DSL

DSR

1

Figure P20

20. Sketch the output waveforms at Q0 to Q3 for the 74194 circuit shown
in Figure P20. Also, list the operating mode at each positive clock edge.

21. Repeat Problem 20 for the waveforms shown in Figure P21.

22. Draw the timing waveforms (similar to Figure 11) for a 74164 used to
convert the serial binary number 10010110 into parallel.

23. Draw the circuit connections and timing waveforms for a 74165 used
to convert the parallel binary number 1001 0110 into serial, MSB first.

24. Using your TTL data manual (or a manufacturer’s Web site), describe the
differences between the 74HC594 and the 74HC595.

25. Using your TTL data manual (or a manufacturer’s Web site), describe the
differences between the 74HC164 and the 74HC165.
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26. Describe how the procedure for parallel loading the 74HC165 differs
from parallel loading a 74HC166.

27. Design a system that can be used to convert an 8-bit serial number LSB
first into an 8-bit serial number MSB first. Show the timing waveforms for
16 clock pulses and any control pulses that may be required for the binary
number 10110100.

Section 9
28. How many clock pulses are required at Cp to cause the stepper motor
to make one revolution in Figure 27?

29. Sketch the waveforms at Cp, S0, S1, Q0, Q1, Q2, and Q3 for six steps of
the motor in Figure 27.

30. What must the clock frequency be in Figure 27 to make the stepper
motor revolve at 600 rpm (rotations per minute)?

Section 10
31. Describe the difference between a buffer and a latch and between a
buffer and a transceiver.

32. Why is it important to use devices with three-state outputs when inter-
facing to a microprocessor data bus?

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the schematic
diagrams.

33. Identify the following ICs on the 4096/4196 schematic (sheets 1 and 2):
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0Cp 1 2 3 4 5 6 7 8 9

S0

Operating
mode

S1

Q0

Q1

Q2

Q3

DSR

DSL

Figure P21

DC

C

C

S
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(a) The three-state octal buffers

(b) The three-state octal D flip-flops

(c) The three-state octal transceivers

(d) The three-state octal latches

34. Describe the operation of U6 in the 4096/4196 schematic. Use the
names of the input/output labels provided on the IC for your discussion.

35. Refer to sheet 2 of the 4096/4196 schematic. Describe the sequence of
operations that must take place to load the 8-bit data string labeled
IA0–IA7 and the 8-bit data string labeled ID0–ID7. Include reference to
U30, U32, U23, U13:A, U1:F, and U33.

MultiSIM® Exercises

E1. Load the circuit file for Section 2a. This is a 4-bit shift register made
from four J-K flip-flops similar to Section 2. Press R (Rd ) to Reset all flip-
flops. Press S (Sd ) to Set the first flip-flop.

(a) How many times must you now press C ( ) to shift the ON bit to the
rightmost flip-flop? Try it.

(b) What steps would you follow to shift an ON bit into all four flip-
flops? Try it.

E2. Load the circuit file for Section 2b. This is a 4-bit shift register made
from four J-K flip-flops similar to Section 2. Make the necessary connec-
tions to form a recirculating shift register. Reset all FFs, then load the num-
ber 1000 (Q^3 light ON).

(a) How many times must you press C to rotate the ON bit to Q^0?
Try it.

(b) Reset and turn Q^3 ON. Which light will be ON if you now press C
six times? Try it.

E3. Load the circuit file for Section 5a. This is a ring shift Counter simi-
lar to Figure 6. Measure the time width of each positive output pulse.

(a) T ___________.

(b) On a piece of paper, sketch what you think the outputs would look
like if the connection to the last flip-flop was broken. Try it to
see if you were right.

E4. Load the circuit file for Section 5b. This is a ring shift counter similar
to Figure 6.

(a) What modifications must be made to it to form a Johnson shift
counter?

(b) Observe the output waveforms on the Logic Analyzer. Measure
the positive pulse width of one of the output waveforms. 
T ___________.

E5. Load the circuit file for Section 6a. The 74164 IC is an 8-bit, serial-in,
parallel-out shift register. List the steps that you must perform to serially
load the ASCII code for the letter M into this shift register. Try it, and
demonstrate your results to your instructor.

=

Cp¿

=

C¿p

¿

¿
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E6. Load the circuit file for Section 6b. Make the necessary connections
to the 74194 universal shift register to be able to parallel load a hex D
(1101), and then shift it to the right four positions. (Outputs would then
show 0000.) Demonstrate it to your instructor.

FPGA Problems

C1. The VHDL program in Figure 8(a) is the implementation of a serial in,
shift-right shift register.

(a) Download the files shift_a.vhd and shift_a.vwf. Save these files with
the new name prob_c13_1.vhd and prob_c13_1.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert the program to a shift-left shift register. (The serial data
enters q0 instead of q3.)

(d) Run the simulation demonstrating the shifting sequence q0-to-q1-to-
q2-, etc.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the shift-left operation. Use a debounced switch for n_cp.
(The pushbuttons on the DE-2 are debounced.)

C2. The VHDL program in Figure 9(a) is the implementation of a parallel-
load, shift-right shift register.

(a) Download the files shift_b.vhd and shift_b.vwf. Save these files with
the new name prob_c13_2.vhd and prob_c13_2.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert the program to a recirculating shift register. (The data leaving
q0 is recirculated back to q3.)

(d) Run the simulation demonstrating the shifting sequence q3-to-q2-to-
q1-to-q0-to-q3, etc.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the recirculating shift-right operation. Use a debounced
switch for n_cp. (The DE-2 has debounced pushbuttons.)

C3. Redo problem C2, adding recirculation and Left/Right (lr) control to
the shifting sequence. When ‘0’, shift left; when ‘1’, shift right.
The simulation and FPGA demonstration should show recirculating data
bits with left/right direction control.

C4. Redo problem C2, adding recirculation and clock strobe control to the
shifting sequence. The clock strobe (strobe) operates as shown in Figure 5
(with strobe ‘0’ the clock is disabled). The simulation and FPGA
demonstration should show recirculating data bits with clock strobe
control.

=

lr =lr =
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C5. The LPM shift register in Figure 36 is set up as a 4-bit serial or paral-
lel-in, shift-right shift register. Build new bdf and vwf files called
prob_c13_5.bdf and prob_c13_5.vwf with the LPM reconfigured as shift-
left. The simulation and FPGA demonstration should show an initial HIGH
on the shiftin input, then several shift-left operations, followed by a paral-
lel load and several shift-left operations.

C6. The LPM shift register in Figure 36 is set up as a 4-bit serial or paral-
lel-in shift-right shift register. Build new bdf and vwf files called
prob_c13_6.bdf and prob_c13_6.vwf with the LPM reconfigured as a recir-
culating shift-left with control inputs for the ports labeled aclr, aset, and
enable. (These ports are described in the help screen.) The simulation and
FPGA demonstration should exercise all of the inputs to show an asyn-
chronous parallel load (aset), recirculating bits, asynchronous clear (aclr),
and clock enable/disable. (The cp input has to be debounced, but the others
do not.)

C7. The 74194 macrofunction in Figure 38 is set up as a parallelload shift-
right, shift-left register. Build new bdf and vwf files called prob_c13_7.bdf
and prob_c13_7.vwf with the 74194 reconfigured as a recirculating shift-
left, shift-right register with parallel-load and asynchronous clear. The
simulation and FPGA demonstration should exercise all of the inputs to
show a parallel-load, shift right, shift left, hold, recirculation of data bits,
and asynchronous clear. (The cp input has to be debounced, but the others
do not.)

C8. Figure 41(a) is the VHDL implementation of a 4-bit shift-right shift
register.

(a) Download the files shiftreg.vhd and shiftreg.vwf. Save these files with
the new name prob_c13_8.vhd and prob_c13_8.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert this program to an 8-bit shift-right shift register.

(d) Modify the simulation to demonstrate the 8-bit shifting operation.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the shifting operation. Use a debounced switch for cp.

C9. Figure 41(a) is the VHDL implementation of a 4-bit shift-right shift
register.

(a) Download the files shiftreg.vhd and shiftreg.vwf. Save these files with
the new name prob_c13_9.vhd and prob_c13_9.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert this program to a 4-bit Johnson shift counter similar to 
Figure 7 but using D flip-flops instead of J-K flip-flops.

(d) Modify the simulation to demonstrate the shifting operation.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the shifting operation. Use a debounced switch 
for cp.

SHIFT REGISTERS
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Answers to Review Questions

1. True

2. The output of a flip-flop con-
nected to the input of the next
flip-flop (Q to J, to K )

3. By using the active-LOW
asynchronous set 

4.
; 

5. The data would continue shift-
ing out the register and would
be lost.

6. 1000,0000

7. HIGH

8. It’s an active-LOW clock
enable for starting/stopping the
clock.

Q1 = 0, Q0 = 0
Q3 = 1, Q2 = 1,Q0 = 0

Q3 = 0, Q2 = 0, Q1 = 0, 

(SD)

Q

9. Because the data can be input
or output, serial or parallel,
shifted left or right, held and
reset

10.

Data are loaded on the
rising edge of Cp.

11. DSL, Q0, 0 1

12. Parallel Enable (PE) enables
the data to be loaded synchro-
nously on the negative clock
edge, and Parallel Load (PL)
loads the data asynchronously.

13. HIGH, float

14. HIGH, enables

D3 = 1.
D0 = 1, D1 = 1, D2 = 0,
MR = 1, S1 = 1, S0 = 1,

C10. Figure 44(a) is the VHDL implementation of a 4-bit synchronous
counter.

(a) Download the files sync_count.vhd and sync_count.vwf. Save these
files with the new name prob_c13_10.vhd and prob_c13_10.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert this program to a 4-bit MOD-10 counter.

(d) Modify the simulation to demonstrate the MOD-10 counting
operation.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the counting operation. Use a debounced switch 
for cp.

C11. Figure 44(a) is the VHDL implementation of a 4-bit synchronous
counter.

(a) Download the files sync_count.vhd and sync_count.vwf. Save these
files with the new name prob_c13_11.vhd and prob_c13_11.vwf.

(b) Create a new project and compile and simulate this program.
(Remember, the Entity name must be changed to the new name in all
three locations before attempting to compile.)

(c) Convert this program to a 5-bit counter.

(d) Modify the simulation to demonstrate the MOD-32 counting
operation.

(e) Download your design of part (c) to an FPGA IC. Discuss your
observations of the q output LEDs with your instructor as you
demonstrate the counting operation. Use a debounced switch 
for cp.
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15. RC circuit and the Schmitt
trigger

16. True

17. Instead of recycling, the parallel-
loaded information would be
lost because DSL is ignored.

18. It is used as a strobe to enable
the clock.

19. Clockwise. Do a shift-left in
the 74194.

20. 8, 

21. Synchronous, asynchronous

22. True

OEa OEb

Answers to Odd-Numbered Problems

1. Right, negative

3. 1110, 1111

5. Apply a LOW pulse to to RESET all Q
outputs to zero. Next, apply a LOW pulse
to the active-LOW D3, D1, D0 inputs.

7. J3, K3 are the data input lines. Q3, Q2, Q1,
Q0 are the data output lines. (D3, D2, D1,
D0 are held HIGH.)

9. Three

11. The Q0 flip-flop and the Q3 flip-flop

13.

RD

21.

15.

0 1 2 3

Q2

Cp
4 5 6

Q1

Q0 X
Q2

Q0 X
Q3

Q2 Z

17. Put a switch in series with the phototran-
sistor’s collector. With the switch open,
the input to inverter 1 will be HIGH, simu-
lating nighttime conditions, causing the
yellow light to flash, day or night.

19.

0 1 2 3Cp
4 5 6 7 8 9

MR

S0

S1

Q0

Q1

Q2

Q3
S
LMode

S
L

P
L

S
L

MS
RR

S
R

H
O
L
D

P
L

S
R

S
R

0 1 2 3Cp
4 5 6 7 8 9

S0

S1

Q0

Q1

Q2

Q3
S
LMode

S
L

S
L

S
L

S
R

H
O
L
D

S
R

S
R

S
R

P
L

DSR

DSL

23.

0 1 2 3Cp
4 5 6 7 8 9

Q7

NC DS

D0D1D2D3

74165

CE CE
Q7

0

D4D5D6D7PL

PL
1 1 0 1 0 0 1

Q7

Clock
Oscillator

Cp
CP

Serial
output data

Parallel input data

CE

PL

MSB LSB
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33. (a) U4, U12 (b) U5, U30, U31, U32,
U36, U37, U38 (c) U3, U6 (d) U11,
U33

35. To load of U30, valid data must
be placed on by U33, then a
LOW to HIGH pulse must be applied to
the CLK input of U30. When pin 3 of
U13:A is LOW, a HIGH will appear at LE
of U33. This allows the valid data at D0–D7
to pass through to Next, pin 3
of U13:A goes HIGH, making LE LOW,
which causes the data outputs of U33 to re-
main latched. The HIGH at pin 3 of U13:A
also enables the decoder U23. Just before
pin 3 went HIGH, A0–A1–A2 were set to
1–0–1 to provide an active output at
/IOADDR. This is the clock input for U30,
which passes the valid data at of
U30 out to To load of
U32, the same process is followed, except
A0–A1–A2 are made 0–1–1 before pin 3 of
U13:A is made HIGH.

E1. (a) 3 (b) R, S, C, S, C, S, C, S

E3. (a) 2 mS

(b)

ID0- ID7IA0- IA7.
BD0-BD7

BD0-BD7.

BD0-BD7

IA0- IA7

SHIFT REGISTERS

25. The 74164 is a serial-in, parallel-out,
whereas the 74165 is a serial- or parallel-
in, serial-out, shift register. The 74165 pro-
vides a clock-enable input, The serial
input to the 74164 is the logical AND of
two data inputs (Dsa Dsb).

27.
�

CE.

15

NC

D0

74194

Q0

DSR

Serial in
LSB 1st

Serial out
MSB 1st

D1 D2 D3 DSL
S0
S1

CP

S0
S1

CP

NC

D0

74194

D1 D2 D3 DSL
S0
S1

CP

S0
S1

CP
MR Q1 Q2 Q3

1

OE

Q0MR Q1 Q2 Q3

14131211109876543210

00101101

01 110100

SHIFT LEFTSHIFT RIGHT
S0

S1

SERIAL
IN

OE

SERIAL
OUT

DSR

1

CP

FLOAT

DONT CARE

29.

1 2 3

S0

Cp
4 5 6

S1

Q0

Q1

Q2

Q3

31. A buffer is a transparent device that con-
nects two digital circuits; a latch is a
storage device that can hold data. A
buffer allows data to flow in only one di-
rection; a transceiver is bidirectional.

Q^0

Q^1

Q^2

Q^3

E5. M 0100 1101, Reset 74164. Then
Set S 1, press C; Set S 0, press C;
Set S 1, press C; Set S 1, press C;
Set S 0, press C; Set S 0, press C;
Set S 1, press C; Set S 0, press C.==

==

==

==

=

704



705



Multivibrators 
and the 555 Timer

OUTLINE

1 Multivibrators
2 Capacitor Charge and Discharge Rates
3 Astable Multivibrators
4 Monostable Multivibrators
5 Integrated-Circuit Monostable Multivibrators
6 Retriggerable Monostable Multivibrators
7 Astable Operation of the 555 IC Timer
8 Monostable Operation of the 555 IC Timer
9 Crystal Oscillators

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Calculate capacitor charging and discharging rates in series RC timing circuits.
• Sketch the waveforms and calculate voltage and time values for astable and

monostable multivibrators.
• Connect IC monostable multivibrators to output a waveform with a specific pulse

width.
• Explain the operation of the internal components of the 555 IC timer.
• Connect a 555 IC timer as an astable multivibrator and as a monostable

multivibrator.
• Discuss the operation and application of crystal oscillator circuits.

INTRODUCTION

We have seen that timing is very important in digital electronics. Clock oscillators,
used to drive counters and shift registers, must be designed to oscillate at a specific fre-
quency. Specially designed pulse-stretching and time-delay circuits are also required
to produce specific pulse widths and delay periods.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 14 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 Multivibrators

Multivibrator circuits have been around for years, designed from various technologies,
to fulfill electronic circuit timing requirements. A multivibrator is a circuit that
changes between the two digital levels on a continuous, free-running basis or on de-
mand from some external trigger source. Basically, there are three types of multivibra-
tors: bistable, astable, and monostable.

The bistable multivibrator is triggered into one of the two digital states by an ex-
ternal source and stays in that state until it is triggered into the opposite state. The S-R
flip-flop is a bistable multivibrator; it is in either the Set or Reset state.

The astable multivibrator is a free-running oscillator that alternates between the
two digital levels at a specific frequency and duty cycle.

The monostable multivibrator, also known as a one shot, provides a single output
pulse of a specific time length when it is triggered from an external source.

You may recall the bistable multivibrator (S-R flip-flop). The astable and mono-
stable multivibrators discussed in this chapter can be built from basic logic gates or
from special ICs designed specifically for timing applications. In either case, the
charging and discharging rate of a capacitor is used to provide the specific time dura-
tions required for the circuits to operate.

2 Capacitor Charge and Discharge Rates

Because the capacitor is so critical in determining the time durations, let’s briefly dis-
cuss the capacitor charge and discharge formulas. We use Figure 1 to determine the
voltages on the capacitor at various periods of time after the switch is closed. In Figure
1, with the switch in position 1, conventional current will flow clockwise from the E
source through the RC circuit. The capacitor will charge at an exponential rate toward
the value of the E source. The rate that the capacitor charges is dependent on the prod-
uct of R times C:

(1)�v = E(1 - e-t>RC)

Discharge
path

Charging path

+

–
E C

(a)

SW

R

3
2

1

VC

(c)

Time

(b)

Time

VC

VC

+

–

Figure 1 Basic RC charging/discharging circuit: (a) RC circuit; (b) charging curve; 
(c) discharging curve.

MULTIVIBRATORS AND THE 555 TIMER
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change in capacitor voltage over a period of time t

voltage difference between the initial voltage on the capacitor and the
total voltage that it is trying to reach

base of the natural log (2.718)

time that the capacitor is allowed to charge

resistance, ohms

capacitance, farads

In some cases, the capacitor is initially discharged, and is equal to the final
voltage on the capacitor. But, with astable multivibrator circuits, the capacitor usually
is not fully discharged, and is equal to the final voltage minus the starting voltage.
If you think of the y axis in the graph of Figure 1(b) as a distance that the capacitor
voltage is traveling through, the variables in Equation 1 take on new meaning, as fol-
lows:

Using these new definitions, Equation 1 can be used whether the capacitor is
charging or discharging (a discharging capacitor can be thought of as charging to a
lower voltage).

When the switch in Figure 1 is thrown to position 3, the capacitor discharges
counterclockwise through the RC circuit. The values for the variables in Equation 1 are
determined the same way as they were for the charging condition, except that the volt-
age on the capacitor is decreasing exponentially, as shown in Figure 1(c).

Transposing the Capacitor Charging Formula to Solve for t
Often in the design of timing circuits, it is necessary to solve for t,* given E, R, and
C. To make life easy for ourselves, let’s develop a new equation by rearranging
Equation 1 to solve for t instead of 

Divide both sides by E.

Subtract 1 from both sides.

Multiply both sides by ( ).

Take the reciprocal of both sides.

Take the natural logarithm of both sides.

(2)t = RC ln a
1

1 - �v>E
b

ln ex
= xln a

1

1 - �v>E
b =

t

RC

ln a
1

1 - �v>E
b = ln et>RC

1

e-x = ex1

1 - �v>E
= et>RC

1

1 - �v>E
=

1

e-t>RC

-11 -

�v

E
= e-t>RC

�v

E
- 1 = -e-t>RC

�v

E
= 1 - e-t>RC

�v = E(1 - e-t>RC)

�v.

�v,

 E K total distance that the capacitor voltage is trying to travel

 �v K distance that the capacitor voltage travels

�v

�v

C K
R K
t K
e K

E K
where �v K

*A practical assumption often used by technicians is that a capacitor is 99% charged after a time equal to 5 * R * C.

MULTIVIBRATORS AND THE 555 TIMER
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+

5 V

R
10 kΩ

3
2

1

C
0.047 μF

The following examples illustrate the use of Equations 1 and 2 for solving ca-
pacitor timing problems.

MULTIVIBRATORS AND THE 555 TIMER

Figure 2 Circuit for Examples 1 to 4.

E X A M P L E  1

The capacitor in Figure 2 is initially discharged. Determine the voltage on the
capacitor 0.5 ms after the switch is moved from position 2 to position 1.

Solution: E, the total distance that the capacitor voltage is trying to charge
to, is 5 V. Using Equation 1 yields

Answer

Thus, the distance the capacitor voltage traveled in 0.5 ms is 3.27 V.
Because it started at 0 V, Vcap = 3.27 V.

 = 3.27 V

 = 5.0(0.655)

 = 5.0(1 - 0.345)

 = 5.0(1 - e-1.06)

 = 5.0(1 - e-0.5 ms>(10 k� *  0.047 mF))

 �v = E(1 - e-t>RC)

Team 
Discussion

Would the capacitor
voltage be more than or
less than 3.27 V if the
resistor is doubled? If the
capacitor is doubled?

E X A M P L E  2

The capacitor in Figure 2 is initially discharged. How long after the switch
is moved from position 2 to position 1 will it take for the capacitor to reach
3 V?

Solution: the distance that the capacitor voltage travels through, is 3 V.
E, the total distance that the capacitor voltage is trying to travel, is 5 V.
Using Equation 2, we obtain

Answer = 0.431 ms

 = 0.00047(0.916)

 = 0.00047 ln (2.5)

 = 0.00047 ln a
1

0.4
b

 = (10 k�)(0.047 mF) ln a
1

1 - 3>5
b

 t = RC ln a
1

1 - �v>E
b

�v,
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5.0

4.0

3.0

2.0

1.0

0
0 0.2 0.4 0.6 0.8 1.0

Time (ms)

ΔV = 2.0 V

E = 4.0 V

t = 0.326 ms
Toward

+5 V

V
ca

p 
(V

)

Figure 3 Graphic illustration of the capacitor voltage for Example 3.

MULTIVIBRATORS AND THE 555 TIMER

E X A M P L E  3

For this example, let’s assume that the capacitor in Figure 2 is initially
charged to 1 V. How long after the switch is thrown from position 2 to po-
sition 1 will it take for the capacitor to reach 3 V?

Solution: the distance through which the capacitor voltage travels, is
2 V E, the total distance that the capacitor voltage is trying to
travel, is 4 V Using Equation 2 gives us the following:

Answer

The graph of the capacitor voltage is shown in Figure 3.

 = 0.326 ms

 = (10 k�)(0.047 mF) ln a
1

1 - 2>4
b

 t = RC ln a
1

1 - �v>E
b

(5 V - 1 V).
(3 V - 1 V).

�v,

E X A M P L E  4

The capacitor in Figure 2 is initially charged to 4.2 V. How long after the
switch is thrown from position 2 to position 3 will it take to drop to 1.5 V?

Solution: Equation 2 can be used to solve for t by thinking of the capaci-
tor as charging to a lower voltage. the distance that the capacitor volt-
age travels through, is 2.7 V E, the total distance that the
capacitor voltage is trying to travel, is 4.2 V Using
Equation 2 yields the following:

Answer

The graph of the capacitor voltage is shown in Figure 4.

 = 0.484 ms

 = (10 k�)(0.047 mF) ln a
1

1 - 2.7 V>4.2 V
b

 t = RC ln a
1

1 - �v>E
b

(4.2 V - 0 V).
(4.2 V - 1.5 V).

�v,
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Figure 4 Graphic illustration of the capacitor voltage for Example 4.

Review Questions

1. The astable multivibrator, also known as a one shot, produces a single
output pulse after it is triggered. True or false?

2. The voltage on a charging capacitor will increase _________
(faster/slower) if its series resistor is increased.

3. A capacitor with a series resistor will have the same charg-
ing rate as a capacitor with a series resistor. True or false?

3 Astable Multivibrators

The predictable charging rate of capacitors discussed in the previous section will now
be used in the design of oscillator and timing circuits. A very simple astable multivi-
brator (free-running oscillator) can be built from a single Schmitt trigger inverter and an
RC circuit, as shown in Figure 5. The oscillator of Figure 5 operates as follows: 

1@k�10@mF
10@k�1@mF

MULTIVIBRATORS AND THE 555 TIMER

C

R

Vout = 5 V/0 V

Charge

Discharge

1 74HC146

Figure 5 Schmitt trigger astable multivibrator.

5.0

4.0

3.0

2.0

1.0

0
0 0.2 0.4 0.6 0.8 1.0

Time (ms)

t = 0.484 ms

Toward
0 V

v c
ap

 (
V

) ΔV = 2.7 V

E = 4.2 V

Team 
Discussion

How would the operation
of this circuit change if a
7414 were used in place of
the 74HC14? (Consider IIs
and Vos.)

1. When the IC supply power is first turned on, Vcap is 0 V, so Vout will be HIGH
V for high-speed CMOS).

2. The capacitor will start charging toward the 5 V at Vout.

(�5.0
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Vcap

VCC

VT+

0 V

VT–

Vout

VOH

VOL

Vcap = Voltage
applied to
inverter input

Figure 6 Waveforms from the oscillator circuit of Figure 5.

3. When Vcap reaches the positive-going threshold of the Schmitt trigger,
the output of the Schmitt will change to a LOW 

4. Now, with the capacitor will start discharging toward 0 V.

5. When Vcap drops below the negative-going threshold the output of the
Schmitt will change back to a HIGH.

6. The cycle repeats now, with the capacitor charging back up to then
down to then up to and so on. (The waveform at Vout will be a
square wave oscillating between VOH and VOL, as shown in Figure 6.)

VT +,VT -,
VT +,

(VT -),

Vout � 0 V,

(�0 V).
(VT +)

E X A M P L E  5

(a) Sketch and label the waveforms for the Schmitt RC oscillator of Figure
5, given the following specifications for a 74HC14 high-speed CMOS
Schmitt inverter 

(b) Calculate the time HIGH (tHI), time LOW (tLO), duty cycle, and fre-
quency if and 

Solution: (a) The waveforms for the oscillator are shown in Figure 7.

C = 0.022 mF.R = 10 k�

VT + = 2.75 V,  VT - = 1.67 V

 VOH = 5.0 V,  VOL = 0.0 V

(VCC = 5.0 V):

Vcap

5.0 V

0 V

Vout

2.75 V

1.67 V

5 V

0 V

tHI tLO

Figure 7 Solution to Example 5.

MULTIVIBRATORS AND THE 555 TIMER
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(b) To solve for tHI:

To solve for tLO:

To solve for duty cycle: Duty cycle is a ratio of the length of time a
square wave is HIGH to the total period:

To solve for frequency:

 = 5.10 kHz

 =

1

86.2 ms + 110 ms

 f =

1

tHI + tLO

 = 0.439 = 43.9%

 =

86.2 ms

86.2 ms + 110 ms

 D =

tHI

tHI + tLO

 = 110 ms

 = (10 k�)(0.022 mF) ln a
1

1 - 1.08 V>2.75 V
b  

 tLO = RC ln a
1

1 - �v>E
b

 E = 2.75 - 0 = 2.75 V

 �v = 2.75 - 1.67 = 1.08 V

 = 86.2 ms

 = (10 k�)(0.022 mF) ln a
1

1 - 1.08 V>3.33 V
b

 tHI = RC ln a
1

1 - �v>E
b

 E = 5.00 - 1.67 = 3.33 V

 �V = 2.75 - 1.67 = 1.08 V

 �V = VT + - VT -

MULTIVIBRATORS AND THE 555 TIMER

Review Questions

4. The capacitor voltage levels in a Schmitt trigger astable multivibrator
are limited by _________ and the output voltage is limited by _________.

5. One way to increase the frequency of a Schmitt trigger astable multivi-
brator is to _________ (increase/decrease) the resistor.

4 Monostable Multivibrators

The block diagram and I/O waveforms for a monostable multivibrator (commonly
called a one shot) are shown in Figure 8. The one shot has one stable state, which is

and The outputs switch to their opposite state for a length of
time tw only when a trigger is applied to the input. is a negative edge trigger in thisAA

Q = HIGH.Q = LOW
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74HC00

1

2 Q

Q

R

C

Pt. D

A
(Input trigger)

VCC

Figure 9 Two-gate monostable multivibrator.

case (other one shots use a positive edge trigger or both). The I/O waveforms in Figure
8 show the effect that has on the Q output. Q is LOW until the HIGH-to-LOW edge
of causes Q to go HIGH for the length of time tw. The output pulse width (tw) is de-
termined by the discharge rate of a capacitor in an RC circuit.

A simple monostable multivibrator can be built from NAND gates and an RC cir-
cuit as shown in Figure 9. The operation of Figure 9 is as follows:

A
A

MULTIVIBRATORS AND THE 555 TIMER

tw
Q

Q

A
Input

trigger
pulse

Q

Q

A

Figure 8 Block diagram and input/output waveforms for a monostable multivibrator.

1. When power is first applied, make the following assumptions: is HIGH,
Q is LOW, is HIGH, and C is discharged. Therefore, point D is HIGH.

2. When a negative-going pulse is applied at Q is forced HIGH, which forces
LOW.

3. Because the capacitor voltage cannot change instantaneously, point D will
drop to 0 V.

4. The 0 V at point D will hold one input to gate 1 LOW, even if the trigger
goes back HIGH. Therefore, Q stays HIGH, and stays LOW.

5. Meanwhile, the capacitor is charging toward VCC. When the capacitor volt-
age at point D reaches the HIGH-level input voltage rating (VIH) of gate 1, Q
will switch to a LOW, making HIGH.

6. The circuit is back in its stable state, awaiting another trigger signal from 
The capacitor will discharge back to on each side).

The waveforms in Figure 10 show the I/O characteristics of the circuit and will
enable us to develop an equation to determine In the stable state the
voltage at point D will sit at VCC 1  because the capacitor is discharged (it has VCC on
both sides of it). When goes LOW due to an input trigger at point D will follow

LOW  2  because the capacitor is still discharged. Now, the capacitor will start charg-
ing toward VCC. When point D reaches 3 , will switch back HIGH. The capaci-
tor still has volts across it as follows:

____) |____
-  +VIH

VIH

QVIH

Q
A,Q

(Q = HIGH),tw.

(�VCC� 0 V
A.

Q

Q
A

Q
A,

Q
A
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The capacitor voltage is added to the HIGH-level output of which causes point D
to shoot up to 4 . As the capacitor voltage discharges back to 0 V, point D
drops back to the VCC level 5  and awaits the next trigger.

VCC + VIH

Q,

MULTIVIBRATORS AND THE 555 TIMER

4

3

51

2

VCC

0 V

A

VCC

0 V

Q

VCC

0 V

D
VIH

tw tw

Figure 10 Input/output waveforms for the circuit of Figure 9.

E X A M P L E  6

(a) Sketch and label the waveforms for the monostable multivibrator of
Figure 9, given the input waveform at and the following specifica-
tions for a 74HC00 high-speed CMOS NAND gate 

(b) Calculate the output pulse width (tw) for and 

Solution:

(a) The waveforms for the multivibrator are shown in Figure 11.

C = 0.0047 mF.R = 4.7 k�

VIH = 3.5 V,  VIL = 1.0 V

VOH = 5.0 V,  VOL = 0.0 V

(VCC = 5.0 V):
A

5.0 V

A

Q

D

0.0 V

5.0 V

0.0 V

8.5 V

5.0 V
3.5 V

0.0 V

tw

1 μs 1 μs

Figure 11 Waveforms for Example 6.
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Q
1

Q
6

T

A1

A2

B
5

4

3

Input
triggering

Outputs

Cext

10119

Rext
Cext

Rint

2 kΩ

RC timing
components

74121

VCC = pin 14
GND = pin 7

(a)

Outputs

A1

Inputs

A2 B Q Q

L
X
X
H
H
↓
↓
L
X

X
L
X
H
↓
Η
↓
X
L

H
H
L
X
Η
Η
Η
↑
↑

L
L
L
L

H
H
H
H

H = HIGH voltage level
L = LOW voltage level
X = Don’t care
↑ = LOW-to-HIGH transition
↓ = HIGH-to-LOW transition

(b)

Figure 12 The 74121 monostable multivibrator one shot: (a) block diagram and 
(b) function table.

(b) To solve for tw using Equation 2:

Answer = 26.6 ms

 = (4.7 k�)(0.0047 mF) ln a
1

1 - 3.5 V>5.0 V
b

 tw = RC ln a
1

1 - �v>E
b

 E = 5.0 V - 0 V = 5.0 V

 �v = 3.5 V - 0 V = 3.5 V

5 Integrated-Circuit Monostable Multivibrators

Monostable multivibrators are available in an IC package. Two popular ICs are the
74121 (nonretriggerable) and the 74123 (retriggerable) monostable multivibrators.
To use these ICs, you need to connect the RC timing components to achieve the
proper pulse width. The 74121 provides for two active-LOW and one active-HIGH
trigger inputs and true and complemented outputs Figure 12 shows
the 74121 block diagram and function table that we can use to figure out its opera-
tion.

To trigger the multivibrator at point T in Figure 12, the inputs to the Schmitt
AND gate must both be HIGH. To do that, you need B with or Holding or

LOW and bringing the input trigger in on B is useful if the trigger signal is slow
rising or has noise on it, because the Schmitt input will provide a definite trigger
point. 

A2

A1A2).(A1

(Q, Q).(A1, A2, B)

Common
Misconception

Students sometimes
mistakenly sketch the
output at Q as a negative-
going pulse.
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The RC timing components are set up on pins 9, 10, and 11. If you can use the
internal resistor, just connect pin 9 to VCC and put a timing capacitor between

pins 10 and 11. An external timing resistor can be used instead by placing it between
pin 11 and VCC and putting the timing capacitor between pins 10 and 11. If the exter-
nal timing resistor is used, pin 9 must be left open. The allowable range of Rext is 1.4
to and Cext is 0 to If an electrolytic capacitor is used, its positive side
must be connected to pin 11.

The formula that the IC manufacturer gives for determining the output pulse
width is as follows:

(3)

(Substitute for Rext if the internal timing resistor is used.)
For example, if the external timing RC components are and 

then tw will equal which works out to be Using
the maximum allowed values of RextCext, the maximum pulse width is almost 28 s

The function table in Figure 12 shows that the Q output is LOW and the out-
put is HIGH as long as the B inputs do not provide a HIGH–HIGH to the
Schmitt-AND inputs. But, by holding B HIGH and applying a HIGH-to-LOW edge to

or the outputs will produce a pulse. Also, the function table shows, in its last two
entries, that a LOW-to-HIGH edge at input B will produce an output pulse as long as
either or is held LOW.

The following examples illustrate the use of the 74121 for one-shot operation.
A2A1

A2,A1

A1, A2,
Q

(40 k� * 1000 mF * ln 2).

326 ms.10 k� * 0.047 mF * ln 2,
0.047 mF,10 k�

2 k�

tw = RextCext ln 2

1000 mF.40 k�,

2@k�

MULTIVIBRATORS AND THE 555 TIMER

E X A M P L E  7

Design a circuit using a 74121 to convert a 50-kHz, 80% duty cycle square
wave to a 50-kHz, 50% duty cycle square wave. (In other words, stretch the
negative-going pulse to cover 50% of the total period.)

Solution: First, let’s draw the original square wave [Figure 13(a)] 
to see what we have to work with 

Now, we want to stretch the negative pulse out to to make
the duty cycle 50%. If we use the HIGH-to-LOW edge on the negative
pulse to trigger the input to a 74121 and set the output pulse width (tw)
to we should have the solution. The output will be taken from be-
cause it provides a negative pulse when triggered.

Using the formula given in the IC specifications, we can calculate an
appropriate to yield 

Pick (1000 pF); then,

(Use a fixed resistor with a potentiometer.)

The value is a good choice for Cext because it is much larger than
any stray capacitance that might be encountered in a typical circuit. Values of
capacitance less than 100 pF may be unsuitable because 50 pF
of stray capacitance between traces is not uncommon in a printed-circuit

(0.0001 mF)

0.001 mF

5@k�10@k�= 14.4 k�

Rext =

14.4 ms

0.001 mF

Cext = 0.001 mF

 RextCext = 14.4 ms

 10 ms = RextCext(0.693)

 tw = RextCext ln (2)

10 ms.Rext, Cext

Q10 ms,
A1

10 ms4@ms
tHI = 80% * 20 ms = 16 ms).

(t = 1/50 kHz = 20 ms,
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Q
OUT

Q

T

A1

A2

B
1

1

IN

1011

Rext

Cext

VCC

14.4 kΩ

74121

(b)

0.001 μF

Potentiometer

Fixed capacitor

(a)

16 μs

20 μs

4 μs

16 μs4 μs
IN (A1)

10 μsOUT (Q)

(c)

10 μs

50% Duty
cycle

Negative edge trigger

tw

6

1
5

4

3

9
NC

VCC = pin 14
GND = pin 7

Figure 13 (a) Original square wave for Example 7; (b) monostable 
multivibrator circuit connections; (c) input/output waveforms.

board. Also, resistances in the kilohm range are a good choice because they
are big enough to limit current flow, but not so big as to be susceptible to
electrostatic noise. The final circuit design and waveforms are given in
Figure 13(b) and 13(c). 

MULTIVIBRATORS AND THE 555 TIMER

Common
Misconception

Students are often
surprised to measure a 5%
to 10% error in the output
pulse width in the lab.
Even if the pot is set at
exactly there is
still a capacitor tolerance
to consider as well as stray
wiring capacitance and
internal IC inaccuracies.

14.4 k�,
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M O N O S TA B L E  S I M U L AT I O N

Figure 14 shows a MultiSIM® simulation of a monostable multivibrator. It
is set up to duplicate Example 7. The input trigger (Vin) is applied to the ac-
tive-LOW input and the output (Vout) is taken from the inverting out-
put 

MultiSIM Exercise:

(a) Load the file fig14 from the text companion website. Double-click the
oscilloscope to expand its size, and then turn on the power switch. Turn
off the power after the single sweep is complete. Drag vertical cursors
#1 and #2 to measure TLOW and THIGH of both the input and output
waveforms. Your values should match those shown in Example 7
(Figure 13).

(b) Double-click on Vin and change its duty cycle to 50%. Recalculate Rext
to produce a 90% duty cycle at Vout. Drag vertical cursors #1 and #2 to
measure TLOW and THIGH of both the input and output waveforms. (Vout
should have a TLOW of 2 ms and THIGH of 18 ms.)

(W).
(A2)

+

5 V  VCC

14.4 kΩ
Rext

0.001 μF
Cext

Vin
50 kHz
80% DC

Q

W
Vout

VCC

RT /CT

CT

A1

A2

A B

XSC1

Monostable

G

T

Vin  80%
duty cycle

Vout  50%
duty cycle

Figure 14 Using MultiSIM® to simulate the timing waveforms of a monostable mul-
tivibrator.
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(a)

500 ns

200 ns

VCC

Q

Q

T

A1

A2

B
1

1

Read

7.22 kΩ

74121

100 pF

VCC

Q

Q

T

A1

A2

B
1

1

Delay pulse

2.89 kΩ

74121

100 pF

Data ready

Delay pulse

Read

Data ready

(b)

Negative edge trigger

tw

tw

Negative edge trigger

Figure 15 Solution to Example 8: (a) circuit connections for creating a delayed 
pulse and (b) input/output waveforms.

E X A M P L E  8

In microprocessor systems, most control signals are active-LOW, and often one shots are required to
introduce delays for certain devices to wait for other, slower devices to respond. For example, to read
from a memory device, a line called goes LOW to enable the memory device. Most systems
have to introduce a delay after the memory device is enabled (to allow for internal propagation de-
lays) before the microprocessor actually reads the data. Design a system using two 74121s to output
a 200-ns LOW pulse (called 500 ns after the line goes LOW.

Solution: The first 74121 will be used to produce the 500-ns delay pulse as soon as the line
goes LOW (see Figure 15). The second 74121 will be triggered by the end of the 500-ns delay pulse
and will output its own 200-ns LOW pulse for the line. (The 74121s are edge triggered,
so they will trigger only on a HIGH-to-LOW or LOW-to-HIGH edge.)

Data@Ready

READ

READData@Ready)

READ

For (output for first 74121):

Pick pF; then,Cext = 100

 RextCext = 0.722 ms

 500 ns = RextCext(0.693)

 tw = RextCext ln (2)

tw = 500 ns

MULTIVIBRATORS AND THE 555 TIMER

720



500 ns

Trigger input

500 ns

500 ns
Nonretriggerable

output
w/tw = 500ns

Retriggerable
output

w/tw = 500ns

Figure 16 Comparison of retriggerable and nonretriggerable one-shot outputs.

For (output for second 74121):

Pick pF; then,

Rext = 2.89 k�

Cext = 100

 RextCext = 0.289 ms

 200 ns = RextCext(0.693)

 tw = RextCext ln (2)

tw = 200 ns

Rext =

0.722 ms

0.0001 mF
= 7.22 k�

MULTIVIBRATORS AND THE 555 TIMER

6 Retriggerable Monostable Multivibrators

Have you wondered what might happen if a second input trigger came in before the
end of the multivibrator’s timing cycle? With the 74121 (which is nonretriggerable),
any triggers that come in before the end of the timing cycle are ignored.

Retriggerable monostable multivibrators (such as the 74123) are available,
which will start a new timing cycle each time a new trigger is applied. Figure 16 il-
lustrates the differences between the retriggerable and nonretriggerable types,
assuming that and a negative edge-triggered input.tw = 500 ns

As you can see in Figure 16, the retriggerable device starts its timing cycle all
over again when the second (or subsequent) input trigger is applied. The nonretrig-
gerable device ignores any additional triggers until it has completed its 500-ns
timing pulse.

The logic symbol and function table for the 74123 retriggerable monostable mul-
tivibrator are given in Figure 17.

In addition to being retriggerable, some of the other important differences of the
74123 are as follows:

1. It is a dual multivibrator (two multivibrators in a single IC package).

2. It has an active-LOW Reset which terminates all timing functions by
forcing Q LOW, HIGH.

3. It has no internal timing resistor.

4. It uses a different method for determining the output pulse width, as ex-
plained next.

Q
(RD),
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Output Pulse Width of the 74123
If the output pulse width is determined by the formula

(4)

If the timing chart shown in Figure 18 must be used to find tw.
For example, let’s say that we need an output pulse width of 200 ns. Using the

chart in Figure 18, one choice for the timing components would be
or a better choice might be 

(With such small capacitances, required for nanosecond delays, we must be careful to
minimize stray capacitance by using proper printed-circuit layout and component
placement techniques.)

Rext = 5 k�, Cext = 90 pF.Rext = 10 k�, Cext = 30 pF,

Cext … 1000 pF,

tw = 0.28RextCext a1 +

700

Rext
b

Cext 7 1000 pF,

MULTIVIBRATORS AND THE 555 TIMER

10,000

7,000

4,000

2,000

1,000

700

400

200

100

70

40

20

10
1,000400200100402010421

Cext – External timing capacitance (pF)

t w
 –

 O
ut

pu
t p

ul
se

 w
id

th
 (

ns
)

R T
= 5 kΩR T

= 10 kΩR T
= 20 kΩR T

= 30 kΩR T
= 50 kΩ

Vcc = 5 V
TA = 25°C

Figure 18 The 74123 timing chart for determining tw when Cext … 1000 pF.

(a)

A1

B1

RD1

1

2

3

13
Q1

4
Q1

14 15

Cext1 Rext/Cext1

A2

B2

RD2

9

10

11

5
Q2

12
Q2

6 7

Cext2 Rext/Cext2

Output

RD

Input

A B Q Q

L
X
X
H
H
↑

X
H
X
L
↓
L

X
X
L
↑
Η
Η

L
L
L

H
H
H

H   = HIGH voltage level
L = LOW voltage level
X   = Don’t care
↑ = LOW-to-HIGH transition
↓ = HIGH-to-LOW transition

= One HIGH-level pulse
= One LOW-level pulse

(b)

Figure 17 The 74123 retriggerable monostable multivibrator: (a) logic symbol and 
(b) function table. (Used with permission from NXP Semiconductors.)
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Q1A1

B1

Rext /Cext

VCC

20 kΩ

74123

(a)

70 pF

RD1

Cext

Q1

Figure 19 The 74123 retriggerable multivibrator: (a) circuit connections and (b)
waveforms.

Team 
Discussion

The RD1 input serves three
functions between 3.8 and
4.6. What are they?

A1

0 5.20.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

B1

RD1

Q1

Time (μs)

Retrigger Q1 for additional 600 ns

Force Q1 LOW

LOW-to-HIGH trigger

(b)

E X A M P L E  9

To the multivibrator circuit of Figure 19(a), apply the trigger input 
waveforms shown in Figure 19(b). Determine the output at Q1.

Solution:

Explanation: tw is determined from the timing chart for the 74123 (Figure
18). With and (600 ns).

0 to  Q is in its stable state (LOW); no trigger has been applied.

0.4 to Q is triggered HIGH for by the pulse on B1.

1.0 to Q returns to its stable state.1.4ms

0.6 ms1.0ms

0.4ms

Rext = 20 k�, tw = 0.6 msCext = 70 pF
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Review Questions

6. The output of a monostable multivibrator has a predictable pulse width
based on the width of the input trigger pulse. True or false?

7. To trigger a 74121 one-shot IC, A1 _________ (and, or) A2 must be
made _________ (LOW/HIGH) _________ (and, or) B must be made
_________ (HIGH/LOW).

8. Which of the three trigger inputs of the 74121 would you use to trigger
from a falling edge of a pulse? What would you do with the other two in-
puts?

9. When the 74121 receives a trigger, the Q output goes __________
(HIGH/LOW) for a time duration tw.

10. The 74123 one-shot IC is retriggerable, whereas the 74121 is not.
What does this statement mean?

7 Astable Operation of the 555 IC Timer

The 555 is a very popular, general-purpose timer IC. It can be connected as a one shot
or an astable oscillator as well as used for a multitude of custom designs. Figure 20
shows a block diagram of the chip with its internal components and the external com-
ponents that are required to set it up as an astable oscillator.

The 555 got its name from the three resistors. They are set up as a voltage
divider from VCC to ground. The top of the lower is at and the top of the mid-
dle is at For example, if VCC is 6 V, each resistor will drop 2 V.

The triangle-shaped symbols represent comparators. A comparator simply out-
puts a HIGH or LOW based on a comparison of the analog voltage levels at its input.
If the input is more positive than the input, it outputs a HIGH. If the input is
less positive than the input, it outputs a LOW.

The S-R flip-flop is driven by the two comparators. It has an active-LOW Reset,
and its output is taken from the Q.

-
+-+

2
3VCC.5 k�

1
3VCC,5 k�

5@k�

MULTIVIBRATORS AND THE 555 TIMER

1.4 to Q is triggered HIGH by B1 at ; then, Q is retriggered at

2.2 to Q returns LOW; the conditions on are not right to
create a trigger.

2.8 to Q is triggered HIGH by the LOW pulse on while 
and 

3.4 to Q returns LOW.

3.6 to Q is triggered HIGH by but the output pulse is terminated
by a LOW on 

3.8 to Q is held LOW by no matter what the other inputs are
doing.

4.6 to Q is triggered HIGH by the LOW-to-HIGH edge of while

5.2 to Q returns LOW.5.4ms

A1 = LOW, B1 = HIGH.
RD15.2ms

RD14.6ms

RD1.
A1,3.8ms

3.6ms

RD1 = HIGH.
B1 = HIGHA13.4ms

A1B1RD12.8ms

1.6 ms.
1.4 ms2.2ms
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The discharge transistor is an NPN, which is used to short pins 7 to 1 when is
HIGH.

The operation and function of the 555 pins are as follows:

Pin 1 (ground): System ground.

Pin 2 (trigger): Input to the lower comparator, which is used to Set the flip-
flop. When the voltage at pin 2 crosses from above to below

the comparator switches to a HIGH, setting the flip-
flop.

Pin 3 (output): The output of the 555 is driven by an inverting buffer
capable of sinking or sourcing 200 mA. The output volt-
age levels are dependent on the output current but are
approximately and 

Pin 4 (Reset): Active-LOW Reset, which forces HIGH and pin 3 (out-
put) LOW.

Pin 5 (control): Used to override the level, if required. Usually, it is
connected to a grounded capacitor to bypass
noise on the VCC line.

0.01@mF

2
3VCC

Q

VOL = 0.1 V.VOH = VCC - 1.5 V

1
3VCC,

Q

MULTIVIBRATORS AND THE 555 TIMER

Q

R

(3)

5 kΩ

S

+

–

+

–

Comp.
1

Comp.
2

RA

RB

C

VCC

(8)

(6)

(5)

(2)

(7) Discharge

Trigger

Control
voltage

Threshold

5 kΩ

5 kΩ

0.01 μF

GND

VCC (4.5 V to 18 V)

FF

(1) (4)

555

Output

Output buffer
(IOL = IOH = 200ma)

Charging
path

Discharge
path

Discharge
transistor

Reset

Figure 20 Simplified block diagram of a 555 timer with the external timer components to
form an astable multivibrator.
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Pin 6 (threshold): Input to the upper comparator, which is used to Reset the
flip-flop. When the voltage at pin 6 crosses from below
to above the comparator switches to a HIGH, reset-
ting the flip-flop.

Pin 7 (discharge): Connected to the open collector of the NPN transistor. It
is used to short pin 7 to ground when is HIGH (pin 3
LOW), which will discharge the external capacitor.

Pin 8 : Supply voltage. VCC can range from 4.5 to 18 V.

The operation of the 555 connected in the astable mode shown in Figure 20 is ex-
plained as follows:

1. When power is first turned on, the capacitor is discharged, which places 0 V
at pin 2, forcing the lower comparator HIGH. This sets the flip-flop

2. With the output HIGH LOW), the discharge transistor is open, which
allows the capacitor to charge toward VCC via 

3. When the capacitor voltage exceeds the lower comparator goes LOW,
which has no effect on the S-R flip-flop, but when the capacitor voltage ex-
ceeds the upper comparator goes HIGH, resetting the flip-flop and
forcing HIGH and the output LOW.

4. With HIGH, the transistor shorts pin 7 to ground, which discharges the
capacitor via 

5. When the capacitor voltage drops below the lower comparator goes
back HIGH again, setting the flip-flop and making LOW, output HIGH.

6. Now, with LOW, the transistor opens again, allowing the capacitor to start
charging up again.

7. The cycle repeats, with the capacitor charging up to and then discharg-
ing down to continuously. While the capacitor is charging, the output is
HIGH, and when the capacitor is discharging, the output is LOW.

The theoretical waveforms depicting the operation of the 555 as an astable oscil-
lator are shown in Figure 21(a). Figure 21(b) shows the actual circuit and oscilloscope
waveforms at VC and Vout.

The formulas for the time durations tLO and tHI can be derived using the theory
presented in Section 2 and Equation 2. The time duration tLO is determined by realiz-
ing that the capacitor voltage travels a distance of VCC (from to and
that the total path it is trying to travel (E) is equal to (from to 0 V). The path
of the discharge current is through RB and C, so the time constant, (tau), is 
Therefore, the equation for tLO is derived as follows: 

(2)

(5) tLO = 0.693RBC

 tLO = RBC ln (2)

 tLO = RBC ln a
1

1 - 0.5
b

 tLO = RBC ln a
1

1 -
1
3VCC>

2
3VCC

b

 t = RC ln a
1

1 - �v>E
b

RB * C.t

2
3VCC

2
3VCC

1
3VCC)2

3VCC
1
3(�v)

1
3VCC

2
3VCC

Q

Q

1
3VCC,

RB.
Q

Q

2
3VCC,

1
3VCC,

RA + RB.
(Q

(Q = LOW, output = HIGH).

(VCC)

Q

2
3VCC,

MULTIVIBRATORS AND THE 555 TIMER
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To derive the equation for tHI:

the capacitor voltage (i.e., 

distance that the capacitor voltage is trying to 
(i.e., 

time constant, or the path that the charging current flows through
= (RA + RB) * C

t =

VCC -
1
3VCC)

travel =
2
3VCCE = total

2
3VCC -

1
3VCC)travels =

1
3VCC�v = distance

MULTIVIBRATORS AND THE 555 TIMER

VC

0

Vout

VCC

2 VCC3

1 VCC3

(a)

*VOH

*VOH = VCC − 1.5 V (Typ.) VOL = 0.1 V (Typ.)

*VOL

τD = RB × C

τC = (RA + RB) × C

VC triggers comparator 1

VC triggers comparator 2

tLO tHI

τD = Discharge time constant
τC = Charge time constant

Figure 21 The 555 astable multivibrator: (a) theoretical VC and Vout versus time waveforms
and (b) actual breadboarded circuit, power supply, and oscilloscope displaying the measured
VC and Vout waveforms.

(b)

Team
Discussion

Why can’t the duty cycle of
Vout ever be less than 50%
in this configuration?
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(6)tHI = 0.693(RA + RB)C

 tHI = (RA + RB)C ln (2)

 tHI = (RA + RB)C ln a
1

1 - 0.5
b

 tHI = (RA + RB)C ln a
1

1 -
1
3VCC>

2
3VCC

b

MULTIVIBRATORS AND THE 555 TIMER

E X A M P L E  1 0

Determine duty cycle, and frequency for the 555 astable multivi-
brator circuit of Figure 22.1

tHI, tLO,

Solution:

 = 85.9 kHz

 =

1

6.93 ms + 4.71 ms

 Frequency =

1

tHI + tLO

 = 59.5%

 =

6.93 ms

6.93 ms + 4.71 ms

 Duty cycle =

tHI

tHI + tLO

 = 6.93 ms

 = 0.693(4.7 k� + 10 k�)680 pF

 tHI = 0.693(RA + RB)C

 = 4.71 ms

 = 0.693(10 k�)680 pF

 tLO = 0.693RBC

VCC = 6 V

8 4

3

51
6

2

7

555

RA

4.7 kΩ

RB

10 kΩ

C
680 pF 0.01 μF

Vout

Figure 22 The 555 astable connections for Example 10.

Team 
Discussion

If you want to increase the
frequency of this oscillator
without affecting the duty
cycle, do both resistors
need adjusting?
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5 5 5  A S TA B L E  M U LT I V I B R ATO R  S I M U L AT I O N

Figure 23 shows a MultiSIM® simulation of a 555 astable multivibrator. It
is set up to duplicate Example 10. The oscilloscope is used to display the
waveforms at VC (red) and Vout (blue). The Y position on the Vout waveform
(blue, channel B) is set to –2 divisions to lower it away from the VC wave-
form.

MultiSIM Exercise:

(a) Load the file fig23 from the text companion website. Double-click the
oscilloscope to expand its size, and then turn on the power switch. Turn
off the power after the single sweep is complete. Drag vertical cursors
#1 and #2 to measure TLO and THI of the Vout waveform. Your values
should match those shown in Example 10.

(b) Recalculate the values for Ra and Rb to create a 50 kHz, 60% duty cycle
square wave at Vout. Use (Hint: see Problem 19.)C = 0.0022 mF.

VCC = 6 V

4.7 kΩ
Ra

4

A B

G

T

3

555

RST

VCC

VC

Vout

VC

Vout
OUTDIS

THR

TRI

CON

GND

7

6

2

5

1

0.01 μF680 ρF
C

10 kΩ
Rb

8

Figure 23 Using MultiSIM® to simulate the timing waveforms of a 555 
astable multivibrator.

50% Duty Cycle Astable Oscillator
By studying Figure 21, you should realize that to get a 50% duty cycle tLO must equal
tHI. You should also realize that for this to occur, the capacitor charging time constant

must equal the discharging time constant. But, with the astable circuits that we have
seen so far, this can never be true because the resistance in one case is just but in the
other case is RB plus RA. You cannot just make RA equal to because that would put
VCC directly on pin 7.

0 �
RB

(t)
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VCC

8 4

3

51
6

2

7

555

RA

RB = RA

C
0.01 μF

VoutDischarging
path

Charging
path

+

Figure 24 The 555 astable multivibrator set up for a 50% duty cycle.

Team
Discussion

The equation for tHI

assumes a perfect diode.
What effect do you think a
0.7-V diode drop will have
on the value of tHI?

However, if we make and short RB with a diode during the capacitor
charging cycle, we can achieve a 50% duty cycle. The circuit for a 50% duty cycle is
shown in Figure 24.

The charging time constant in Figure 24 is and the discharging time
constant is The formulas, therefore, become the following:

(7)

(8)

If RB is set equal to will equal tLO, and the duty cycle will be 50%. Also,
duty cycles of less than 50% can be achieved by using the diode and making RA less
than RB.

8 Monostable Operation of the 555 IC Timer

Another common use for the 555 is as a monostable multivibrator, as shown in Figure
25. The one shot of Figure 25(a) operates as follows:

1. Initially (before the trigger is applied), Vout is LOW, shorting pin 7 to ground
and discharging C.

2. Pin 2 is normally held HIGH by the pull-up resistor. To trigger the
one shot, a negative-going pulse (less than is applied to pin 2.

3. The trigger forces the lower comparator HIGH (see Figure 20), which sets
the flip-flop, making Vout HIGH and opening the discharge transistor (pin 7).

4. Now the capacitor is free to charge from 0 V up toward VCC via RA.

5. When VC crosses the threshold of the upper comparator goes HIGH,
resetting the flip-flop, making Vout LOW, and shorting the discharge
transistor.

6. The capacitor discharges rapidly to 0 V, and the one shot is held in its stable
state until another trigger is applied.(Vout = LOW)

2
3VCC,

1
3VCC)

10@k�

RA, tHI

tLO = 0.693RBC

tHI = 0.693RAC

RB * C.
RA * C,

RA = RB
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The waveforms that are generated for the one-shot operation are shown in Figure
25(b).

To derive the equation for tw of the one shot, we start with the same capacitor-
charging formula (Equation 2):

(2)

distance that the capacitor voltage (from 0 V up to

distance that the capacitor voltage is trying to 
(from 0 V up to VCC)

travel = VCCE =

2
3VCC)

travels =
2
3VCC�v =

where R = RA

t = RC ln a
1

1 - �v>E
b
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VCC

RA

C

Vout

Trigger
555

4 8

6

7

351

(a)

2

0.01 μF

10 kΩ

(Thres.)

(Disch.)

Figure 25 The 555 connections for one-shot operation: (a) circuit diagram and 
(b) waveforms.

VCC

0

Vout

– 1.5 V

0.1 V

Vtrigger

VCC

0

VC

Toward
VCC

0

VCC

tw

2 VCC3

1 VCC3

1 VCC3

(b)
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Substitution yields

(9) = 1.10RAC

 = RAC ln (3)

 = RAC ln a
1

1 - 0.667
b

 tw = RAC lna
1

1 -
2
3VCC>VCC

b
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Vin

5 V

0 V

VC

Vout

5 V

0 V

3.5 V

0.1 V

3.4 V

0.2 V

3.33 V

Vpin 3

1 μs
60 μs

60 μs

VCC = 5 V

RA

C

Vout

Vin

10 μs

555

4 8

6

7

351

2
9.09 kΩ

0.001 μF

7404

0.01 μF

10 kΩ

E X A M P L E  1 1

Design a circuit using a 555 one shot that will stretch a negative-going
pulse that occurs every into a negative-going pulse.

Solution: To set the output pulse width to :

 RAC = 9.09 ms

 10 ms = 1.10RAC

 tw = 1.10RAC

10 ms

10@ms60 ms
1@ms

Figure 26 Solution to Example 11.
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9 Crystal Oscillators

None of the RC oscillators or one shots presented in the previous sections are ex-
tremely stable. In fact, the standard procedure for building those timing circuits is to
prototype them based on the R and C values calculated using the formulas and then
“tweak” (or make adjustments to) the resistor values while observing the time period
on an oscilloscope. Normally, standard values are chosen for the capacitors, and po-
tentiometers are used for the resistors.

However, even after a careful calibration of the time period, changes in the com-
ponents and IC occur as the devices age and as the ambient temperature varies. To par-
tially overcome this problem, some manufacturers will allow their circuits to burn in,
or age for several weeks, before the final calibration and shipment.

Instead of using RC components, another timing component is available to the
design engineer when extremely critical timing is required. This highly stable and ac-
curate timing component is the quartz crystal (see Figure 27). A piece of quartz crys-
tal is cut to a specific size and shape to vibrate at a specific frequency, similar to an
RLC resonant circuit. Its frequency is typically in the range 10 kHz to 10 MHz.
Accuracy of more than five significant digits can be easily achieved using this method.

MULTIVIBRATORS AND THE 555 TIMER

Pick ; then,

Also, because the 555 outputs a positive-going pulse, an inverter must be
added to change it to a negative-going pulse. (7404 inverter: 

The final circuit design and waveforms are shown in
Figure 26.
VOL = 0.2 V).

VOH = 3.4 V,

RA = 9.09 k�

C = 0.001 mF

Figure 27 Photograph of an 8.000000-MHz quartz crystal.

Crystal oscillators are available as an IC package or can be built using an exter-
nal quartz crystal in circuits such as those shown in Figure 28. The circuits shown in
the figure will oscillate at a frequency dictated by the crystal chosen. In Figure 28(a),
the pot may need adjustment to start oscillation.

The 74S124 TTL chip in Figure 28(b) is a voltage-controlled oscillator, set up
to generate a specific frequency at By changing the crystal to a capacitor, the out-
put frequency will vary, depending on the voltage level at the frequency control (pin 1)
and frequency range (pin 14) inputs. Using specifications presented in the manufac-
turer’s data manual, you can determine the output frequency of the VCO based on the
voltage level applied to its inputs.

Vout.

100@k�
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Vout
(1)

100 kΩ

(2) (3) (4)

2-MHz Crystal

100 pF

(a)

1 74HC046

1 74HC046

(c)

10 MΩ

100 Ω

12 pF 12 pF

2-MHz
crystal

74HCT14

Vout = 2-MHz

Figure 28 Crystal oscillator circuits: (a) high-speed CMOS oscillator; (b) Schottky-TTL os-
cillator; (c) Schmitt-inverter oscillator.

The oscillator in Figure 28(c) uses a 2-MHz crystal and a single HCT-Schmitt to
create the highly accurate waveform shown.

Review Questions

11. The comparators inside the 555 IC timer will output a LOW if their
input is more positive than their input. True or false?

12. The discharge transistor inside the 555 shorts pin 7 to ground when the
output at pin 3 is _________ (LOW/HIGH).

13. When pin 6 (Threshold) of the 555 IC exceeds _________
the flip-flop is _________ (Reset/Set), making the output at

pin 3 _________ (LOW/HIGH).

14. The 555 is connected as an astable multivibrator in Figure 20. Vout is
HIGH while the capacitor charges through resistor(s) _________, and Vout
is LOW while the capacitor discharges through resistor(s) __________.

15. The 555 astable multivibrator in Figure 20 will always have a duty cy-
cle _________ (greater than/less than) 50% because _________.

(1
3VCC, 23VCC),

(+)(-)

MULTIVIBRATORS AND THE 555 TIMER

VCC = 3.3 V

Vout = 10 MHz

10-MHz
crystal

74LVC1GU04

2.2 MΩ

1 kΩ

30 pF 30 pF 

(b)
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16. When using the 555 as a monostable (one-shot) multivibrator, a
_________ (LOW/HIGH) trigger is applied to pin 2, which forces Vout
_________ (LOW/HIGH) and initiates the capacitor to start _________
(charging/discharging).

17. What advantage does a quartz crystal have over an RC circuit when
used in timing applications?

Summary

In this chapter, we have learned the following:

1. Multivibrator circuits are used to produce free-running clock oscillator
waveforms or to produce a timed digital level change triggered by an ex-
ternal source.

2. Capacitor voltage charging and discharging rates are the most common
way to produce predictable time duration for oscillator and timing opera-
tions.

3. An astable multivibrator is a free-running oscillator whose output oscil-
lates between two voltage levels at a rate determined by an attached RC cir-
cuit.

4. A monostable multivibrator is used to produce an output pulse that
starts when the circuit receives an input trigger and lasts for a length of time
dictated by the attached RC circuit.

5. The 74121 is an IC monostable multivibrator with two active-LOW and
one active-HIGH input trigger sources and an active-HIGH and an active-
LOW pulse output terminal.

6. Retriggerable monostable multivibrators allow multiple input triggers
to be acknowledged even if the output pulse from the previous trigger has
not expired.

7. The 555 IC is a general-purpose timer that can be used to make astable
and monostable multivibrators and to perform any number of other timing
functions.

8. Crystal oscillators are much more accurate and stable than RC timing
circuits. They are used most often for microprocessor and digital commu-
nication timing.

Glossary

Burn In: A step near the end of the production process in which a manufacturer exer-
cises the functions of an electronic circuit and ages the components before
the final calibration step.

Comparator: As used in a 555 timer, it compares the analog voltage level at its two
inputs and outputs, a HIGH or a LOW, depending on which input was
higher. (If the voltage level on the input is higher than the voltage level
on the input, the output is HIGH; otherwise, it is LOW.)-

+
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Crystal: A material, usually made from quartz, that can be cut and shaped to oscillate
at a very specific frequency. It is used in highly accurate clock and timing
circuits.

Duty Cycle: A ratio of the lengths of time that a digital signal is HIGH versus its total
period:

Exponential Charge/Discharge: An exponential rate of charge or discharge is non-
linear, meaning that the rate of change of capacitor voltage is greater in the
beginning and then slows down toward the end.

Multivibrator: An electronic circuit or IC used in digital electronics to generate
HIGH and LOW logic states. The bistable multivibrator is an S-R flip-flop
triggered into its HIGH or LOW state. The astable multivibrator is a free-
running oscillator that continuously alternates between its HIGH and LOW
states. The monostable multivibrator is a one shot that, when triggered, out-
puts a single pulse of a specific time duration.

Oscillator: An electronic circuit whose output continuously alternates between
HIGH and LOW states at a specific frequency.

Pulse Stretching: Increasing the time duration of a pulse width.

Retriggerable: A device that is capable of reacting to a second or subsequent trigger
before the action initiated by the first trigger is complete.

Time Constant (tau, : is equal to the product of resistance times capacitance and
is used to determine the rate of charge or discharge in a series RC circuit.

is equal to the number of seconds that it takes for a capacitor’s voltage
to reach 63% of its final value.)

Voltage-Controlled Oscillator (VCO): An oscillator whose output frequency is
dependent on the analog voltage level at its input.

Problems

Sections 1 and 2
1. Which type of multivibrator is also known as a:

(a) One shot?

(b) S-R flip-flop?

(c) Free-running oscillator?

2.

(a) For the RC circuit of Figure P2, determine the voltage on the capacitor
after the switch is moved from position 2 to position 1. (Assume

that initially.)

(b) Repeat part (a) for 

(c) Repeat part (a) for 

(d) Sketch and label a graph of capacitor voltage versus time for the values
that you found in parts (a), (b), and (c).

150 ms.

100 ms.

VC = 0 V
50 ms

(1 t

tT)

Duty cycle =

tHI

tHI + tLO
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3. The capacitor in Figure P2 is initially discharged. How long after the
switch is moved from position 2 to position 1 will it take for the capacitor
to reach 4 V?

4. Assume that the capacitor in Figure P2 is initially charged to 
2 V. How long after the switch is moved from position 2 to position 1 will
it take for the capacitor voltage to reach 4 V?

5. Assume that the capacitor in Figure P2 is initially charged to 
4 V. How long after the switch is moved from position 2 to position 3 will
it take for the voltage to drop to 2 V?

6. If you were successful at solving for the time in Problems 4 and 5, you
will notice that it takes longer for the capacitor voltage to go from 2 to 4 V
than it did to go from 4 to 2 V. Why is that true?

Section 3
7. Why is a Schmitt trigger inverter used for the astable multivibrator cir-
cuit of Figure 5 instead of a regular inverter like a 74HC04?

8. In a Schmitt trigger astable multivibrator, if the hysteresis voltage 
minus decreases due to a temperature change, what happens to:

(a) The output frequency?

(b) The output voltage?

9. Specifications for the 74HC14 Schmitt inverter when powered from a 6-
V supply are as follows: and

(a) Sketch and label the waveforms for Vcap and Vout in the astable multi-
vibrator circuit of Figure 5. (Use and 

(b) Calculate duty cycle, and frequency.

Sections 4 and 5
10. Design a monostable multivibrator using two 74HC00 NAND gates
similar to Figure 9. Determine the values for R and C such that a negative-
going, input trigger will create a positive-going output pulse.

11. Make the external connections to a 74121 monostable multivibrator to
convert a 100-kHz, 30% duty cycle square wave to a 100-kHz, 50% duty
cycle square wave.

50@ms2@ms

tHI, tLO,

C = 0.0047 mF.)R = 68 k�

VT - = 2.0 V.
VOH = 6.0 V, VOL = 0.0 V, VT + = 3.3 V,

VT -)
(VT +

E
5 V

R
100 kΩ

3
2

1

C
470 pF

Figure P2

D

D
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Input
pulse

0 14010 20 30 40 50 60 70 80 90

Time (μs)

130120110100

Output
pulse

Figure P12

12. Use two 74121s as a delay line to reproduce the waveforms shown in
Figure P12. (The output pulse will look just like the input pulse but delayed
by 30 ms.)

0 2.0
Time (μs)

1.51.00.5

A1

B

Q1

Q2

Q2

10 kΩ
30 pF

Q

+5 V

A1

B

1

A1

B

RD

74123

Q1

5.78 kΩ
50 pF

Q

+5 V

A1

1

B

A1

B

74121

A2

Figure P15
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Section 6
13. The NPRO microprocessor control line is supposed to issue a 
LOW pulse every as long as a certain process is running smoothly.
Design a “missing pulse detector” using a 74123 that will normally output a
HIGH but will output a LOW if a single pulse on the NPRO line is skipped.
(Hint: The 74123 will be retriggered by NPRO every 

14. Using the timing chart in Figure 18 for a 74123, determine a good
value for Rext and Cext to give an output pulse width of 400 ns.

15. Sketch the output waveforms at Q1 and Q2 of the multivibrators given
in Figure P15 if the and B waveforms are as shown.A1

150 ms.)

150 ms
10@msDC

DC
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Sections 7 and 8
16. Sketch and label the waveforms at Vout for the 555 circuit of Figure
P16 with the potentiometer set at 0 �.

MULTIVIBRATORS AND THE 555 TIMER

VCC = 9 V

8 4

3

51
6

2

7

555

10 kΩ

1000 pF
0.01 μF

Vout

4.7 kΩ

6.8 kΩ

Figure P16

17. Determine the maximum and minimum frequency and the maximum
and minimum duty cycle that can be achieved by adjusting the potentiome-
ter in Figure P16.

18. Derive formulas for duty cycle and frequency in terms of and C
for a 555 astable multivibrator. (Test your formulas by re-solving Problem
17.)

19. Using a 555, design an astable multivibrator that will oscillate at 50
kHz, 60% duty cycle. (So that we all get the same answer, let’s pick

20. Design a circuit that will produce a 100-kHz square wave using:

(a) A 74HC14

(b) Two 74121s

(c) A 74123

(d) A 555

21. Sketch and label the waveforms at Vtrigger, Vcap, and Vout for the 555
one-shot circuit of Figure 25(a). Assume that Vtrigger is a negative-go-
ing pulse that occurs every and and

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

22. The 68HC11 microcontroller in the HC11D0 Master Board schematic
provides a clock output signal at the pin labeled E. This clock signal is used
as the input to the LCD controller, M1 (grid location E-7). The frequency
of this signal is 9.8304 MHz, as dictated by the crystal on the 68HC11. To
experiment with different clock speeds on the LCD controller, you want to
design a variable frequency oscillator that can scan the frequency range of
100 kHz to 1 MHz. Design this oscillator using a 555 that will output its
signal to pins 6 and 10 of the LCD controller. (Use a 50% duty cycle and
C 780 pF.)=

C = 1000 pF.
VCC = 5 V, RA = 47 k�,100 ms

5@ms

C = 0.0022 mF.)

RA, RB,

C

C

DC

DC

DC
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23. Design a “missing pulse detector” similar to the one designed in
Problem 13. It will be used to monitor the DAV input line in the 4096/4196
schematic. Assume that the DAV line is supposed to provide a HIGH
pulse every Monitor the DAV line with a 74123 monostable multi-
vibrator. Have the 74123 output a HIGH to port 1, bit 7 (P1.7) of the 8031
microcontroller if a missing pulse is detected.

MultiSIM® Exercises

E1. Load the circuit file for Section 5a. This monostable multivibrator
(one-shot) is used to create a positive output pulse having a width equal to

(a) Use your calculator to determine the pulse width of Vout. Use 
the oscilloscope to measure the actual output pulse width. 

_________ _________.

(b) Measure the duty cycle (DC) of Vtrigger and Vout. DC _________
DC __________.

(c) Calculate a new value for Rext to make the duty cycle of Vout equal to
50%. _________. Change Rext in the circuit to your calculated
value and measure the new duty cycle to see if you were accurate.

E2. Load the circuit file for Section 5b. Use a calculator to predict the
pulse width of Vout. Notice that this one shot uses the active-LOW trigger
input and provides an active-LOW output pulse. On a piece of graph paper,
sketch the expected waveforms at Vtrigger and Vout. (Show all times and volt-
age levels.)

Connect the oscilloscope to measure the waveforms. What is the
measured LOW pulse width of Vtrigger and Vout? Are they close to what you
predicted?

E3. Load the circuit file for Section 5c. Design a circuit using a mono-
stable multivibrator that will convert a 10-kHz, 70% duty cycle square
wave into a 50% duty cycle square wave. Demonstrate your waveforms to
your instructor.

E4. Load the circuit file for Section 8a. This is an exact duplicate of
Example 10 in the text. The calculated and 
Use the oscilloscope to compare calculated to measured values.

(a) Measured _________ _________.

(b) Changing VCC to 9 V makes Thi and Tlo increase, decrease, or remain
the same?

(c) Changing Ra to 10 K makes Tlo increase, decrease, or remain the
same?

(d) Changing C to 330 pF makes the frequency increase, decrease, or remain
the same?

E5. Load the circuit file for Section 8b. On a piece of paper, calculate and
sketch the new waveforms for VC and Vout if Rb is changed to Create
a data table of calculated versus measured time values for Vout.

E6. Load the circuit file for Section 8c. Design a 555 astable multivibrator
that produces a 50-kHz, 60% duty cycle square wave at Vout. Demonstrate
your design and waveforms to your instructor.

20 k�.

�

Tlo =Thi =

Tlo = 4.71 mS.Thi = 6.93 mS

Rext =

Vout =

Vtrig =

Tmeas. =Tcalc. =

0.693 * Rext * Cext.

100 ms.
2@ms

C

DC

DC

DCS
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Answers to Review Questions

1. False

2. Slower

3. True

4. and and VOL

5. Decrease

6. False

7. Or, LOW, and, HIGH

8. or HIGH–HIGH

9. HIGH

10. It means that input triggers are
ignored during the timing cycle
of a 74121, but not for the
74123. A new timing cycle is

A2,A1

VT -, VOHVT +

started each time a trigger is
applied to a 74123.

11. True

12. LOW

13. Reset, LOW

14.
15. Greater than; the charging path

consists of whereas
the discharging path consists
of only RB.

16. LOW, HIGH, charging

17. It has greater stability and
accuracy than an RC circuit.

RA + RB,

RA + RB, RB

2
3VCC,

Answers to Odd-Numbered Problems

1. (a) Monostable (b) Bistable
(c) Astable

3.
5.
7. Because a Schmitt device has two distinct

switching thresholds, VT+
and VT-

; a regu-
lar inverter does not. The capacitor voltage
charges and discharges between those two
levels.

9.

32.6 ms

75.6 ms

13. Choose an output pulse width that is longer
than let’s say, That way, if
a pulse is missing after (the O.S. is
not retriggered), the output will go LOW.

170 ms
170 ms.150 ms,

6 V

0 V

3.3 V

2.0 V

Vout

0 V

VC

tHI = 126 μs     tLO = 160 μs
DC = 44.1%    f = 3.5 kHz

11.
Vin 3 μs 7 μs

Vout 5 μs 5 μs

VCC

Rx 7.21 kΩ

Cx = 0.001 μF

T

Vout

Vin
74121

Pick Cx = 0.001 μF; Rx = 7.21 kΩ

VCC

Rx 12.9 kΩ

Cx = 0.047 μF

T

Output

74123

NPRO

1

1

Pick Cx = 0.047 μF; Rx = 12.9 kΩ

15.

A1

Q1

Q2

B

0.50 1.0 1.5 2.0 time
(μs)

tw1 = 0.20 μs
tw2 = 0.20 μs

17.

DC = 59.4%
@ 10 k�, f = 39.8 kHz

DC = 71.0%
@ 0 �, f = 89.0 kHz
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19.
VCC

RA 2618 Ω

.0022 μF

7

Vout

C

8 4

3
51

6
2 555

RB 5236 Ω

.01 μF

21.

5 V

Vtrig

0 V
5 μs

100 μs

3.33 V

Vcap

0

3.5 V

Vout

0.1 V

tw
0

tw = 51.7 μs

23.

4 P1.7 OF U8

13

Q

Q

.05�f

8 .5K

N/C

74LS123
RCext15

VCC

14

DAV IN
+5

+

1
2
3

Cext

A
B
CLR

E–1. (a)
(b)
(c)

E3.

Use those components in a circuit similar
to that in Section  5b.

E5.

Pick Cext = .01 mf, Rext = 7220 �.
50 mS = .693 Rext * Cext,
Tout: 50% * 100 mS = 50 mS,
Thi = 70 mS

mS,Ttrigger: Ttot = 1>10 kHz = 100

Rext = 722 �
DC Vtrig = 20%, DC Vout = 70%

Tmeas = 700 mSTcalc = 693 mS,

4 V

4 V

th

tl

11.64 μs

Vout (calc.)

9.42 μs

11.8 μs

Vout (meas.)

9.6 μs

4.5 V

0.1 V

Vout

Vc
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Interfacing to the 
Analog World

OUTLINE

1 Digital and Analog Representations
2 Operational Amplifier Basics
3 Binary-Weighted D/A Converters
4 R/2R Ladder D/A Converters
5 Integrated-Circuit D/A Converters
6 Integrated-Circuit Data Converter Specifications
7 Parallel-Encoded A/D Converters
8 Counter-Ramp A/D Converters
9 Successive-Approximation A/D Conversion

10 Integrated-Circuit A/D Converters
11 Data Acquisition System Application
12 Transducers and Signal Conditioning

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Perform the basic calculations involved in the analysis of operational amplifier
circuits.

• Explain the operation of binary-weighted and R/2R digital-to-analog converters.
• Make the external connections to a digital-to-analog IC to convert a numeric

binary string into a proportional analog voltage.
• Discuss the meaning of the specifications for converter ICs as given in a manu-

facturer’s data manual.
• Explain the operation of parallel-encoded, counter-ramp, and successive-

approximation analog-to-digital converters.
• Make the external connections to an analog-to-digital converter IC to convert an

analog voltage to a corresponding binary string.
• Discuss the operation of a typical data acquisition system.

INTRODUCTION

Most physical quantities that we deal with in this world are analog in nature. For
example, temperature, pressure, and speed are not simply 1s and 0s but, instead, take
on an infinite number of possible values.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 15 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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To be understood by a digital system, these values must be converted into a binary string
representing their value; thus, we have the need for analog-to-digital conversion. Also, it
is important when we need to use a computer to control analog devices to be able to con-
vert from digital to analog.

Devices that convert physical quantities into electrical quantities are called
transducers. Transducers are readily available to convert such quantities as tempera-
ture, pressure, velocity, position, and direction into a proportional analog voltage or
current. For example, a common transducer for measuring temperature is a thermistor.
A thermistor is simply a temperature-sensitive resistor. As its temperature changes, so
does its resistance. If we send a constant current through the thermistor and then meas-
ure the voltage across it, we can determine its resistance and temperature. 

1 Digital and Analog Representations

For analog-to-digital (A/D) or digital-to-analog (D/A) converters to be useful, there
has to be a meaningful representation of the analog quantity as a digital representation
and the digital quantity as an analog representation. If we choose a convenient range of
analog levels such as 0 to 15 V, we could easily represent each 1-V step as a unique
digital code, as shown in Figure 1.

Time (ms) Analog Digital

Representation

1
2
3
4
5
6
7
8
9
10
11
12

3
5
9
10
13
14
13
11
10
10
8
5

0011
0101
1001
1010
1101
1110
1101
1011
1010
1010
1000
0101

(b)

1
0

1 2 3 4 5 6 7 8 9 10 11 12

2
3
4
5
6
7
8
9

10
11
12
13
14
15

Time (ms)

(a)

A
na

lo
g 

vo
lta

ge
 (

V
)

Figure 1 Analog and digital representations: (a) voltage versus time; (b) representations at
1-ms intervals; (c) results at the 4 ms time.

(c)

D2

D3

D1

D0

4-bit A/D
converter

10 V
Analog

in

Digital
out

0

1

0

1

Team
Discussion

What are some scientific
and commercial
applications for analog-
to-digital conversion
and digital-to-analog
conversion?

INTERFACING TO THE ANALOG WORLD
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Figure 1 shows that for each analog voltage, we can determine an equivalent dig-
ital representation. For example, at 4 ms the analog voltage of 10 V will be represented
by an A/D converter as 10102. Using four binary positions gives us 4-bit resolution,
which allows us to develop 16 different representations, with the increment between
each being 1 part in 16. If we need to represent more than just 16 different analog lev-
els, we would have to use a digital code with more than four binary positions. For ex-
ample, a D/A converter with 8-bit resolution will provide increments of 1 part in 256,
which provides much more precise representations.

2 Operational Amplifier Basics

Most A/D and D/A circuits require the use of an op amp for signal conditioning.
Three characteristics of op amps make them an almost ideal amplifier: (1) very high
input impedance, (2) very high voltage gain, and (3) very low output impedance. In
this section, we gain a basic understanding of how an op amp works, and in future
sections, we see how it is used in the conversion process. A basic op-amp circuit is
shown in Figure 2.
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Op
ampVi

5 V

Ri
10 kΩ+

–

+ –

+

–

+ –

Ii =
5 V

10 kΩ
Vi

Ri
= = 0.5 mA

I = 0

I = 0

G

IF = 0.5 mA

RF
1 kΩ

= –(0.5 mA × 1 kΩ) = −0.5 V

IF = Ii

Vout equals the
voltage across RF

Vout = –
Vi

Ri
× RF

Op
amp

Figure 2 Basic op-amp operation.

The symbol for the op amp is the same as that for a comparator, but when it is
connected as shown in Figure 2, it provides a much different function. The basic the-
ory involved in the operation of the op-amp circuit in Figure 2 is as follows:

1. The impedance looking into the and input terminals is assumed to
be infinite; therefore, Iin

2. Point G is assumed to be at the same potential as the input; therefore,
point G is at 0 V, called virtual ground. (Virtual means “in effect” but not
actual. It is at 0 V, but it cannot sink current.)

3. With point G at 0 V, there will be 5 V across the resistor, causing 0.5 mA
to flow.

4. The 0.5 mA cannot flow into the op amp; therefore, it flows up through the
resistor.

5. Because point G is at virtual ground and Vout is measured with respect 
to ground, Vout is equal to the voltage across the resistor, which is
-0.5 V.

1@k�

1@k�

10@k�

(+)

(- ) = 0 A.(+),
(- )(+)
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Find Vout in Figure 3.

Vout

12 V

5 kΩ

+

+
–

+

10 kΩ

2 kΩ

10 V

Figure 3 Op-amp circuit for Example 1.

Review Questions

1. Transducers are devices that convert physical quantities like pressure
and temperature into electrical quantities. True or false?

2. An 8-bit A/D converter is capable of producing how many unique digi-
tal output codes?

3. The input impedance to an operational amplifier is assumed to be
_________. The voltage difference between the input and input is
approximately _________ volts.

3 Binary-Weighted D/A Converters

A basic D/A converter (DAC) can be built by expanding on the information presented
in Section 2. Example 1 showed us that the resistor receives the sum of the cur-
rents heading toward the op amp from the two input resistors. If we scale the input re-
sistors with a binary weighting factor, each input can be made to provide a
binary-weighted amount of current, and the output voltage will represent a sum of all
the binary-weighted input currents, as shown in Figure 4.

In Figure 4, the resistor sums the currents that are provided by closing any
of switches D0 to D3. The resistors are scaled in such a way as to provide a binary-
weighted amount of current to be summed by the resistor. Closing D0 causes
50 to flow through the creating at Vout. Closing each successive
switch creates double the amount of current of the previous switch. Work through several
of the switch combinations presented in Figure 4 to prove its operation.

If we were to expand Figure 4 to an 8-bit D/A converter, the resistor for D4 would
be one-half of which is Each successive resistor is one-half of the
previous one. Using this procedure, the resistor for D7 would be !0.78125 k�

6.25 k�.12.5 k�,

-1.0 V20 k�,mA
20@k�

20@k�

2@k�

(-)(+)

Solution:

 Vout = - (3.2 mA * 2 k�) = -6.4 V

 I2 k� = 1.2 mA + 2 mA = 3.2 mA

 I5 k� =

10 V

5 k�
= 2 mA

 I10 k� =

12 V

10 k�
= 1.2 mA
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Coming up with accurate resistances over such a large range of values is very
difficult. This limits the practical use of this type of D/A converter for any more than
4-bit conversions.
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V
(Analog out)

out
+

–

D0

Rf receives
the sum of
all currents

20 kΩ100 kΩ

D1

50 kΩ

D2

25 kΩ

D3

12.5 

Digital in

kΩ

+5 V (1)

Binary-weighted
resistors

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D2

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

D1 D0 Vout (–V)D3

Digital Analog

(a) (b)

Figure 4 Binary-weighted D/A converter: (a) circuit diagram; (b) input-output results; (c)
block diagram.

(c)

D2

D3

D1

D0

4-bit D/A
converter

Analog
out

Digital
input

E X A M P L E  2

Determine the voltage at Vout in Figure 4 if the binary equivalent of is
input on switches D3 to D0.

Solution: (switches D3 and D1 are closed)

Vout = - [(0.4 mA + 0.1 mA) * 20 k�] = -10 V

 I1 =

5 V

50 k�
= 0.1 mA

 I3 =

5 V

12.5 k�
= 0.4 mA

1010 = 10102

1010

4 R/2R Ladder D/A Converters

The method for D/A conversion that is most often used in D/A converters is known as
the R/2R ladder circuit. In this circuit, only two resistor values are required, which
lends itself nicely to the fabrication of ICs with a resolution of 8, 10, or 12 bits, and
higher. Figure 5 shows a 4-bit D/A R/2R converter. To form converters with higher
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resolution, all that needs to be done is to add more R/2R resistors and switches to the
left of D3. Commercially available D/A converters with resolutions of 8, 10, 12, 14,
and 16 bits are commonly made this way.

In Figure 5, the 4-bit digital information to be converted to analog is entered on
the D0 to D3 switches. (In an actual IC, those switches would be transistor switches.)
The arrangement of the circuit is such that as the switches are moved to the 1 position,
they cause a current to flow through the summing resistor, that is proportional to
their binary equivalent value. (Each successive switch is worth double the previous
one.)

This circuit, which is designed in the shape of a ladder, is an ingenious way to
form a binary-weighted current-division circuit. Refer to Figure 6(a) to see how we ar-
rive at the current levels and value of Vout. First, keep in mind the op-amp rules pre-
sented in Section 2. In particular, remember that the input to the op amp is at
virtual ground, and any current that reaches this point will continue to flow past it, up
through the summing resistor With this knowledge, we can determine that the re-
sistance of, and the current through, each rung of the ladder is unaffected by the posi-
tion of any of the data switches (D3 to D0). This is because (1) with a data switch in the
0 position, the bottom of the corresponding resistor is connected to ground and
(2) when it is in the 1 position, it is connected to virtual ground, which acts the same
as ground.

20@k�

(Rs).

(-)

Rs,
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Vout
+

–

D0
2R

2R

1

2R

Rs

R

D1

1

2R

R

D2

1

2R

R

D3

1

2R

Vref

0 000

Digital in

(Analog out)

Figure 5 The R/2R ladder D/A converter.

Vout
+

–

D0
1 Rs

D1
1

D2
1

D3
1

Vref = +5 V 

0 000

20 kΩ
Summing
current

+ –

20 kΩ

0 V
0 V

250 μA
125 μA

250 μA

20 kΩ

125 μA
62.5 μA

20 kΩ

31.25 μA

20 kΩ20 kΩ

62.5 μA
31.25 μA

10 kΩA 10 kΩC DB 10 kΩ

500 μA

GND path

Current divides equally
at each branch

Rs path

(a)

Figure 6 R/2R ladder D/A converter: (a) Current division;
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To calculate the current contributed by each rung in Figure 6(a), we must first
calculate the total current leaving Vref. By collapsing the circuit from the right, we have

in parallel with which gives This is in series with the
resistor between C and D, making This is now in parallel with

the resistor above D1. This procedure is repeated over and over until we arrive
at the total resistance seen by Vref being equal to Therefore, the total current
leaving Vref is 5 V divided by which equals 

When that current reaches point A, it divides equally into the two branches, be-
cause each branch is The that reaches point B also splits equally, send-
ing down the D2 rung. This current splitting continues for each rung. Notice
that each resulting current is one-half the current to its left, forming a binary-weighted
ratio that is then available for the op-amp summing resistor.

If D3 is in the 1 position, the is routed through the summing
resistor (Rs), creating at Vout. (If it is in the 0 position, the current is routed
directly to ground and does not contribute to Vout.) The portion of Vout contributed by
the current through each data switch can be summarized as follows:

A 4-bit D/A converter such as this can have 16 different combinations of D3 to
D0. The output voltage for any combination of binary input of a 4-bit D/A con-
verter can be determined by the following equation:

(1)

The analog output voltages for our 4-bit converter are given in Figure 6(b).

Vout = - aVref *

Bin

8
b

(Bin)

 Total (D3 to D0 = 1111)   Vout = -9.375 V

(D0)  Vout = -31.25 mA * 20 k� = -0.625 V

(D1)  Vout = -62.5 mA * 20 k�  = -1.250 V

(D2)  Vout = -125 mA * 20 k�  = -2.500 V

(D3)  Vout = -250 mA * 20 k�  = -5.000 V

-5.0 V
20@k�250 mA

125 mA
250 mA20 k�.

500 mA.10 k�,
10 k�.

20@k�
20 k�20 k�.10@k�

10 k�10 k�.20 k�,20 k�

INTERFACING TO THE ANALOG WORLD

Figure 6 (Continued ) (b) Analog output versus digital input. 
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(b)
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Review Questions

4. If the first three resistors in a binary-weighted D/A converter are 30, 60,
and the fourth resistor, used for the D0 input, must be _________
ohms.

5. Why is it difficult to build an accurate 8-bit binary-weighted D/A con-
verter?

6. To build an 8-bit R/2R ladder D/A converter, you would need at least
eight different resistor sizes. True or false?

7. If Vref is changed to 6 V in the R/2R converter of Figure 6(a), the maxi-
mum value at Vout will be 11.25 V. True or false?

5 Integrated-Circuit D/A Converters

One very popular and inexpensive 8-bit D/A converter (DAC) is the DAC0808 and its
equivalent, the MC1408. A block diagram, pin configuration, and typical application
are shown in Figure 7. The circuit in Figure 7(c) is set up to accept an 8-bit digital in-
put and provide a 0- to analog output. A reference current (Iref) is required for
the D/A and is provided by the 10-V, combination shown. The negative reference
(pin 15) is then tied to ground via an equal-size resistor. A compensation ca-
pacitor is connected from pin 16 to 3 to eliminate noise in the output. 

The 2-mA reference current dictates the full-scale output current (Iout) to also be
approximately 2 mA. To calculate the actual output current, use the following formula:

(2)

[For example, with all inputs to HIGH, To convert an
output current to an output voltage, a series resistor could be connected from pin 4 to

Iout = Iref * (255/256).]A8)(A1

Iout = Iref * a
A1

2
+

A2

4
+ . . . +

A8

256
b

(5@k�)
5@k�

+10@V

120 k�,

Vref (+)

Vref (–)

A3

A2

A1

Iout

VEE

16

Compen.

13

A3

7

A2

6

A1

5

A4 A5 A6 A7 A8

8 9 10 11 12

MSB LSB

R-2R ladder

Current switches

Bias current

Iout

4

2
GND

VEE
3

NPN current
source pair

(a)

14

15

(+)

(–)

Vref

Vref

Reference
current

amplifier

VCC

Compen.1

2

3

4

5

6

7

16

15

14

13

12

11

10

(LSB)

A6

A7

VCC

GND

Top view

NC

A4 8 9 A5

(b)

(MSB) A8

Figure 7 The MC 1408 D/A converter: (a) block diagram; (b) pin configuration; 
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ground and the output taken across the resistor. This method is simple, but it may cause
inaccuracies as various-size loads are connected to it.

A more accurate method uses an op amp such as the 741 shown in Figure 7(c).
The output current flows through which develops an output voltage equal to

The range of output voltage can be changed by changing and is limited
only by the specifications of the op amp used.

To test the circuit, an oscillator and an 8-bit counter can be used to drive the dig-
ital inputs, and the analog output can be observed on an oscilloscope, as shown in
Figure 8. In Figure 8, as the counters count from 0000 0000 up to 1111 1111, the ana-
log output will go from 0 V up to almost in 256 values. The time per step will
be equal to the reciprocal of the input clock frequency. 1

+10 V

RFIout * RF.
RF,
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+

–
741

RF
5 kΩ

DAC0808
MC1408

A1

A2

A3

A4

A5

A6

A7

A8

Iout

(LSB)

(MSB)

DAC

Cp

7493

Q0

Q3

Q2

Q1
10 kHzClock

oscillator

Cp

7493

Q0

Q3

Q2

Q1

+9.96 V 

0 V

0.1 ms per
step

Input
Oscilloscope

256
values

Count 0000 0000,
0000 0001, . . . up to
1111 1111

Figure 8 Using an 8-bit counter to test the 256-step output of a DAC.

Figure 7 (Continued ) (c) typical application. 
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Analog Vout  = Iout+

–
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2× +
A2

4
+ . . . + AN
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–15 V

+5 V

VCC
10 V = Vref

(c)

Iref = = 2 mA
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Rref(+)
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Iout

ref(+)
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Team
Discussion

What are two ways to
change the range of Vout?

Team
Discussion

How could the D/A
converter be driven to
create a triangle 
waveform? A square 
wave?
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DAC  S I M U L AT I O N

Figure 9 shows a MultiSIM® simulation of an 8-bit digital-to-analog con-
verter. The Word Generator (XWG1) is set up to count 0 through F16

These digital values are converted to an analog voltage
and displayed on the oscilloscope.

MultiSIM Exercise: Load the file fig15_9 from the text companion web-
site. Double-click the oscilloscope to expand its size, and then turn on the
power switch. Turn off the power after the single sweep is complete. Count
the number of steps for each cycle (should be 16). Drag vertical cursors #1
and #2 to measure the time period of one step (should be Use the
vertical cursors to determine the voltage difference between any two steps
(should be 19.5 mV).

100 ms).

(00002-11112).

A B

G

T

16 0

XWG1

XSC1

31 15
T

MOD-16 counter

VCC
5 V
Vref

VDAC

Analog
output+

−

D0 D1 D2 D3 D4 D5 D6 D7

R

O
O
O
O

X
X
X
X

Digital input

Figure 9 Using MultiSIM® to simulate the waveforms of a DAC driven by 
a MOD-16 counter.

E X A M P L E  3

Determine and Vout in Figure 7(c) if the following binary strings are in-
put at A1 to A8: (a) 1111 1111; (b) 1001 1011.

Iout
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6 Integrated-Circuit Data 
Converter Specifications

In addition to resolution, several other specifications are important in the selection
of D/A and analog-to-digital (A/D) converters (DACs and ADCs). It is important
that the specifications and their definitions given in the manufacturer’s data book be
studied and understood before selecting a particular DAC or ADC. Figure 10 lists
some of the more important specifications as presented in the Signetics Linear LSI
Data Manual.
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Solution:

(a) Using Equation 2,

and

(b) Using Equation 2,

and

There are two ways to arrive at the fraction 155/256 in the above solution.
One way is to find a common denominator for all the fractions and then add
them together, as we did. The other way is to convert the binary input 1001
1011 into decimal, which equals 155, and then divide that by 256. The new
equation becomes the following:

(3)Iout = Iref * a
Binary input10

25610
b

 = 6.05 V

 = 1.21 mA * 5 k�

 Vout = Iout * RF

 = 1.21 mA

 = 2 mA * a
155

256
b

  = 2 mA * a
1

2
+

1

16
+

1

32
+

1

128
+

1

256
b

 Iout = Iref * a
A1

2
+

A2

4
+ c +

A8

256
b

 = 9.96 V

 = 1.99 mA * 5 k�

 Vout = Iout * RF

 = 1.99 mA

 = 2 mA * a
255

256
b

 = 2 mA * a
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+

1

256
b

 Iout = Iref * a
A1

2
+

A2

4
+ c +

A8

256
b
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Perfect
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Figure 10 DAC and ADC specification definition: (a) differential nonlinearity; (b) gain er-
ror; (c) missing codes; (d) nonmonotonic (must be LSB nonlinear); (e) offset error; (f )
relative accuracy; (g) settling time; (h) 3-bit ADC transfer characteristic. (Used with
permission from NXP Semiconductors.)
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Review Questions

8. Is the analog output of the MC1408 DAC IC represented by current or
voltage?

9. Which digital input to the MC1408 DAC IC has the most significant ef-
fect on the analog output: A1, or A8?
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10. The resolution of a DAC or ADC specifies the _________.

11. A DAC is nonmonotonic if its analog output drops after a 1-bit
increase in digital input. True or false?

12. Which error affects the rate of change, or slope, of the ideal transfer
function of an ADC, the gain error or the offset error?

7 Parallel-Encoded A/D Converters

The process of taking an analog voltage and converting it to a digital signal can be done
in several ways. One simple way that is easy to visualize is by means of parallel encod-
ing (also known as simultaneous, multiple comparator, or flash converting). In this
method, several comparators are set up, each at a different voltage reference level with
their outputs driving a priority encoder, as shown in Figure 11. The voltage-divider
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74148

I1

EI

(Enable Inputs)

I2

I3

I4

I5

I6

I7

–

+
7

1 kΩ

7 V

–

+
6

1 kΩ

6 V

–

+
5

1 kΩ

5 V

–

+
4

1 kΩ

4 V

–

+
3

1 kΩ

3 V

–

+
2

1 kΩ

2 V

–

+
1

1 kΩ

1 V

1 kΩ

Analog Vin

I0 A2

A1

A0
3-Bit
digital
output

Highest active
input gets
encoded.

D2

D1

D0

ADC

Analog
In

Digital
Out

(a)

(b)

Figure 11 Three-bit parallel-encoded ADC: (a) block diagram and (b) circuit diagram.
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Start
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conversion
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analog Vin

Figure 12 Counter-ramp A/D converter.

network in Figure 11 is designed to drop 1 V across each resistor. This sets up a volt-
age reference at each comparator input in 1-V steps.

When Vin is 0 V, the input on all seven comparators will be higher than the
input, so they will all output a HIGH. In this case, is the only active-LOW input

that is enabled, so the 74148 will output an active-LOW binary 0 (111). 
When Vin exceeds 1.0 V, comparator 1 will output a LOW. Now and are both

enabled, but because it is a priority encoder, the output will be a binary 1 (110). As Vin
increases further, each successive comparator outputs a LOW. The highest input that
receives a LOW is encoded into its binary equivalent output.

The A/D converter in Figure 11 is set up to convert analog voltages in the range
from 0 to 7 V. The range can be scaled higher or lower, depending on the input voltage
levels that are expected. The resolution of this converter is only 3 bits, so it can only
distinguish among eight different analog input levels. To expand to 4-bit resolution,
eight more comparators are required to differentiate the 16 different voltage levels. To
expand to 8-bit resolution, 256 comparators would be required! As you can see, circuit
complexity becomes a real problem when using parallel encoding for high-resolution
conversion. However, a big advantage of using parallel encoding is its high speed. The
conversion speed is limited only by the propagation delays of the comparators and en-
coder (less than 20 ns total).

8 Counter-Ramp A/D Converters

The counter-ramp method of A/D conversion (ADC) uses a counter in conjunction
with a D/A converter (DAC) to determine a digital output that is equivalent to the un-
known analog input voltage. In Figure 12, depressing the start conversion push button
clears the counter outputs to 0, which sets the DAC output to 0 V. The input to the
comparator is now 0 V, which is less than the positive analog input voltage at the 
input. Therefore, the comparator outputs a HIGH, which enables the AND gate,

(+)
(- )

I1I0

I0(-)
(+)

Helpful 
Hint

This circuit is made
completely of devices that
have already been
discussed, which makes it
a good circuit to illustrate
timing and interface
between multiple ICs.
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allowing the counter to start counting. As the counter’s binary output increases, so
does the DAC output voltage in the form of a staircase. 

When the staircase voltage reaches and then exceeds the analog input voltage,
the comparator output goes LOW, disabling the clock and stopping the counter. The
counter output at that point is equal to the binary number that caused the DAC to out-
put a voltage slightly greater than the analog input voltage. Thus, we have the binary
equivalent of the analog voltage!

The HIGH-to-LOW transition of the comparator is also used to trigger the D flip-
flop to latch on to the binary number at that instant. To perform another conversion, the
start push button is depressed again, and the process repeats. The result from the
previous conversion remains in the D flip-flop until the next end-of-conversion HIGH-
to-LOW edge comes along.

To change the circuit to perform continuous conversions, the end-of-conversion
line could be tied back to the clear input of the counter. A short delay needs to be in-
serted into this new line, however, to allow the D flip-flop to read the binary number
before the counter is Reset. Two inverters placed end to end in the line will produce a
sufficient delay.

The main disadvantage of the counter-ramp method of conversion is its slow
conversion speed. The worst-case maximum conversion time will occur when the
counter has to count all 255 steps before the DAC output voltage matches the analog
input voltage 

Review Questions

13. In the parallel-encoded ADC of Figure 11, only one of the comparators
will output a LOW for each analog input value. True or false?

14. One difficulty in building a high-resolution, 10-bit, parallel-
encoded ADC is that it would take _________ comparators to complete
the design.

15. The counter-ramp ADC of Figure 12 signifies an “end of conversion”
when the input voltage to the comparator drops below the input
voltage. True or false?

16. The digital output of the octal D flip-flop in Figure 12 is continuously
changing at the same rate as the MOD-256 counter. True or false?

9 Successive-Approximation A/D Conversion

Other methods of A/D conversion employ up/down-counters and integrating slope
converters to track the analog input, but the method used in most modern IC ADCs is
called successive approximation. This converter circuit is similar to the counterramp
ADC circuit, except that the method of narrowing in on the unknown analog input volt-
age is much improved. Instead of counting up from 0 and comparing the DAC output
each step of the way, a successive-approximation register (SAR) is used in place of the
counter (see Figure 13).

In Figure 13, the conversion is started by dropping the line LOW. Then the
SAR first tries a HIGH on the MSB (D7) line to the DAC. (Remember, D7 will cause
the DAC to output half of its full-scale output.) If the DAC output is then higher than
the unknown analog input voltage, the SAR returns the MSB LOW. If the DAC output
was still lower than the unknown analog input voltage, the SAR leaves the MSB
HIGH.

STRT

(+)(-)

[tmax = 256 * (1> fcp)].
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Team 
Discussion

Why is the SAR converter
much faster than the
counter-ramp?
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STRT
(start conversion)

Analog Vin

Digital
output

Output
register

Cp
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

Successive-approximation
register (SAR)

Vout

+

–

Clock
oscillator

D0

LSBMSB

D1D2D3D4D5D6D7

8-Bit D/A
converter (DAC)

Vref = 10 V

DR (data ready,
end-of conversion)

(Octal
D F-F)

Figure 13 Simplified SAR A/D converter.

Now, the next lower bit (D6) is tried. If a HIGH on D6 causes the DAC output to
be higher than the analog Vin, it is returned LOW. If not, it is left HIGH. The process
continues until all 8 bits, down to the LSB, have been tried. At the end of this eight-
step conversion process, the SAR contains a valid 8-bit binary output code that repre-
sents the unknown analog input. The output now goes LOW, indicating that the
conversion is complete and the data are ready. The HIGH-to-LOW edge on clocks
the D0 to D7 data into the octal D flip-flop to make the digital output results available
at the to lines.

The main advantage of the SAR ADC method is its high speed. The ADC in
Figure 5–13 takes only eight clock periods to complete a conversion, which is a vast
improvement over the counter-ramp method Notice that with the
SAR, the final binary result is always slightly less than the equivalent analog input,
where as with the counter-ramp, it is slightly more.

[tmax = 8 * (1> fcp)].

Q7Q0

DR
DR

E X A M P L E  4

Show the timing waveforms that would occur in the successive approxima-
tion ADC of Figure 13 when converting the analog voltage of 6.84 V to 8-
bit binary, assuming that the full-scale input voltage to the DAC is 10 V

Solution: Each successive bit, starting with the MSB, will cause the DAC
part of the system to output a voltage to be compared. If the full-scale out-
put is 10 V, D7 will be worth 5 V, D6 will be worth 2.5 V, D5 will be worth
1.25 V, and so on, as shown in Table 1.

Now, when goes LOW, successive bits starting with D7 will be
tried, creating the waveforms shown in Figure 14. The HIGH-to-LOW
edge on clocks the final binary number 1010 1111 into the D flip-flop
and Q0 to Q7 outputs.

DR

STRT

(Vref = 10 V).

Team
Discussion

What is the highest 
percentage error that you
could have with the 8-bit
ADC in Example 4?

759



100 kHz
clock

10 μs

D
A

C
V

ou
t

1
0

2
3
4
5
6
7
8
9

10

0.00

5.0000

7.50000

6.2500
6.8750

6.5625 6.71875

6.796875

6.8359375

Conversion time = 80 μs

STRT

DR

D7

D6

D5

D4

D3

D2

D1

D0

Start conversion Data ready
(end-of-conversion)

0

1

0

1

1

1

1

1

Final digital output

Figure 14 Timing waveforms for a successive approximation A/D conversion.

Now the Q0 to Q7 lines contain the 8-bit binary representation of the
analog number 6.8359375, which is an error of only 0.0594% from the tar-
get number of 6.84:

(4)% error =

actual voltage - final DAC output

actual voltage
* 100%

INTERFACING TO THE ANALOG WORLD

TABLE 1 Voltage-Level Contributions
by Each Successive
Approximation Register Bit

DAC Input DAC Vout

D7 5.0000
D6 2.5000
D5 1.2500
D4 0.6250
D3 0.3125
D2 0.15625
D1 0.078125
D0 0.0390625
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Digital GND
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Figure 15 The NE5034 A/D converter: (a) block diagram and (b) pin configuration. (Used
with permission from NXP Semiconductors.)

To watch the conversion in progress, an eight-channel oscilloscope or
logic analyzer can be connected to the D0 to D7 outputs of the SAR.

For continuous conversions, the line can be connected back to the
line. That way, as soon as the conversion is complete, the HIGH-to-

LOW on will issue another start conversion which forces the
data ready line back HIGH for eight clock periods while the new
conversion is being made. The latched Q0 to Q7 digital outputs will always
display the results of the previous conversion.

(DR)
(STRT),DR

STRT
DR
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10 Integrated-Circuit A/D Converters

Examples of two popular, commercially available ADCs are the NE5034 and the
ADC0804 manufactured by NXP Semiconductors.

The NE5034
The block diagram and pin configuration for the NE5034 are given in Figure 15.
Operation of the NE5034 is almost identical to that of the SAR ADC presented in
Section 9. One difference is that the NE5034 uses a three-state output buffer instead of
a D flip-flop. With three-state outputs, when (Output Enable) is LOW, the DB7 to
DB0 outputs display the continuous status of the eight SAR lines, and when the line
goes HIGH, the DB7 to DB0 outputs return to a float or high-impedance state. This
way, if the ADC outputs go to a common data bus shared by other devices, when DB7
to DB0 float, one of the other devices can output information to the data bus without in-
terference.

The NE5034 can provide conversion speeds as high as one per and its
three-state outputs make it compatible with bus-oriented microprocessor systems. It
also has its own internal clock for providing timing pulses. The frequency is deter-
mined by an external capacitor placed between pins 11 and 17. Figure 16 shows the
frequency and conversion time that can be achieved using the internal clock.

17 ms,

OE
OE
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The ADC0804
The pin configuration and block diagram for the ADC0804 are given in Figure 17. The
ADC0804 uses the successive-approximation method to convert an analog input to an
8-bit binary code. Two analog inputs are provided to allow differential measurements
[analog ]. It has an internal clock that generates its own timing
pulses at a frequency equal to (Figure 18 shows the connections for the
external R and C). It uses output D latches that are three-stated and controlled by 
to facilitate easy bus interfacing. (See Figure 23 for interfacing to an 8051 microcon-
troller.)

The convention for naming the ADC0804 pins follows that used by microproces-
sors to ease interfacing. Basically, the operation of the ADC0804 is similar to that of
the NE5034. The ADC0804 pins are defined as follows:

—active-LOW Chip Select

—active-LOW Output Enable

—active-LOW Start Conversion

CLK IN—external clock input or capacitor connection point for the internal clock

—active-LOW End-of-Conversion (Data Ready)

—differential analog inputs (ground one pin for single-ended
measurements)

A. GND—analog ground

Vref/2—optional reference voltage (used to override the reference voltage 
assumed at 

D. GND—digital ground

VCC—5-V power supply and assumed reference voltage

CLK R—resistor connection for the internal clock

D0 to D7—digital outputs

To set the ADC0804 up for continuous A/D conversions, the connections shown
in Figure 18 should be made. The external RC will set up a clock frequency of

(5)

The connection from to will cause the ADC to start a new conversion
each time the (end-of-conversion) line goes LOW. The RC circuit with theINTR

WRINTR

f =

1

1.1RC
=

1

1.1(10 k�) 150 pF
= 606 kHz

VCC)

Vin(-)Vin(+),

INTR

WR

RD

CS

RD
f = 1/(1.1RC)

Vin = Vin(+) - Vin(-)
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Figure 16 The NE5034 internal clock characteristics: (a) internal clock frequency 
versus external capacitor (CL) and (b) conversion time versus clock frequency. (Used with
permission from NXP Semiconductors.)
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Figure 17 The ADC0804 converter: (a) block diagram and (b) pin configuration. 
(Used with permission from NXP Semiconductors.)

7417 open-collector buffer will issue a LOW-to-float pulse at power-up to ensure ini-
tial startup. An open-collector output gate is required instead of a totem-pole output
because the is forced LOW by the internal circuitry of the 0804 at the end of each
conversion. This LOW would conflict with the HIGH output level if a totem-pole output

INTR
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were used. The is grounded to enable the ADC chip. is grounded to enable the
D0 to D7 outputs. The analog input voltage is positive, 0 to 5 V, so it is connected to

If it were negative, would be grounded, and the input voltage would be
connected to Differential measurements (the difference between two analog
voltages) can be made by using both and The LEDs connected to the dig-
ital output will monitor the operation of the ADC outputs. An LED ON indicates a
LOW, and an LED OFF indicates a HIGH. (In other words, they are displaying the
complement of the binary output.) To test the circuit operation, you could watch the
OFF LEDs count up in binary from 0 to 255 as the analog input voltage is slowly in-
creased from 0 to (In other words, you could watch the ON LEDs count down.)

The analog input voltage range can be changed to values other than 0 to 5 V by
using the Vref/2 input. This provides the means of encoding small analog voltages to the
full 8 bits of resolution. The Vref/2 pin is normally not connected, and it sits at 2.500 V
(VCC/2). By connecting 2.00 V to Vref/2, the analog input voltage range is changed to 0
through 4 V; 1.5 V would change it to 0 through 3.0 V and so on. However, the accu-
racy of the ADC suffers as the input voltage range is decreased.

Because the analog input voltage is directly proportional to the digital output, the
following ratio can be used as an equation to solve for the digital output value:

(6)

or

(7)

voltage (Vpin20 or 
output (converted to base 10)

number of digital output steps (0 to 255, inclusive)256 = total
Dout = digital

Vpin9 * 2)Vref = reference
where  Ain = analog input voltage

Dout =

Ain

Vref
* 256

Ain

Vref
=

Dout

256

+5 V.

Vin(-).Vin(+)

Vin(-).
Vin(+)Vin(+).

RDCS
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Figure 18 Connections for continuous conversions using the ADC0804.
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One final point on the ADC0804. An analog ground and a digital ground are both
provided to enhance the accuracy of the system. The -to-digital ground lines are in-
herently noisy due to the switching transients of the digital signals. Using separate ana-
log and digital grounds is not mandatory, but when used, they ensure that the analog
voltage comparator will not switch falsely due to digital noise and jitter.

VCC

INTERFACING TO THE ANALOG WORLD

E X A M P L E  5

Change (pin 20) in Figure 18 to 5.12 V. Determine which LEDs will be
on for the following analog input voltages:

(a) 5.100 V;

(b) 2.26 V.

Solution:

(a)

Because the LEDs are active-LOW, none of them will be ON.

(b)

The following LEDs will be ON: LED7, LED3, LED2, LED1.

 = 0111 00012

 = 11310

 =

2.26 V

5.12 V
* 256

Dout =

Ain

Vref
* 256

 = 1111 11112

 = 25510

 =

5.100 V

5.120 V
* 256

Dout =

Ain

Vref
* 256

VCC

A D C  S I M U L AT I O N

Figure 19 shows a MultiSIM® simulation of an 8-bit analog-to-digital con-
verter. Two potentiometers are used to provide a coarse and a fine adjust-
ment to the analog voltage that is input to the ADC. In this illustration, the
analog input voltage is 0.115 V, which is converted to the hex number 
05 (0000 01012). The ADC is set up to perform continuous conversions by
connecting EOC to SOC as shown.

(a) Determine the average voltage required to make a one bit change in the
digital output. (It should be about 20 mV.)

(b) Determine the analog Vin required to reach full-scale digital output
(FF16). (It should be 5.0 V.)

MultiSIM Exercise: Load the file fig15_19 from the text companion website.
Turn on the power switch and repeatedly press F or shift-F to raise and
lower the analog Vin.
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Review Questions
17. The SAR ADC in Figure 13 starts making a conversion when
_________ goes LOW and signifies that the conversion is complete when
_________ goes LOW.

18. The SAR method of A/D conversion is faster than the counter/ ramp
method because the SAR clock oscillator operates at a higher speed. True
or false?

19. Decide if the following pins on the ADC0801 are for input or output
signals.

(a) (c)

(b) (d)

20. List the order in which the signals listed in Question 19 become active
to perform an A/D conversion.

11 Data Acquisition System Application

The computerized acquisition of analog quantities is becoming more important than
ever in today’s automated world. Computer systems are capable of scanning several
analog inputs on a particular schedule and sequence to monitor critical quantities and
acquire data for future recall. A typical eight-channel computerized data acquisition
system (DAS) is shown in Figure 20.

INTRRD

WRCS
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Figure 19 Using MultiSIM® to simulate an analog-to-digital conversion.

Coarse
adjust (C) Digital Output

Fine
adjust (F)

10%

5 V

25%

5 V VCC

Analog Vin

Vin

VrefP

VrefN

SOC

OE

ADC
EOC

D0

4 3 2 1 4 3 2 1

D1

D2

D3

D4

D5

D6

D7

0.115 V
+
−

766



INTERFACING TO THE ANALOG WORLD

CS

D0
P
O
R
T

0

8051

8-Bit
data
bus

Microcontroller

D7

•
•
•

Gain
select

RD1CS1 WR1 INTR

Programmable-gain
instrumentation

amplifier

LH0084

Vin

G1

G0

Adjusted
VoutVout

Hold
capacitor

Sample-and-hold
circuit

LF198

Vin

T

C

C

Acquisition
trigger1-of-8

select

Vout

CBA

Inputs

AM3705

Analog
multiplexer

switch

V0Temperature

Transducers

V1Pressure

V2Displacement

V3Velocity

V4Fluid level

V5Kilowatts

V6Humidity

V7Solar
radiation

Control bus

D0

D7

•
•
•

A/D converter

ADC0804

CLK in

RAM
(memory)

Analog
Vin

RD2/WR2

To other
devices

To other
devices

Figure 20 Data acquisition system.
Team 
Discussion

Discuss the flow of a signal
as it travels from the 
temperature transducer
through each of the 
ICs to the microcontroller.

767



The entire system in Figure 20 communicates via two common buses, the data
bus and the control bus. The data bus is simply a common set of eight electrical con-
ductors shared by as many devices as necessary to send and receive 8 bits of parallel
data to and from anywhere in the system. In this case, there are three devices on the
data bus: the ADC, the microprocessor (or microcontroller), and memory. The control
bus passes control signals to and from the various devices for such things as chip select

output enable system clock, triggers, and selects.
Each of the eight transducers is set up to output a voltage that is proportional to

the analog quantity being measured. The task of the microprocessor is to scan all the
quantities at some precise interval and store the digital results in memory for future use.
Because the analog values vary so slowly, scanning (reading) the variables at 1-s inter-
vals is usually fast enough to get a very accurate picture of their levels. This can easily
be accomplished by microprocessors with clock rates in the microsecond range.

To do this, the microprocessor must enable and send the proper control signals to
each of the devices, in order, starting with the multiplexer and ending with the ADC.
This is called handshaking, or polling, and is all done with software statements. If you
are fortunate enough to take a course in microprocessor programming, you will learn
how to perform some of these tasks.

All the hardware interfacing and handshaking that takes place between the
microprocessor and the transducers can be explained by taking a closer look at each of
the devices in the system.

Analog Multiplexer Switch (AM3705)
The multiplexer reduces circuit complexity and eliminates duplication of circuitry by
allowing each of the eight transducer outputs to take turns traveling through the other
devices. The microprocessor selects each of the transducers at the appropriate time by
setting up the appropriate binary select code on the A, B, and C inputs via the control
bus. This allows the selected transducer signal to pass through to the next device.

Sample-and-Hold Circuit (LF198)
Because analog quantities can be constantly varying, it is important to be able to select
a precise time to take the measurement. The sample-and-hold circuit, with its exter-
nal Hold capacitor, allows the system to take (Sample) and Hold an analog value at the
precise instant that the microprocessor issues the acquisition trigger.

Programmable-Gain Instrumentation Amplifier (LH0084)
Each of the eight transducers has different full-scale output ratings. For instance, the
temperature transducer may output in the range from 0 to 5 V, whereas the pressure
transducer may only output 0 to 500 mV. The LH0084 is a programmable-gain
amplifier capable of being programmed, via the gain select inputs, for gains of 1, 2, 5,
or 10. When it is time to read the pressure transducer, the microprocessor will program
the gain for 10 so that the range will be 0 to 5 V, to match that of the other transducers.
This way, the ADC can always operate in its most accurate range, 0 to 5 V.

Analog-to-Digital Converter (ADC0804)
The ADC receives the adjusted analog voltage and converts it to an equivalent 8-bit bi-
nary string. To do this, the microprocessor issues chip select and start conversion

pulses. When the end-of-conversion line goes LOW, the microprocessor
issues an output enable to read the data (D0 and D7) that pass, via the data bus,
into the microprocessor and then into the random-access memory (RAM) chip.

(RD1)
(INTR)(WR1)

(CS1)

(RD),(CS),
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This cycle repeats for all eight transducers whenever the microprocessor deter-
mines that it is time for the next scan. Other software routines executed by the micro-
processor will act on the data that have been gathered. Some possible responses to the
measured results might be to sound an alarm, speed up a fan, reduce energy consump-
tion, increase a fluid level, or simply produce a tabular report of the measured quantities.

12 Transducers and Signal Conditioning

Hundreds of transducers are available today that convert physical quantities such as
heat, light, or force into electrical quantities (or vice versa). The electrical quantities
(or signal levels) must then be conditioned (or modified) before they can be interpreted
by a digital computer.

Signal conditioning is required because transducers each output different ranges
and types of electrical signals. For example, transducers can produce output voltages
or output currents or act like variable resistances. A transducer may have a nonlinear
response to input quantities, may be inversely proportional, and may output signals in
the microvolt range.

A transducer’s response specifications are given by the manufacturer and must
be studied carefully to determine the appropriate analog signal-conditioning circuitry
required to interface it to an A/D converter. After the information is read into a digital
computer, software instructions convert the binary input into a meaningful output that
can be used for further processing. Let’s take a closer look at three commonly used
transducers: a thermistor, an IC temperature sensor, and a strain gage.

Thermistors
A thermistor is an electronic component whose resistance is highly dependent on tem-
perature. Its resistance changes by several percent with each degree change in temper-
ature. It is a very sensitive temperature-measuring device. One problem, however, is
that its response is nonlinear, meaning that step changes in temperature will not cre-
ate equal step changes in resistance. This fact is illustrated in the characteristic curve
of the (at thermistor shown in Figure 21.25�C)10@k�

1�
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Figure 21 Thermistor characteristic curve of resistance versus temperature.

From the characteristic curve, you can see that not only is this thermistor non-
linear, but it also has a negative temperature coefficient (i.e., its resistance decreases
with increasing temperatures).
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To use a thermistor with an ADC like the ADC0804, we need to convert the ther-
mistor resistance to a voltage in the range of 0 to 5 V. One way to accomplish this task
is with the circuit shown in Figure 22.
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390 Ω

–10 V

10 Ω

–250 mV
10 kΩ RT

Ri
(To Vin of an ADC)

Rf

Ri

Figure 22 Circuit used to convert thermistor ohms to a dc voltage.

This circuit operates similarly to the op-amp circuit explained in Section 2. The
output of the circuit is found using the formula

(8)

where Vin is a fixed reference voltage of mV and Ri is the sum of the thermistor’s
resistance, RT, plus Using specific values for RT found in the manufacturer’s
data manual, we can create Table 2, which shows Vout as a function of temperature.

10 k�.
-250

Vout = -Vin *

Rf

Ri

TABLE 2 Tabulation of Output Voltage Levels for a Temperature
Range of 0� to 100�C in Figure 22

Temperature RT Ri Vout

(in �C) (in k ) (in k ) (in V)

0 29.490 39.490 1.27
25 10.000 20.000 2.50
50 3.893 13.893 3.60
75 1.700 11.700 4.27

100 0.817 10.817 4.62

��

The output voltage, Vout, is fed into an ADC that converts it into an 8-bit binary
number. The binary number is then read by a microprocessor that converts it into the
corresponding degrees Celsius using software program instructions.

Linear IC Temperature Sensors
The computer software required to convert the output voltages of the previous thermis-
tor circuit is fairly complicated because of the nonlinear characteristics of the device.
Linear temperature sensors were developed to simplify the procedure. One such de-
vice is the LM35 IC temperature sensor. It is fabricated in a three-terminal transistor
package and is designed to output 10 mV for each degree Celsius above zero. (Another
temperature sensor, the LM34, is calibrated in degrees Fahrenheit.) For example, at

the sensor outputs 250 mV, at it outputs 500 mV, and so on, in linear steps
for its entire range. Figure 23 shows how we can interface the LM35 to an ADC and
microprocessor.

50�C25�C
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The 1.28-V reference level used in Figure 23 is the key to keeping the conversion
software programming simple. With 1.28 V at Vref/2, the maximum full-scale analog
Vin is defined as 2.56 V (2560 mV). This value corresponds one-for-one with the 256
binary output steps provided by an 8-bit ADC. A rise in temperature increases Vin
by 10 mV, which increases the binary output by 1. Therefore, if Vin equals 0 V, D7 to
D0 equals 0000 0000; if Vin equals 2.55 V, D7 to D0 equals 1111 1111; and if Vin equals
1.00 V, D7 to D0 equals the binary equivalent of 100, which is 0110 0100. Table 3 lists
some representative values of temperature versus binary output.

1�
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ADC0804
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+
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INTR
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Chip select

Output enable
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7
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o
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3
4
5
6
7

P
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r
t

1

8051
Microcontroller

8-Bit equivalent
of the analog
temperature

Figure 23 Interfacing the LM35 linear temperature sensor to an ADC and a 
microcontroller.

TABLE 3 Tabulation of Temperature versus Binary
Output for a Linear Temperature Sensor
and an ADC Set Up for 2560 mV Full
Scale

Temperature Vin Binary Output
(in �C) (in mV) (D7 to D0)

0 0 0000 0000
1 10 0000 0001
2 20 0000 0010

25 250 0001 1001
50 500 0011 0010
75 750 0100 1011

100 1000 0110 0100

In Figure 23, the LM185 is a 2.5-V precision voltage reference diode. This diode
maintains a steady 2.5 V across the potentiometer even if the 5-V power supply
line fluctuates. The potentiometer must be set to output exactly 1.280 V. The op
amp is used as a unity-gain buffer between the potentiometer and ADC and will main-
tain a steady 1.280 V for the Vref/2 pin. 

10@k�
10@k�

Team
Discussion

Discuss the order of the
control signals between 
the microcontroller and 
the ADC.
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Sensitivity
axis

Solder
tabs

(a)

Figure 24 A foil-type strain gage: (a) sketch and (b) photograph.

Rg + Rg

Anchor
block

Metal
beam

Force

Figure 25 Using a strain gage to measure force.

The Strain Gage
The strain gage is a device whose resistance changes when it is stretched. The gage is
stretched, or elongated, when it is “strained” by a physical force. This property makes
it useful for measuring weight, pressure, flow, and acceleration.

Several types of strain gages exist, the most common being the foil type illus-
trated in Figure 24. The gage is simply a thin electrical conductor that is looped back
and forth and bonded securely to the piece of material to be strained (see Figure 25).
Applying a force to the metal beam bends the beam slightly, which stretches the strain
gage in the direction of its sensitivity axis.

INTERFACING TO THE ANALOG WORLD

(b)

As the strain gage conductor is stretched, its cross-sectional area decreases and
its length increases, thus increasing the resistance measured at the solder tabs. The
change in resistance is linear with respect to changes in the length of the strain gage.
However, the change in resistance is very slight, usually milliohms, and it must be con-
verted to a voltage and amplified before it is input to an ADC. Figure 26 shows the sig-
nal conditioning circuitry for a strain gage The[Rg (unstrained) = 120 �].120@�
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120 Ω

R3

120 Ω 120 Ω

R2

R1

A

–

+

Vout to ADCLH0036

Rg + Rg
Rg (unstrained) = 120 Ω

Instrumentation
amplifier with

gain set to 1,000

–

Vin = 10 V

+
B

Strain gage

Bridge
excitation
voltage

Null adjustment

Figure 26 Signal conditioning for a strain gage.

instrumentation amplifier is a special-purpose IC used to amplify small-signal differ-
ential voltages such as those at points A and B in the bridge circuit in Figure 25.

With the metal beam unstrained (no force applied), the 120- potentiometer is
adjusted so that Vout equals 0 V (called the “null adjustment”). Next, force is applied to
the metal beam, elongating the strain gage and increasing its resistance slightly from
its unstrained value of 120 This increase causes the bridge circuit to become
unbalanced, thus creating a voltage at points A and B. From basic circuit theory, the
voltage is calculated by the following formula:

(9)

For example, if R2 is set at and is the voltage is as follows:

Because the instrumentation amplifier gain is set at 1000, the output voltage sent to the
ADC will be 3.12 V.

Through experimentation with several known weights, the relationship of force
versus Vout can be established and programmed into the microprocessor reading the
ADC output.

Review Questions

21. The AM7305 multiplexer in Figure 20 is used to apply the appropriate
voltage gain to each of the transducers connected to it. True or false?

22. The 8-bit data out from the ADC in Figure 20 passes to the
microprocessor via the data bus. True or false?

23. Signal conditioning is required to make transducer output levels com-
patible with ADC input requirements. True or false?

24. What is the advantage of using the LM35 linear temperature sensor
over a thermistor for measuring temperature?

VAB = -10 c
120

120 + (120.150)
-

120

120 + 120
d = 3.12 mV

150 m�,�Rg120 �

VAB = Vin c
R3

R3 + (Rg + �Rg)
-

R2

R1 + R2
d

�.

�
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Summary

In this chapter, we have learned the following:

1. Any analog quantity can be represented by a binary number. Longer
binary numbers provide higher resolution, which gives a more accurate
representation of the analog quantity.

2. Operational amplifiers are important building blocks in analog-to-digital
(A/D) and digital-to-analog (D/A) converters. They provide a means for
summing currents at the input and converting a current to a voltage at the
output of converter circuits.

3. The binary-weighted D/A converter is the simplest to construct, but it
has practical limitations in resolution (number of input bits).

4. The R/2R ladder D/A converter uses only two different resistor values,
no matter how many binary input bits are included. This allows for very
high resolution and ease of fabrication in IC form.

5. The DAC0808 (or MC1408) IC is an 8-bit D/A converter that uses the
R/2R ladder method of conversion. It accepts 8 binary input bits and out-
puts an equivalent analog current. Having 8 input bits means that it can re-
solve up to 256 unique binary values into equivalent analog values.

6. Applying an 8-bit counter to the input of an 8-bit D/A converter will
produce a 256-step sawtooth waveform at its output.

7. The simplest way to build an analog-to-digital (A/D) converter is to use
the parallel encoding method. The disadvantage is that it is practical only
for low-resolution applications.

8. The counter-ramp A/D converter employs a counter, a D/A converter,
and a comparator to make its conversion. The counter counts from zero
up to a value that causes the D/A output to exceed the analog input value
slightly. That binary count is then output as the equivalent to the analog
input.

9. The method of A/D conversion used most often is called successive ap-
proximation. In this method, successive bits are tested to see if they con-
tribute an equivalent analog value that is greater than the analog input to be
converted. If they do, they are returned to zero. After all bits are tested, the
ones that are left ON are used as the final digital equivalent to the analog
input.

10. The NE5034 and the ADC0804 are examples of A/D converter ICs. To
make a conversion, the start-conversion pin is made LOW. When the con-
version is completed the end-of-conversion pin goes LOW. Then to read the
digital output, the output enable pin is made LOW.

11. Data acquisition systems are used to read several different analog in-
puts, respond to the values read, store the results, and generate reports on
the information gathered.

12. Transducers are devices that convert physical quantities such as heat,
light, or force into electrical quantities. Those electrical quantities must
then be conditioned (or modified) before they can be interpreted by a digi-
tal computer.

INTERFACING TO THE ANALOG WORLD
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Glossary

A/D Converter (ADC): Analog-to-digital converter.

Binary Weighting: Each binary position in a string is worth double the amount of the
bit to its right. Choosing resistors in that same proportion causes binary-
weighted current levels to flow.

Bus: A common set of electrical conductors shared by several devices and ICs.

Continuous Converter: An ADC that is connected to repeatedly perform analog-to-
digital conversions by using the end-of-conversion signal to trigger the
start-conversion input.

Conversion Time: The length of time between the start of conversion and end of con-
version of an ADC.

D/A Converter (DAC): Digital-to-analog converter.

Data Acquisition: A term generally used to refer to computer-controlled acquisition
and conversion of analog values.

Differential Measurement: The measurement of the difference between two values.

Handshaking: Devices and ICs that are interfaced together must follow a specific
protocol, or sequence of control operations, to be understood by each other.

Interfacing: The device control and interconnection schemes required for electronic
devices and ICs to communicate with each other.

Memory: A storage device capable of holding data that can be read by some other
device.

Microprocessor: A large-scale IC capable of performing several functions, including
the interpretation and execution of programmed software instructions.

Nonlinearity: Nonlinearity error describes how far the actual transfer function of an
ADC or DAC varies from the ideal straight line drawn from zero up to the
full-scale values.

Nonmonotonic: A nonmonotonic DAC is one in which, for every increase in the input
digital code, the output level does not either remain the same or increase.

Op Amp: An amplifier that exhibits almost ideal features (i.e., infinite input imped-
ance, infinite gain, and zero output impedance).

Programmable-Gain Amplifier: An amplifier that has a variable voltage gain that is
set by inputting the appropriate digital levels at the gain select inputs.

Reference Voltage: In DAC and ADC circuits, a reference voltage or current is pro-
vided to the circuit to set the relative scale of the input and output values.

Resolution: The number of bits in an ADC or DAC. The higher the number, the closer
the final representation can be to the actual input quantity.

Sample and Hold: A procedure of taking a reading of a varying analog value at a
precise instant and holding that reading.

Successive Approximation: A method of arriving at a digital equivalent of an analog
value by successively trying each of the individual digital bits, starting with
the MSB.

775



INTERFACING TO THE ANALOG WORLD

Thermistor: An electronic component whose resistance changes with a change in
temperature.

Transducer: A device that converts a physical quantity, such as heat or light, into an
electrical quantity such as amperes or volts.

Virtual Ground: In certain op-amp circuit configurations, with one input at actual
ground potential, the other input will be held at a 0-V potential but will not
be able to sink or source current.

Problems

Sections 1 and 2
1. Describe the function of a transducer.

2. How many different digital representations are allowed with:

(a) A 4-bit converter? (c) An 8-bit converter?

(b) A 6-bit converter? (d) A 12-bit converter?

3. List three characteristics of op amps that make them almost ideal ampli-
fiers.

4. Determine Vout for the op-amp circuits of Figure P4.

Vout
+

–

5 kΩ
10 kΩ20 kΩ

+5 V

(b)

Vout
+

–

5 kΩ
20 kΩ

+5 V

(c)

+

20 kΩ

Vout
+

–

5 kΩ

(a)

10 kΩ

5 V

Figure P4
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5. The virtual ground concept simplifies the analysis of op-amp circuits by
allowing us to assume what?

Sections 3 and 4
6. Calculate the current through each switch and the resultant Vout in
Figure 4 if the number 12 is input.10

11. Reconstruct the data table in Figure 6(b) for a Vref of instead of

Sections 5 and 6
12. Does the MC1408 DAC use a binary-weighted or an R/2R method of
conversion?

13. What is the purpose of the op amp in the DAC application circuit of
Figure 7(c)?

14. What is the resolution of the DAC0808/MC1408 DAC shown in
Figure 7?

15. Calculate Vout in Figure 7(c) for the following input values:

(a) 0100 00002

(b) 0011 01102

(c) 3210

(d) 3010

16. Sketch a partial transfer function of analog output versus digital 
input in Figure 7(c) for digital input values of 0000 0000 through 
0000 0111.

17. How could the reference current (Iref) in Figure 7 be changed to 1.5
mA? What effect would that have on the range of Iout and Vout?

18. In Figure 7(c), if Vref is changed to 5 V, find Vout full-scale (A1 to
A8 = HIGH).

+5 V.
+2 V

D

C

D

(b) Reconstruct the data table in Figure 4 with new values for Vout
using the resistor values found in part (a).

8. What effect would doubling the resistor have on the values for
Vout in Figure 4?

9. What effect would changing the reference voltage (Vref) in Figure 6(a)
from to have on Vout?

10. Change Vref in Figure 6(a) to and calculate Vout for
D0 = 0, D1 = 0, D2 = 0, D3 = 1.

+2 V,

-5 V+5

20@k�

7.

(a) Change the resistor that is connected to the D3 switch in Figure 4 to
What values must be used for the other three resistors to ensure

the correct binary weighting factors?
10 k�.
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Sections 7 and 8
19. Draw a graph of the transfer function (digital output versus analog in-
put) for the parallel-encoded ADC of Figure 11.

20. What is one advantage and one disadvantage of using the multiple-
comparator parallel encoding method of A/D conversion?

21. Refer to the counter-ramp ADC of Figure 12.

(a) What is the level at the DAC output the instant after the start conver-
sion push button is pressed?

(b) What is the relationship between the V and V comparator inputs
the instant before the HIGH-to-LOW edge of end of conversion?

22. In Figure 12, what is the worst-case (longest) conversion time that
might be encountered if the clock frequency is 100 kHz?

Sections 9 and 10
23. Determine the conversion time for an 8-bit ADC that uses a
successive-approximation circuit similar to Figure 13 if its clock
frequency is 50 kHz.

24. What connections could be made in the ADC shown in Figure 13 to
enable it to make continuous conversions?

25. Use the SAR ADC of Figure 13 to convert the analog voltage of 7.28
to 8-bit binary. If determine the final binary answer and the
percentage error.

26. Why is the three-state buffer at the output of the NE5034 ADC an im-
portant feature?

27. Referring to the block diagram of the ADC0804 (Figure 17), which in-
puts are used to enable the three-state output latches? Are they active-LOW
or active-HIGH inputs?

28. What type of application might require the use of the differential in-
puts on the ADC0804?

29. Refer to Figures 17 and 18.

(a) How would the operation change if were connected to 
instead of ground?

(b) How would the operation change if were connected to 
instead of ground?

(c) What is the purpose of the RC circuit?

(d) What is the maximum range of the analog Vin if Vref/2 is changed to
0.5 V?

30. Change VCC to 5.12 V in Figure 18, and determine which LEDs will be
ON for the following values of Vin:

(a) 3.6 V

(b) 1.86 V

10@k�-0.001@mF

+5 VCS

+5 VRD

[Vin(+), Vin(-)]

Vref = 10 V,

(- )(+)

C

C
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Sections 11 and 12
31. Briefly describe the flow of the signal from the temperature transducer
as it travels through the circuit to the RAM memory in the data acquisition
system of Figure 20.

32. Table 2 gives the values for the output of the thermistor circuit of
Figure 22 for various temperatures. Redesign the circuit by changing RF so
that Vout equals 5 V at 

33. The output voltage of Figure 22 is exactly 2.5 V at Calculate the
range of output voltage if the thermistor has a tolerance of 5%.

34. What binary value will the 8051 microcontroller read in Figure 23 if
the temperature is 

35. Through experimentation, it is determined that the strain gage in
Figures 25 and 26 changes in resistance by for each kilogram that
is added to the metal beam. Determine how many kilograms of force are on
the metal beam if Vout is 4 V in Figure 26.

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

36. Design a circuit interface that will provide analog output capability to
the 4096/4196 control card. Assume that software will be written by a pro-
grammer to output the appropriate digital strings to port 1 (P1.7–P1.0) of
the 8031 microcontroller. Devise an analog output circuit using an
MC1408 DAC with a 741 op amp to output analog voltages in the range of
0 to 5 V.

37. Design a circuit interface that will provide analog input capability to
the 4096/4196 control card. The design must be capable of inputting the 8-
bit digital results from two ADC0804 converters into port 1 (P1.7–P1.0) of
the 8031 microcontroller. Assume that a single-bit control signal will be
output on port 2, bit 0 (P2.0) to tell which ADC results are to be transmit-
ted. (Assume and Set up the ADCs for continu-
ous conversions and 0- to 5-V analog input level.

MultiSIM® Exercises

E1. Load the circuit file for Section 3a. This is a binary-weighted D/A
converter like that shown in Section 3.

(a) Close each switch individually to determine how many volts each
switch contributes to Vout. List those four values in a data table.

(b) The current through IF is always equal to Isum (T or F)?

0 = ADC 2).1 = ADC 1

20 m�

60�C?

10@k�
25�C.

25�C.

C D

C

C

S C D

S C D
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(c) Which switches need to be closed to yield the following outputs:

(d) How many different digital numbers can be represented with the four
input switches?

(e) To make a 5-bit D/A you would need to add another switch and resis-
tor to the left of D3. What size would that resistor be?

E2. Load the circuit file for Section 5a. This DAC outputs a voltage pro-
portional to its 8-bit binary input. The input is set to 5 V. This in turn
sets the maximum output at 5 V. Because there are 256 possible binary in-
put steps, then the volts per step will be The Word
Generator is used to count from 0 to F repeatedly. (The four high-order
inputs are not used in this case.)

(a) On a piece of paper, sketch and label the analog output value.

(b) Change the “Final” address in the Word Generator to FF so that all
256 steps will be output. Sketch and label the resultant waveform.

E3. Load the circuit file for Section 10a. This ADC is used to convert
the analog Vin into a binary number at the output of the ADC. This binary
output is displayed in hex on the two seven-segment displays. The analog
Vin is varied by changing the potentiometer setting (R and Shift-R).

(a) Create a data table of analog Vin versus hex output for 11 steps in Vin
from 0 to 5 V.

(b) Convert all of your hex answers to decimal. Do they appear to be taking
approximately equal steps?

E4. Load the circuit file for Section 10b. The object of this design is to
digitize several points along a slow-moving sine wave. The analog sine
wave that is input to the ADC is set up to oscillate between the levels 0 and
5 V. The ADC converts the analog signal into its digital equivalent at about
30 data points. As you drag the #1 cursor the hex numbers change. (First,
they increase as the sine wave increases, and then they decrease as the sine
wave’s amplitude decreases.)

(a) List on a piece of paper the hex digits that you read as you drag the
#1 cursor.

(b) Identify the hex numbers that represent the midpoint, peak, and valley
of the sine wave.

5 V/256 = 19.53 mV.

+Vref

-8V, -4V, -6V, -11V?

Answers to Review Questions

1. True

2. 256

3. Infinite, 0

4.
5. Because finding accurate

resistances over such a large
range of values would be very
difficult

240 k�

6. False

7. True

8. Current

9. A1

10. Number of bits at the input or
output

11. True

12. Gain error

C

C
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13. False

14. 1023

15. False

16. False

17.
18. False

19. (a) Input

(b) input

(c) input

(d) output

STRT, DR

20.
21. False

22. True

23. True

24. It is a linear device, whereas
the thermistor is a nonlinear
device.

CS, WR, INTR, RD

Answers to Odd-Numbered Problems

D3 D2 D1 D0 Vout

0 0 0 0 0.00
0 0 0 1 -1.25
0 0 1 0 -2.50
0 0 1 1 -3.75
0 1 0 0 -5.00
0 1 0 1 -6.25
0 1 1 0 -7.50
0 1 1 1 -8.75
1 0 0 0 -10.00
1 0 0 1 -11.25
1 0 1 0 -12.50
1 0 1 1 -13.75
1 1 0 0 -15.00
1 1 0 1 -16.25
1 1 1 0 -17.50
1 1 1 1 -18.75

1. Converts physical quantities into electrical
quantities

3. Very high input impedance, very high volt-
age gain, and very low output impedance

5. The input is at 0-V potential.

7. (a)
(b)

20 k�, 40 k�, 80 k�

(- )

9. All values of Vout would become positive.

D3 D2 D1 D0 Vout D3 D2 D1 D0 Vout

0 0 0 0 0.00 1 0 0 0 -2.00
0 0 0 1 -0.25 1 0 0 1 -2.25
0 0 1 0 -0.50 1 0 1 0 -2.50
0 0 1 1 -0.75 1 0 1 1 -2.75
0 1 0 0 -1.00 1 1 0 0 -3.00
0 1 0 1 -1.25 1 1 0 1 -3.25
0 1 1 0 -1.50 1 1 1 0 -3.50
0 1 1 1 -1.75 1 1 1 1 -3.75

11.

13. To convert the analog output current
(Iout) of the MC1408 to a voltage

15. (a) 2.5 V (b) 2.11 V (c) 1.25 V
(d) 1.17 V

17. By making The range
of Iout would then be 0 to 1.5 mA. The
range of Vout would be 0 to 7.47 V.

19.

21. (a) 0 V (b) They are equal.

23.

25.
27. (chip select) and (READ); ac-

tive-LOW

29. (a) The three-state output latches (D0
to D7) would be in the float condi-
tion.

(b) The outputs would float and 
(start conversion) would be dis-
abled.

(c) It issues a LOW at power-up to
start the first conversion.

(d) 1.0 V

WR

RDCS

% error = -0.197%

ttot = 8 *

1

50 kHz
= 0.16 ms

0 1 2 3 4 5 6 7
Analog input
voltage (in volts)

000

001

010

011

100

101

110

111

3-Bit
digital
output
(ACTIVE-
LOW)

8

VREF = 7.5 V.
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Vin Hex Dec

0.0 00 0
0.5 19 25
1.0 33 51
1.5 4C 76
2.0 66 102
2.5 7F 127
3.0 99 153
3.5 B2 178
4.0 CC 204
4.5 E5 229
5.0 FF 256

E1. (a)

(b) True
(c) D3, D2, (D2 and D1), (D3 and D1 and

D0)
(d) 16
(e)

E3. (a) Output

6.25 k�

D2 = -4 V, D3 = -8 V
D0 = -1 V, D1 = -2 V,

+

VCC

VCC

VCC

+

ANALOG IN

ANALOG IN

7 Vin (–)

Vin (+)

Vref/2

CLK–R

CLK–IN

A–GND

20

6

8

9
5

1
2
3

N/C
10K

N/C
10K

150 pf

150 pf

19 CS

INTR

V
cc

R
E

F 18 P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

17
16
15
14
13
12
11

1sbDB0

ADC0801–1

DB1
DB2
DB3
DB4
DB5
DB6

msbDB7

RD
WR4

7 Vin (–)

Vin (+)

Vref/2

CLK–R

CLK–IN

A–GND

20

6

8

9
5 2

7417
OC BUFFER

P2.0

R3
10x

C1
.001

1

1
2
3

19 CS

INTR

V
cc

R
E

F 18
17
16
15
14
13
12
11

1sbDB0

ADC0801–2

DB1
DB2
DB3
DB4
DB5
DB6

msbDB7

RD
WR4

31. The temperature transducer is selected by
setting up the appropriate code on the ABC
multiplexer select inputs. The voltage level
passes to the LF 198, which takes a sample
at some precise time and holds the level on
the hold capacitor. The LH0084 adjusts the
voltage to an appropriate level to pass into
the ADC. The microprocessor issues

then waits for to go LOW.
It then issues to transfer the con-
verted data to the data bus, then 
to transfer the data to RAM.

33. 2.439 to 2.564 V

35. 9.60 kg

37.

CS2, WR2,
CS1, RD1

INTRCS1, WR1,
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Semiconductor, Magnetic, 
and Optical Memory

OUTLINE

1 Memory Concepts
2 Static RAMs
3 Dynamic RAMs
4 Read-Only Memories
5 Memory Expansion and Address Decoding Applications
6 Magnetic and Optical Storage

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Explain the basic concepts involved in memory addressing and data storage.
• Interpret the specific timing requirements given in a manufacturer’s data manual

for reading or writing to a memory IC.
• Discuss the operation and application for the various types of semiconductor

memory ICs.
• Design circuitry to facilitate memory expansion.
• Explain the refresh procedure for dynamic RAMs.
• Explain the differences between the various types of magnetic and optical storage.

INTRODUCTION

In digital systems, memory circuits provide the means of storing information (data) on
a temporary or permanent basis for future recall. The storage medium can be a semi-
conductor IC, a magnetic device such as magnetic tape or disk, or optical storage such
as CD or DVD. Magnetic and optical memory generally are capable of storing larger
quantities of data than semiconductor memories, but the access time (time it takes to
locate and then read or write data) is usually much more. With magnetic and optical
disks, it takes time to physically move the read/write mechanism to the exact location
to be written to or read from.

With semiconductor memory ICs, electrical signals are used to identify a
particular memory location within the IC, and data can be stored in or read from that
location in a matter of nanoseconds.

The technology used in the fabrication of memory ICs can be based on either
bipolar or MOS transistors. In general, bipolar memories are faster than MOS memo-
ries, but MOS can be integrated more densely, providing many more memory locations
in the same amount of area.

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 16 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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1 Memory Concepts

Let’s say that you have an application where you must store the digital states of eight
binary switches once every hour for 16 hours. This would require 16 memory loca-
tions, each having a unique 4-bit memory address (0000 to 1111) and each being
capable of containing 8 bits of data as the memory contents. A group of 8 bits is
also known as 1 byte, so what we would have is a 16-byte memory, as shown in
Figure 1.

To set up this memory system using actual ICs, we could use sixteen 8-bit flip-
flop registers to contain the 16 bytes of data. To identify the correct address, a 4-line-
to-16-line decoder can be used to decode the 4-bit address location into an active-LOW
chip select to select the appropriate (1-of-16) data register for input/output. Figure 2
shows the circuit used to implement this memory application.

The 74LS374s are octal (eight) D flip-flops with three-state outputs. To store
data in them, 8 bits of data are put on the D0 to D7 data inputs via the data bus. Then, a
LOW-to-HIGH edge on the Cp clock input will cause the data at D0 to D7 to be latched
into each flip-flop. The value stored in the D flip-flops is observed at the Q0 to Q7 out-
puts by making the Output Enable pin LOW.

To select the appropriate (1-of-16) memory location, a 4-bit address is input to
the 74LS154 (4-line-to-16-line decoder), which outputs a LOW pulse on one of the
output lines when the enable input is pulsed LOW.

As you can see, the timing for setting up the address bus and data bus and puls-
ing the line is critical. Timing diagrams are necessary for understanding the
operation of memory ICs, especially when you are using larger-scale memory ICs. The
timing diagram for our 16-byte memory design of Figure 2 is given in Figure 3.

Figure 3 begins to show us some of the standard ways that manufacturers
illustrate timing parameters for bus-driven devices. Rather than showing all four ad-
dress lines and all eight data lines, they group them together and use an X (crossover)
to show where any or all of the lines are allowed to change digital levels.

In Figure 3 the address and data lines must be set up some time (ts) before the
LOW-to-HIGH edge of In other words, the address and data lines must be
valid (be at the appropriate levels) some period of time (ts) before the LOW-to-HIGH
edge of for the 74LS374 D flip-flop to interpret the input correctly. WRITE

WRITE.

WRITE

WRITE

(OE)

0000

0001

0010

0011

0100

4-Bit
address

(location)

•
•
•

1101

1110

1111

8-Bit
data

(contents)

•
•
•

16 Bytes of data

Figure 1 Layout for sixteen 8-bit memory locations.
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74LS154
Address
decoder

A0

13
14
15

12
11
10
9
8
7
6
5
4
3
2
1
0

E0

E1WRITE

A1

A2

A3

A3A0

4-bit Address bus

Block diagram of 16-byte memory

A3 D7

A2 D6

A1 D5

A0 D4

WRITE

D3

D2

D1

D0

E

74LS374

Q0

Cp

Q7

D0 D7

ADDR 0001

OE

74LS374

Q0

Cp

Q7

D0 D7

ADDR 0010

OE

74LS374

Q0

Cp

Q7

D0 D7

ADDR 1110

OE

74LS374

Q0

Cp

Q7

D0 D7

ADDR 1111

OE

74LS374

Q0

Cp

Q7

D0 D7

ADDR 0000

OE

•
•
•
•
•
•

D0

8-bit data bus

D7Data in

4-bit
Address

bus
8-bit
data
bus

Figure 2 Writing to a 16-byte memory constructed from 16 octal D flip-flops and a 
1-of-16 decoder. (Data travel down the data bus to the addressed D flip-flop.)
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WRITE

tp

Old data New data

Old address New address

Old data New data

Address
A0–A3

Data
D0–D7

Outputs
Q0–Q7

ts

ts
tp

= setup time
= propagation delay time

Figure 3 Timing requirements for writing data to the 16-byte memory circuit of Figure 2.

74LS154

A0

13
14
15

12
11
10
9
8
7
6
5
4
3
2
1
0

E0

E1READ

A1

A2

A3

A3A0

Address bus

To all OE enables
of Fig.  2

Figure 4 Using another decoder to individually select memory locations for Read 
operations.

When the line is pulsed, the 74LS154 decoder outputs a LOW pulse on
one of its 16 outputs, which clocks the appropriate memory location to receive data
from the data bus. After the propagation delay (tp), the data output at Q0 to Q7 will be
the new data just entered into the D flip-flop. The tp will include the propagation delay
of the decoder and the Cp-to-Q of the D flip-flop.

In Figure 2 all the three-state outputs are continuously enabled so that their Q
outputs are always active. To connect the Q0 to Q7 outputs of all 16 memory loca-
tions back to the data bus, the enables would have to be individually selected at
the appropriate time to avoid a conflict on the data bus, called bus contention. Bus
contention occurs when two or more devices are trying to send their own digital lev-
els to the shared data bus at the same time. To individually select each group of Q
outputs in Figure 2, the grounds on the enables would be removed and, 
instead, be connected to the output of another 74LS154 1-of-16 decoder, as shown in
Figure 4.

OE

OE

WRITE

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

Team 
Discussion

What is the order of
operation between the data
bus, the address bus, and
the write pulse?

Team 
Discussion

Discuss the entire sequence
of events and timing
required to store 1 byte 
of data at each memory
location in Figure 2.
Repeat for the retrieval of
each byte of data using the
decoder in Figure 4.
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In Figures 2, 3, and 4, we have designed a small 16-byte random-ac-
cess memory (RAM). Commercially available RAM ICs combine all the decoding
and storage elements in a single package, as seen in the next section.

Review Questions

1. The __________ bus is used to specify the location of the data stored in
a memory circuit.

2. Once a memory location is selected, data travel via the __________ bus.

3. In Figure 2, how is the correct octal D flip-flop chosen to receive data?

4. What is the significance of the X (crossover) on the address and data
waveforms in Figure 3?

5. Why would a second 74LS154 decoder be required in Figure 2 to read
the data from the D flip-flops if all Q outputs were connected back to the
data bus? (Hint: See Figure 4.)

2 Static RAMs

Large-scale random-access memory (RAM), also known as read/write memory, is used
for temporary storage of data and program instructions in microprocessor-based sys-
tems. The term random access means that the user can access (read or write) data at
any location within the entire memory device randomly without having to sequentially
read through several data values until positioned at the desired memory location. [An
example of a sequential (nonrandom) memory device is magnetic tape. A CD player or
hard-disk drive has random access capability.]

A better term for RAM is read/write memory (RWM) because all semiconductor
and disk memories have random access. RWM is more specific because it tells us that data
can be read or written to any memory location, but RAM is the industry-standard term.

RAM is classified as either static or dynamic. Static RAMs (SRAMs) use flip-
flops as basic storage elements, whereas dynamic RAMs (DRAMs) use internal ca-
pacitors as basic storage elements. Additional refresh circuitry is needed to maintain
the charge on the internal capacitors of a dynamic RAM, which makes it more difficult
to use. Dynamic RAMs can be packed very densely, however, yielding much more
storage capacity per unit area than a static RAM. The cost per bit of dynamic RAM is
also much less than that of the static RAM. 

The 2147H Static MOS RAM
The 2147H is a static RAM that uses MOS technology. The 2147H is set up with 4096
(abbreviated 4K, where memory locations, with each location containing
1 bit of data. This configuration is called This is very small by today’s stan-
dard, but studying its operation is a good start for understanding the larger SRAMs.

To develop a unique address for each of the 4096 locations, 12 address lines must
be input The storage locations are set up as a array with A0 to
A5 identifying the row and A6 to A11 identifying the column to pinpoint the specific
location to be used. The data sheet for the 2147H is given in Figure 5(a). This figure
shows the row and column circuitry used to pinpoint the memory cell within the

array. The box labeled “Row Select” is actually a 6-to-64 decoder for identi-
fying the appropriate 1-of-64 row. The box labeled “Column Select” is also a 6-to-64
decoder for identifying the appropriate 1-of-64 column.

64 * 64

64 * 64(212
= 4096).

4096 * 1.
1K = 1024)

(16 * 8)

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

Inside 
Your PC

A PC basically has two
kinds of semiconductor
memory, SRAM and
DRAM. The SRAM is
faster but more expensive
per bit. It is used for the
cache memory, which is a
temporary holding area for
frequently used data items
from the much slower
DRAM memory. A typical
cache size is 512 kB (kilo-
bytes) having access times
of less than 2 ns. DRAM, 
on the other hand, is much
larger because it is used for
all of the applications and
graphics that are active at
the time. A typical DRAM
memory size is 2 or 4 GB
(gigabytes) and will have
access times more than 10 ns.
Computer DRAM is usually
referred to simply as RAM.
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Figure 5(b) can be used to show how individual memory cells within the 2147H
memory array are pinpointed. The Row Select Decoder uses the lower address lines (A5
to A0) to develop a single active-HIGH line based on their binary value. For example,
if A5 to then ROW 2 will be HIGH. Then, to pinpoint the 
exact cell, the Column Select Decoder uses the high-order address lines (A11 to A6) to
determine which of the 64 possible columns should be active-HIGH.

For example, if the complete 12-bit address (A11 to A0) is 111111 000010, we will
be accessing the memory cell that is in row 2, column 63, as illustrated in Figure 5(b).

Once the location is selected, the AND gates at the bottom of the block diagram
allow the data bit to either pass into (Din) or come out of (Dout) the memory location
selected. Each memory location, or cell, is actually a configuration of transistors that
functions like a flip-flop that can be Set (1) or Reset (0).

A0 = 000010,

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

(a)

Figure 5 The 2147H static RAM: (a) Data sheet; (b) address row and column de-
coders select memory cell 111111 000010 in the 2147H memory array; 

4K * 1
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1 1 1

0
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0
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Discussion

You should be able to follow
the logic of and in
the block diagram for
writing data and reading
data.
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During write operations, for Din to pass through its three-state buffer, the Chip
Select must be LOW and the Write Enable must also be LOW. During read
operations, for Dout to receive data from its three-state buffer, the Chip Select 
must be LOW and the Write Enable must be HIGH, signifying a read operation.

Figure 5(c) shows the internal configuration of a single cell of an SRAM mem-
ory like the 2147H. All transistors are N-channel MOSFETs (Metal Oxide
Semiconductor Field-Effect Transistor), which, as you may remember, turn ON (be-
come a short) when a positive voltage (a logic 1) is placed on its gate. A1 and A2 are
three-state buffers used to enable a data bit to be written into the memory cell if

or read from the memory cell if To select this particular memory
cell, the A0 to A11 address lines on the 2147H are decoded into a single row and column
in such a way to place a HIGH on the internal memory array line labeled bit select.
This HIGH turns on Q3 and Q4, which allow the data to enter (or leave) the cross-con-
nection circuit (Q5 and Q6) that holds the data bit.

To store a 1 into the memory cell, Din is made HIGH, and and are made
LOW. The HIGH will pass through Q3 to the gate of Q6, turning it ON. An ON tran-
sistor essentially acts like a short, placing 0 V (0) at the drain of Q6, which also places
0 V at the gate of Q5, turning it off. Because Q5 is OFF, its drain voltage will be close
to VDD (1). Q1 and Q2 are used to provide the bias for the memory transistors, Q5
and Q6.

Now that the data are loaded into the cell, this bit select line can go LOW, allow-
ing the 2147H to access another cell. This isolates this memory cell from the outside
world by turning Q3 and Q4 OFF. As long as VDD is still applied, the 1 that was loaded
into the cell will remain there in the form of an ON Q6, which holds Q5 in an OFF state,
which in turn holds Q6 in an ON state similar to the cross-NAND S-R flip-flop. The
need to maintain a VDD supply voltage makes this a volatile memory. If VDD is turned
off, no one could predict what state Q5 and Q6 will return to when power is reapplied.

WECS

WE = 1.WE = 0

(WE)
(CS)

(WE)(CS)

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

Figure 5 (Continued ) (c) functional diagram of a single cell within the static RAM memory
array. [(a) Courtesy of Intel Corporation.] 

VDD

Q1

Q3

Q2

Q6Q5

DD GG

SS

Q4 A2A1

DoutDin

Memory cell

Write
CS

ReadWE

Bit Select
(from A0–A11
Row/Column
selects)

(c)
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(Now you know why you lost the almost-completed term paper that you were working
on when you inadvertently hit the power switch on your PC.)

To read data out of the memory cell, is made LOW and is made HIGH,
enabling the A2 inverting buffer. Then, when this particular cell is selected by a HIGH
on bit select, the value on Q6 will be inverted and passed out to Dout as the original level
that was input at Din.

The timing waveforms for the Read and Write cycles are given in Figure 6.

Read Operation: The circuit connections and waveforms for reading data from a
location in a 2147H are given in Figure 6(b). The 12 address lines are brought in from
the address bus for address selection. The input is held HIGH to enable the Read
operation. 

Referring to the timing diagram, when the new address is entered in the A0 to A11
inputs and the line goes LOW, it takes a short period of time, called the access time,
before the data output is valid. The access time is the length of time from the beginning

CS

WE

WECS
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CS

A0–A11

Dout

Din

2147H

WE CS

1 (HIGH for Read)

Data out

Address bus

tRC
tAA
tACS
tHZ

Symbol

CS

New addressA0–A11

Dout

tHZ
tACS

Data valid
High impedance

tAA

tRC

High impedance

Read cycle time
Address access time
Chip select access time
Chip deselection to high-Z out

Parameter

35

0

Min.

35
35
30

Max.

ns
ns
ns
ns

Unit

(a)

Undetermined

A0–A11 specifies
location to be read

Figure 6 The 2147H static RAM timing waveforms: (a) Read cycle; 

Team 
Discussion

Discuss the differences in
the timing waveforms of
Dout and Din in Figure 6.
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of the Read cycle to the end of tACS, or tAA, whichever ends last. Before the is
brought LOW, Dout is in a high-impedance (float) state. The and A0 to A11 inputs
must both be held stable for a minimum length of time, tRC, before another Read cycle
can be initiated.

After goes back HIGH, the data out is still valid for a short period of time, tHZ,
before returning to its high-impedance state.

Write Operation: A similar set of waveforms is used for the Write operation [Figure
6(b)]. In this case, the Din is written into memory while the and are both LOW. The
Din must be set up for a length of time before either or go back HIGH (tDW), and it
must also be held for a length of time after either or go back HIGH (tDH).

Memory Expansion: Because the contents of each memory location in the 2147H is
only 1 bit, to be used in an 8-bit computer system, eight 2147Hs must be set up in such
a way that, when an address is specified, 8 bits of data will be read or written. With eight
2147s, we have a memory system, as shown in Figure 7(a).

The address selection for each 2147H in Figure 7(a) is identical because they are
all connected to the same address bus lines. This way, when reading or writing from 

4096 * 8 (4K * 8)

WECS
WECS

WECS

CS

CS
CS

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

Figure 6 (Continued ) (b) Write cycle.
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a specific address, 8 bits, each at the same address, will be sent to or received from the
data bus simultaneously. The input determines which internal three-state buffer is
enabled, connecting either Din or Dout to the data bus. The input is sometimes la-
beled meaning that it is HIGH for a Read operation, which puts data
out to the data bus via Dout, and it is LOW for a Write operation, which writes data into
the memory via Din.

Several other configurations of RAM memory are available. For example, the
2114 is configured as a RAM instead of the used by
the 2147H. A RAM will input/output 4 bits at a time for each address
specified. This way, interfacing to an 8-bit data bus is simplified by having to use only
two 2114s, one for the LOW-order data bits (D0 to D3) and the other for the HIGH-order
data bits (D4 to D7). For example, the photograph in Figure 7(b) shows a memory ex-
pansion printed-circuit board with thirty-two 2114 RAM ICs. They are set up as two
memory banks, each configured as 

The 2147H’s extremely small bit size and complexity make it a suitable choice to
learn the fundamentals of static RAM circuitry, but it will never find its way into new
designs. Much faster, denser, lower-power SRAMs are available for the digital de-
signer. For example, modern SRAMs have bit densities ranging from 64 kb (kilobit) to
4 Mb and access speeds as fast as 7.5 ns. Power demand is as low as when in
the standby mode. The memory can be placed in the standby mode by deselecting the
chip by making Examples for a few SRAM memory configurations for
Hitachi Semiconductor SRAMs are shown in Figure 8 and Table 1.

CS = HIGH.

3.3 mW

8K * 8.

1024 * 4@bit
4096 * 1(1K * 4)1024 * 4@bit

READ/WRITE,
WE

WE
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CS1
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IO4
IO5
IO6

IO7

A12
A13
A14
A15
A16
A17
A18

WE

HM62W8512B

CS
OE

Figure 8 Logic symbols for several Hitachi low-power SRAMs.

TABLE 1 Sample Hitachi Low-Power Static RAMs

Part No. Density Configuration

HM6264B 64 kb 8k � 8
HM62256B 256 kb 32k � 8
HM628128D 1 Mb 128k � 8
HM62W8512B 4 Mb 512k � 8
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The HM6264B has a density of 64 kb configured as This is relatively
small, but if your application only calls for that much memory, you can save a lot of
space on your circuit board because it is only a 28-pin IC. It is available as a through-
hole DIP or as a surface-mount SOP28 package.

On the other end of the spectrum, the HM62W8512B is a 4-Mb SRAM config-
ured as To access 512k memory locations, we need 19 address lines (A0
to A18), as shown in Figure 8 As you can see in the logic symbol, it has
8 I/O lines. It is written to by making and read from by making

A LOW performs a chip select to access memory, and a HIGH puts
it in standby mode, reducing its power consumption to (typical). Several of the
higher-end SRAMs such as this are made to operate with making it com-
patible with the low-voltage families such as LV-TTL. It is available in 32-pin surface-
mount package styles only.

Review Questions

6. The 2114 memory IC is a static RAM, which means that it has
__________ memory locations with __________ data bits at each location.

7. To perform a read operation with a 2147H RAM, must be
__________ (LOW/HIGH) and must be __________ (LOW/HIGH).

8. In the 2147H memory array, address lines __________ through
__________ are used to select the row, and __________ through __________
are used to select the column.

9. In Figure 5(b), what is the row and column selected if the address (A11
to A0) is 001001000111?

10. Which transistor(s) in Figure 5(c) store the memory bit?

11. According to the Read cycle timing waveforms for the 2147H, how
long must you wait after a chip select before valid data are available
at Dout?

3 Dynamic RAMs

Although dynamic RAMs (DRAMs) require more support circuitry and are more dif-
ficult to use than static RAMs (SRAMs), they are less expensive per bit and have a
much higher density, minimizing circuit-board area. Most applications requiring large
amounts of read/write memory will use DRAMs instead of static. The main memory
in PCs use 2, 4, 8, or more gigabytes of DRAM.

The most important difference in a DRAM memory is that its storage technique is
to place a charge on a capacitor inside each memory location instead of using the cross-
transistor configuration of SRAMs. Using this method greatly reduces the size per bit.
However, the time it takes to read or write a bit is greater for the DRAM because it has
to change the charge on the capacitor, which takes longer than changing the state of the
MOS transistors in the SRAM.

Figure 9 shows a simplified schematic of a single DRAM memory cell. The stor-
age capacitor is isolated from the Din or Dout line until the MOSFET control transistor
is turned ON momentarily with a write or read pulse at its gate. To write a 1 to the
capacitor, Din is set to 1 and the DRAM control circuitry provides a pulse (+VCC),

(CS)

WE
CS

1K * 4

VCC = 3.3 V,
3.3 mW

CSWE = HIGH.
WE = LOW

(219
= 512k).

512k * 8.

8k * 8.
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to the gate of the selected memory cell. This pulse turns the transistor ON, shorting the
drain to source and placing on the capacitor. (Depending on the DRAM family,

will be or and in some cases even lower.) To read the data at the cell
location, the DRAM control circuitry redirects the drain of the MOSFET to the Dout
line and issues a read pulse on its gate. This shorts the transistor, connecting the capaci-
tor directly to Dout.

As you know, capacitors cannot hold their charge forever, even when the MOS-
FET control transistor is an open. Therefore, the capacitor has to be refreshed on a reg-
ular basis, called the refresh period. The refresh period for the earlier DRAMs like the
2118 was 2 ms, but newer technology has extended the period to 64 ms. Figure 10
shows the voltage on a storage capacitor that is initially 0 V, then loaded with a 1

The voltage, will immediately start dropping and require refreshing 
before its level drops below a recognizable 1-level.

+VCC,(+VCC).

+3.3 V,+5+VCC

+VCC

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

(a)
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control
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Storage
capacitor

Write
pulse

Din = 1
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+
−

(b)

MOSFET
control

transistor

Storage
capacitor

Read
pulse

Dout = 1

Figure 9 Simplified DRAM memory cell: (a) writing a 1 to the storage capacitor and 
(b) reading a 1 from the storage capacitor.

Time

Refresh period

0 V

+VCC

Vcapacitor

Figure 10 Refreshing the voltage on the DRAM storage capacitor.

An example of a -bit DRAM is the Intel 2118, whose data sheet is
shown in Figure 11(a).

To uniquely address 16,384 locations, 14 address lines are required 
However, Figure 11(a) shows only seven address lines (A0 to A6). This is because with
larger memories such as this, to keep the IC pin count to a minimum, the address lines
are multiplexed into two groups of seven. An external 14-line-to-7-line multiplexer is
required in conjunction with the control signals, and to access a complete
14-line address.

The controlling device must put the valid 7-bit address of the desired memory
array row on the A0 to A6 inputs and then send the Row Address Strobe LOW.
Next, the controlling device must put the valid 7-bit address of the desired memory ar-
ray column on the same A0 to A6 inputs and then send the Column Address Strobe

LOW. Each of these 7-bit addresses is latched and will pinpoint the desired 1-bit
memory location by its row–column coordinates.
(CAS)

(RAS)

CAS,RAS

(214
= 16,384).

16K * 1
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(a)

Figure 11 (a) The 2118 dynamic RAM; (b) dynamic RAM Read cycle timing
; (c) dynamic RAM Write cycle timing [(a) Courtesy of Intel

Corporation.]
(WE = LOW).(WE = HIGH)

16K * 1

tCAC
tRAC

= access time from CAS
= access time from RAS

RAS

Column addressRow address

Dout

CAS

High impedance
Valid data out

(b)

Addresses

tCAC

tRAC

tDS
tDH

= setup time before CAS
= hold time after CAS

RAS

Column addressRow address

CAS

(c)

Addresses

tDH

Valid data inDin

tDS

•

•

Load Row Address

Load Column Address

Output the addressed data

•

•

Load Row Address

Load Column Address

Data input to memory

Common 
Misconception

You may find it hard to
understand why a memory
IC that has to be
completely refreshed every
2 ms could be so popular.
The refreshing procedure is
greatly simplified by modern
refresh ICs provided by the
manufacturer. High-density
applications such as
providing 128 MB of RAM
for a PC are practically
implemented using DRAM
technology.

Once the memory location is identified, the input is used to direct either a
Read or Write cycle similar to the static RAM operation covered in Section 2. When

is LOW, data are written to the RAM via Din; when is HIGH, data are read
from the RAM via Dout.

WEWE

WE
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Read Cycle Timing [Figure 11(b)]
1. is HIGH.

2. A0 to A6 are set up with the row address, and is sent LOW.

3. A0 to A6 are set up with the column address, and is sent LOW.

4. After the access time from or (whichever is longer), the Dout line
will contain valid data.

Write Cycle Timing [Figure 11(c)]
1. is LOW.

2. A0 to A6 are set up with the row address, and is sent LOW.

3. A0 to A6 are set up with the column address, and is sent low.

4. At the HIGH-to-LOW edge of the level at Din is stored at the specified
row–column memory address. Din must be set up before and held after the
HIGH-to-LOW edge of to be interpreted correctly. (There are other
setup, hold, and delay times that are not shown. Refer to a memory data book
for more complete specifications.)

Refresh Cycle Timing
Each of the 128 rows of the 2118 must be refreshed every 2 ms or sooner to replenish
the charge on the internal capacitors. There are three ways to refresh the memory cells:

1. Read cycle

2. Write cycle

3. -only cycle

Unless you are reading or writing from all 128 rows every 2 ms, the -only
cycle is the preferred technique to provide data retention. To perform a -only cycle,
the following procedure is used:

1. is HIGH.

2. A0 to A6 are set up with the row address 000 0000.

3. is pulsed LOW.

4. Increment the A0 to A6 row address by 1.

5. Repeat steps 3 and 4 until all 128 rows have been accessed.

Dynamic RAM Controllers
It seems like a lot of work demultiplexing the addresses and refreshing the memory
cells, doesn’t it? Well, most manufacturers of DRAMs have developed controller
ICs to simplify the task. Some of the newer dynamic RAMs have refresh and error
detection/correction circuitry built right in, which makes the DRAM look static to
the user.

A popular controller IC to interface to the 2118 is the Intel 3242 address multi-
plexer and refresh counter for 16K dynamic RAMs. Figure 12 shows how this con-
troller IC is used in conjunction with four 2118 DRAMs.

The 3242 in Figure 12 is used to multiplex the 14 input addresses A0 to A13 to
seven active-LOW output addresses to When the Row Enable input is HIGH,
A0 to A6 are output inverted to to as the row addresses. When the Row Enable
input is LOW, A7 to A13 are output inverted to to as the column address. Of
course, the timing of the and on the 2118s must be synchronized with the
Row Enable signal.

CASRAS
Q6Q0

Q6Q0

Q6.Q0

RAS

CAS

RAS
RAS

RAS

CAS

CAS,

CAS

RAS

WE

CASRAS

CAS

RAS

WE
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To provide a “burst” refresh to all 128 rows of the 2118s, the Refresh Enable in-
put in Figure 12 is made HIGH. This causes the to outputs to count from 0 to
127 at a rate determined by the input clock signal. When the first 6 significant
bits of the counter sequence to all zeros, the output goes LOW, signifying the
completion of the first 64 refresh cycles.

Modern DRAMs have capacities in the megabyte range and, thus, need con-
trollers with additional address lines. National Semiconductor DM8420 series pro-
vides control for 4, 16, or 64 MB of DRAM.

One commonly used method of setting up the timing for and Row
Enable is with a multitap delay line, as shown in Figure 13. Basically, the four-tap

RAS, CAS,

zero
count

Q6Q0
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•
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Figure 12 Using a 3242 address multiplexer and refresh counter in a dynamic
RAM memory system.
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delay line IC of Figure 13(a) is made up of four inverters with precision RCs to develop
a 50-ns delay between each inverter. The pulses out of each tap have the same width,
but each successive tap is inverted and delayed by 50 ns. [In Figure 13(b), every other
tap was used to arrive at noninverted, 100-ns delay pulses.] Delay lines are very useful
for circuits requiring sequencing, as DRAM memory systems do.

The waveforms produced by the delay line of Figure 13(b) can be used to drive
the control inputs to the dynamic RAM memory system of Figure 12 (a
LOW pulse, then a LOW Row Enable pulse, then a LOW pulse). Careful
inspection of the data sheets for the 3242 and 2118 is required to determine the max-
imum and minimum allowable values for pulse widths and delay times. To design the
absolute fastest possible memory circuit, all the times would be kept at their mini-
mum value. But, it is a good practice to design in a 10% to 20% margin to be safe.

Because of their extremely high circuit density, DRAMs are the choice for a PC’s
large RAM requirement. Typical DRAM capacities for PCs are 64, 96, and 128 MB
and higher. Table 2 lists several popular high-density dynamic RAM ICs available
from Hitachi Semiconductor. 

CASRAS
16K * 4
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T1

100 ns

74S04
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R
74S04
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R
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74S04
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R
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In

In

T4

T3

T2

T1

(b)

To all RAS

To row enable

To all CAS

100 ns

500 ns

500 ns

Figure 13 Four-tap, 50-ns delay line used for DRAM timing: (a) logic diagram and 
(b) logic symbol and timing.

Inside 
Your PC

Modern PCs use 2 GB,
4 GB, or more of DRAM.
To physically mount so much
memory, manufacturers
solder several memory ICs
on a single board, which is
then inserted into a special
socket on the motherboard.
These memory boards are
called SIMMs (Single-
Inline Memory Modules),
DIMMs (Dual-Inline
Memory Modules), or
RIMMs (Rambus-Inline
Memory Modules). As
memory requirements
increase, these memory
modules can easily be
upgraded by the user
without any special tools. 

TABLE 2 Sample Hitachi Low-Power DRAMs

Part No. Density Configuration Voltage

HM5165805 64 Mb 3.3 V
HM5113805 128 Mb 3.3 V
HM5225805 256 Mb 3.3 V
HM5251805 512 Mb 3.3 V64M * 8

32M * 8
16M * 8
8M * 8
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(a) Fabricated with an open
source to yield Dout = 1 
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(b) Fabricated with a source shorted
to ground to yield Dout = 0
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D

S
G

R

Dout = 0

Figure 14 Simplified schematic of a single mask-ROM memory cell.

Review Questions

12. Why are address lines on larger memory ICs multiplexed?

13. What is the primary storage medium in a DRAM memory cell?

14. What is meant by refreshing a DRAM?

15. What is a typical refresh period for a DRAM (60 s/1 s/60 ms)?

4 Read-Only Memories

Read-Only Memories (ROMs) are memory ICs used to store data on a permanent basis.
They are capable of random access and are nonvolatile, meaning that they do not lose their
memory contents when power is removed. This makes them very useful for the storage of
computer operating systems, software language compilers, table look-ups, specialized
code conversion routines, and programs for dedicated microprocessor applications.

ROMs are generally used for read-only operations and are not written to after
they are initially programmed. However, there is an erasable variety of ROM called an
EPROM (erasable-programmable-read-only memory) that is very useful because it
can be erased and then reprogrammed if desired.

To use a ROM, the user simply specifies the correct address to be read and then
enables the chip select The data contents at that address (usually 8 bits) will then
appear at the outputs of the ROM (some ROM outputs will be three stated, so you will
have to enable the output with a LOW on 

Mask ROMs
Manufacturers will make a custom mask ROM for users who are absolutely sure of the
desired contents of the ROM and have a need for at least 1000 chips. To fabricate a cus-
tom IC like the mask ROM, the manufacturer charges a one-time fee of more than $1000
for the design of a unique mask that is required in the fabrication of the IC. After that, each
identical ROM that is produced is very inexpensive. In basic terms, a mask is a cover
placed over the silicon chip during fabrication that determines the permanent logic state to
be formed at each memory location. Of course, before the mass production of a quantity
of mask ROMs, the user should have thoroughly tested the program or data that will be
used as the model for the mask. Most desktop computers use mask ROMs to contain their
operating system and for executing procedures that do not change, such as decoding the
keyboard and the generation of characters for the display. Figure 14 shows how a 1 or 0 is
derived when the IC manufacturer alters the source connection of a single MOSFET.

OE).

(CS).
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Fusible-Link PROMs
To avoid the high one-time cost of producing a custom mask, IC manufacturers pro-
vide user-programmable ROMs (PROMs). They are available in standard configura-
tions such as and so on.

Initially, every memory cell has a fusible link, keeping its output at 0 (see Figure
15). A 0 is changed to a 1 by sending a high-enough current through the fuse to per-
manently open it, making the output of that cell a 1. The programming procedure in-
volves addressing each memory location, in turn, and placing the 4- or 8-bit data to be
programmed at the PROM outputs and then applying a programming pulse (either a
HIGH voltage or a constant current to the programming pin). Details for programming
are given in the next section.

4K * 4, 4K * 8, 8K * 4,

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

(a) A burnt fuse makes Dout = 1 

The permanently
burnt fuse link
creates an open in
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R

Dout = 1

(b) An intact fuse makes Dout = 0
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fuse maintains
to source connection
to ground

Bit
select

VDD

R

Dout = 0

Figure 15 Simplified schematic of a single fusible-link PROM memory cell.

Once the fusible link is burned open, the data are permanently stored in the PROM
and can be read over and over again just by accessing the correct memory address. The
process of programming such a large number of locations is best done by a PROM pro-
grammer or microprocessor development system (MDS). These systems can copy a
good PROM or the data can be input via a computer keyboard or from a magnetic disk.

EPROMs, EEPROMs, and Flash Memory
When using mask ROMs or PROMs, if you need to make a change in the memory con-
tents or if you make a mistake in the initial programming, you are out of luck! One so-
lution to that problem is to use an erasable PROM (EPROM). These PROMs are erased
by exposing an open “window” (See Figure 16) in the IC to an ultraviolet (UV) light
source for a specified length of time.

Two other types of EPROMs are the Electrically Erasable PROM (EEPROM)
and Flash memory. The EEPROM provides nonvolatile memory but can be programmed
and erased while still in the circuit. Like the EEPROM, Flash memory is also electrically
erasable. It derives its name from the fact that its internal processing capability provides
for much faster access times and reduced system overhead during the erasure process.

Any of these three memories can be erased and reprogrammed thousands of times
reliably. There is, however, one type of EPROM having a part number suffix-OTP, which
stands for One-Time-Programmable. Because it is only programmed once, it is used like
a PROM but has pin compatibility and I/O specs the same as its EPROM part number.

The UV-erasable EPROM has the slowest erasure time. It takes several minutes of
intense UV radiation, and you have no choice but to erase the entire chip. The EEPROMs
and Flash memory are more flexible, allowing for individual bits or bytes to be erased in
less than a millisecond. Flash memory even goes one step further, allowing you to erase
entire blocks or the entire chip in the same time that it takes an EEPROM to erase 1 byte.
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The UV-erasable EPROMs are the least expensive and are generally used during
the initial design and debug stages of new product implementation. Designers will pro-
gram their initial versions of software and data on an EPROM to test their ideas. Once
a series of tests and retests have been passed, they will order the mask ROM version or
implement the design with an FPGA or EEPROM-type device.

Commercially available EPROM programmers usually connect to a PC. A blank
EPROM is plugged into a socket on the programmer, and then a command is given to
the PC to download the binary program or data bytes that the designer wants put on the
EPROM. An opaque cover is then placed over the exposed window to avoid inadver-
tent erasure, which can be caused by sunlight or fluorescent lighting. To erase the
EPROM, the opaque cover is removed, and the IC is placed in a UV eraser device,
which bombards the open EPROM window with UV radiation for a specified length of
time (usually several minutes).

Because of their in-circuit reprogrammability, EEPROMs are becoming more
popular than EPROMs. EEPROMs are often sold as serial I/O memory devices. This
significantly cuts down on their pin count and chip size. Their reduced size makes
them a perfect solution for handheld devices like TV remote controls to remember fa-
vorite user settings and in cell phones for last-number radial and speed dial.

Flash memory has become the most popular nonvolatile memory solution for
many of the new electronic devices recently introduced. Digital cameras and personal
digital assistants (PDAs) use Flash cards as their medium to store data. Also, PCs store
operating system firmware, and printers store fonts on Flash memory.

The most common device used for individual memory cells for each of these
three nonvolatile memories is the floating-gate MOSFET, as shown in Figure 17. The
floating gate is the actual storage element for these devices. It is insulated from the
three transistor connections by a dielectric layer on one side and by a thin oxide layer
on the other. By placing a high-enough voltage at the control gate, an electric-field
effect is created across the floating gate, which forces it to gain an excess of electrons.

SEMICONDUCTOR, MAGNETIC, AND OPTICAL MEMORY

Figure 16 A 2716 EPROM IC showing the window that allows UV light to strike the mem-
ory cells for erasure.
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Manufacturers guarantee that this electron charge will remain on the floating gate for
more than 10 years unless drained off by electrically erasing the cell.

So, basically we need to perform three operations on this memory cell: write,
erase, and read. Figure 18(a) shows how a 1 is written to a cell. Internal chip circuitry
places a high voltage (usually 12 V), called VPP, on the control gate and connects 
the transistor source to ground. This creates an extremely high electric field across
the floating gate. The floating gate responds by absorbing electrons that jump 
across the thin oxide layer from the transistor source. This continues for a few
nanoseconds, until a sufficient charge is obtained. When the VPP voltage is removed,
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Figure 17 Floating-gate MOSFET.
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Figure 18 Simplified diagram of the memory cell used for EPROMs, EEPROMs, and Flash
memories.

804



the charge remains trapped on the floating gate because it is insulated by the dielec-
tric and oxide layers. 

To erase the memory cell of an EEPROM or Flash memory, the electrons must
be drained off the floating gate, as shown in Figure 18(b). To do this, the internal con-
trol circuitry reverses the connections to the control gate and source, reversing the
write operation and leaving the floating gate empty of excess electrons. (A UV-erasable
EPROM has the excess electrons removed when it absorbs UV light energy through its
open window.)

To read a cell, the address lines connected to the memory IC are decoded into a
specific row and column to select a particular memory cell within the memory array, as
was done with RAM ICs. This causes the bit-select line to place VCC on the control
gate of the selected memory cell, as shown in Figures 18(c) and 18(d). If the floating
gate has no electron charge on it [Figure 18(c)], the VCC voltage (usually 5 or 3.3 V) is
sufficient to turn the transistor ON, but not high enough to add an electron charge to the
floating gate. The ON transistor shorts the drain to source, which places 0 V at Dout. If
the floating gate has a charge on it [Figure 18(d)], the VCC voltage will not be high
enough to overcome the threshold required to turn the transistor ON. An OFF transis-
tor acts like an open, keeping the current flow to zero and making the drain voltage
equal to VCC, so 

Very specific timing requirements must be met when reading and programming
EPROM ICs. A sample of the interface circuitry and timing for a small EPROM, the
2716, is given in Figure 19.

The 2716 EPROM: The data sheet for the 2716 EPROM is given in Appendix: Man-
ufacturers’ Data Sheets. Referring to the data sheet, notice that the 2716 has 16k bits
of memory, organized as locations that require 11 address inputs

which are labeled A0 to A10.
To read a byte (8 bits) of data from the chip, the 11 address lines are set up, and

then and are brought LOW to enable the chip and to enable the output. The tim-
ing waveforms for the chip show that the data outputs (O0 to O7) become valid after a
time delay for setting up the addresses (tACC), enabling the chip (tCE), or enabling the
output (tOE), whichever is completed last. Figure 19(a) shows the circuit connections
and waveforms for reading the 2716 EPROM.

In Figure 19(a), the X in the address waveform signifies the point where the ad-
dress lines must change (1 to 0 or 0 to 1), if they are going to change. The 
line is LOW for Chip Enable and HIGH for programming mode. Outputs O0 to O7 are
in the high-impedance state (float) until goes LOW. The outputs are then undeter-
mined until the delay time tOE has expired, at which time they become the valid levels
from the addressed memory contents.

Programming the 2716: Initially, and after an erasure, all bits in the 2716 are 1s. To
program the 2716, the following procedure is used:

1. Set VPP to 25 V and 

2. Set up the address of the byte location to be programmed.

3. Set up the 8-bit data to be programmed on the to outputs.

4. Apply a 50-ms positive TTL pulse to the input.

5. Repeat steps 2, 3, and 4 until all the desired locations have been pro-
grammed.

Figure 19(b) shows the circuit connections and waveforms for programming a
2716.

CE/PGM

O7O0

OE = HIGH (5 V).
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CE/PGM

OECE
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= 2048),

2k * 8 = 2k

Dout = 1.
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Figure 19 The 2716 EPROM: (a) Read cycle; (b) Program cycle.
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Table 3 shows a representation of some EPROMs, EEPROMs, and Flash mem-
ory available today. In general, EEPROMs have the smallest bit size, and the Flash
memory has the largest. Flash memory is the fastest-growing family of this type, find-
ing applications in many PCs and other consumer electronic devices. Flash memory is
now packaged in modules (Flash cards) that can be handled by consumers as they in-
sert it into a slot or USB port on their PC or handheld device. Flash cards can have den-
sities exceeding 256 gigabytes.

TABLE 3 Representative EPROMs, EEPROMs, and Flash Memory

Part Number Organization Description

27C16 16k UV-Erasable CMOS EPROM
27C256 256k UV-Erasable CMOS EPROM
27C040 4Meg UV-Erasable CMOS EPROM
28C64 64k CMOS EEPROM
24C64 64k Serial CMOS EEPROM
24C256 256k Serial CMOS EEPROM
29F080 8Meg CMOS Flash Memory
29F032 32Meg CMOS Flash Memory
29W25611 256Meg CMOS Flash Memory32M * 8

4M * 8
1M * 8
32k * 8
8k * 8
8k * 8

512k * 8
32k * 8
2k * 8

Table 4 summarizes all of the semiconductor memories.

TABLE 4 Summary of Semiconductor Memory

Memory Basic Cell In-Circuit
Type Structure Volatile Rewriteable Density Comments

SRAM Cross-connected Yes Yes Low Fastest speed makes them well suited 
MOSFETs for PC cache memory.

DRAM MOSFET with Yes Yes High Slower than SRAM, but extremely high 
capacitor density. Used for PC main RAM memory.

Mask ROM MOSFET No No High High initial cost, but useful for high 
production runs such as PC BIOS.

PROM MOSFET with No No High Program once; used for small-volume 
fused link or trial circuits and data tables.

EPROM Floating-gate No No High Slow erasure time, but very high density 
MOSFET and fast access time. Used for initial 

troubleshooting and design.
EEPROM Floating-gate No Yes Low Small size and ability to rewrite make 

MOSFET it useful for handheld portable electronic 
devices.

Flash Floating-gate No Yes High Extremely high density and ability to 
MOSFET rewrite facilitate portable megabyte

memory like the Flash card.
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Review Questions

16. What is meant by the term volatile?

17. Describe a situation where you would want to convert your EPROM
memory design over to the mask ROMs.

18. Describe how a memory cell in each of the following memories is
made to output a 1:

(a) mask ROM

(b) PROM

(c) EPROM

(d) EEPROM

(e) Flash memory

19. Describe how you erase a memory cell in each of the following mem-
ories:

(a) EPROM

(b) EEPROM

(c) Flash memory

20. According to the 2716 EPROM Read cycle timing waveforms, you
must wait ________ nanoseconds after goes LOW before the data at O0
to O7 are valid (assuming has already been LOW for at least ________
nanosecond).

21. The time for the outputs to return to a float state for the 2716 is
Under what circumstances would that time be important to

know?

5 Memory Expansion and Address 
Decoding Applications

When more than one memory IC is used in a circuit, a decoding technique (called
address decoding) must be used to identify which IC is to be read or written to. Most
8-bit microprocessors use 16 separate address lines to identify unique addresses within
the computer system. Some of those 16 lines will be used to identify the chip to be ac-
cessed, whereas the others pinpoint the exact memory location. For instance, the 2732
is a EPROM that requires 12 of these address lines (A0 to A11) just to locate
specific contents within its memory. This leaves four address lines (A12 to A15) free for
chip address decoding. A12 to A15 can be used to identify which IC within the system is
to be accessed.

With 16 total address lines, there will be 64K, or 65,536 unique
address locations. One 2732 will use up 4K of those. To design a large EPROM mem-
ory system, let’s say, 16K bytes, four 2732s would be required. The address decoding
scheme shown in Figure 20 could be used to set up the four EPROMS consecutively in
the first 16K addresses of a computer system.

The four EPROMs in Figure 20 are set up in consecutive memory locations be-
tween 0 and 16K and are individually enabled by the 74LS138 address decoder. The

EPROMs each require 12 address lines for internal memory selection, leav-
ing the four HIGH-order address lines (A12 to A15) free for chip selection by 
the 74LS138.

4K * 8

(216
= 65,536),

4K * 8

tDF = 100 ns.

CE
OE
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D0–D7 outputs
float unless
CE = LOW

Figure 20 Address decoding scheme for a 16K-byte EPROM memory system.
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To read from the EPROMs, the microprocessor first sets up on the address bus
the unique 16-bit address that it wants to read from. Then it issues a LOW level on its

output. This satisfies the three enable inputs for the 74LS138, which then uses A12,
A13, and A14 to determine which of its outputs is to go LOW, selecting one of the four
EPROMs. Once an EPROM has been selected, it outputs its addressed 8-bit contents
to the data bus. The outputs of the other EPROMs will float because their s are
HIGH. The microprocessor gives all the chips time to respond and then reads the data
that it requested from the data bus.

The address decoding scheme shown in Figure 20 is a very common technique
used for mapping out the memory allocations in microprocessor-based systems
(called memory mapping). RAM (or RWM) is added to the memory system the same
way.

For example, if we wanted to add four RAMs, their chip enables would
be connected to the 4–5–6–7 outputs of the 74LS138, and they would occupy loca-
tions 4XXX, 5XXX, 6XXX, and 7XXX. Then, when the microprocessor issues a
Read or Write command for, let’s say, address 4007H (4007 Hex), the first RAM
would be accessed. 

4K * 8

CE

RD
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Team
Discussion

This is a very popular
scheme for address decod-
ing (Figure 20). To be sure
that you thoroughly under-
stand it, determine the new
addresses if A15 is moved to
the EN3 input.

E X A M P L E  1

Determine which EPROM and which EPROM address are accessed when
the microprocessor of Figure 20 issues a Read command for the following
hex addresses: (a) READ 0007H; (b) READ 26C4H; (c) READ 3FFFH;
(d) READ 5007H.

Solution:

(a) The HIGH-order hex digit (0) will select the first EPROM. Address
007 (0000 0000 0111) in the first EPROM will be accessed. (Address
007H is actually the eighth location in that EPROM.)

(b) The HIGH-order hex digit (2) will select the third EPROM 
Address 6C4H in the third EPROM will

be accessed.

(c) The HIGH-order hex digit (3) will select the fourth EPROM 
Address FFFH (the last location) in the

fourth EPROM will be accessed.

(d) The HIGH-order hex digit (5) will cause the output 5 of the 74LS138
to go LOW. Because no EPROM is connected to it, nothing will 
be read.

A14 = 0, A13 = 1, A12 = 1).
(A15 = 0,

A14 = 0, A13 = 1, A12 = 0).
(A15 = 0,

Expansion to 64K
The memory system of Figure 20 can be expanded to 64K bytes by utilizing two
74LS138 decoders, as shown in Figure 21. Address lines A0 to A11 are not shown in
Figure 21, but they would go to each 2732 EPROM, just as they did in Figure 20. The
HIGH-order addresses (A12 to A15) are used to select the individual EPROMs. When
A15 is LOW, the upper decoder in Figure 21 is enabled and EPROMs 1 to 8 can be se-
lected. When A15 is HIGH, the lower decoder is enabled, and EPROMs 9 to 16 can be
selected. Using the circuit in Figure 21 will allow us to map in sixteen 
EPROMs, which will completely fill the memory map in a 16-bit address system.
Actually, this would not be practical because some room must be set aside for RAM
and I/O devices.

4K * 8
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One final point on memory and bus operation: Microprocessors and MOS mem-
ory ICs are generally designed to drive only a single TTL load. Therefore, when sev-
eral inputs are being fed from the same bus, an MOS device driving the bus must be
buffered. An octal buffer IC such as the 74244 connected between an MOS IC output
and the data bus will provide the current capability to drive a heavily loaded data bus.
Bidirectional bus drivers (or transceivers) such as the 74LS640 provide buffering in
both directions for use by read/write memories (RAM or RWM). 

74LS138
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EN2

1

EN1

EN3

A15

To EPROM 1

To EPROM 2

To EPROM 3

To EPROM 4

To EPROM 5

To EPROM 6

To EPROM 7

To EPROM 8

RD

74LS138

A2 7

6

5

4

3

2

1

0

A1

A0

EN20

EN1

EN3

To EPROM 9

To EPROM 10

To EPROM 11

To EPROM 12

To EPROM 13

To EPROM 14

To EPROM 15

To EPROM 16

A12A13A14

High-order hex digit

(0 to enable EPROMs 1–8,
1 to enable EPROMs 9–16)

Figure 21 Expanding the memory of Figure 20 to 64K bytes.

Helpful 
Hint

This decoding scheme can
also be used to access RAM
ICs. In that case the line
would need to be ORed
with WR.

RD

A P P L I C AT I O N  1

A PROM Look-Up Table

In addition to being used strictly for memory, ROMs, PROMs, and
EPROMS can also be programmed to provide special-purpose functions.
One common use is as a look-up table. A simple example is to use a PROM
as a 4-bit binary-to-Gray code converter, as shown in Figure 22.

The PROM chosen for Figure 22 must have 16 memory locations,
each location containing a 4-bit Gray code. The 4-bit binary string to be
converted is used as the address inputs to the PROM. The PROM must be
programmed such that each memory contains the equivalent Gray code to
be output. For example, address location 0010 will contain 0011, 0100 will
contain 0110, and so on, for the complete binary-to-Gray code data table.
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A more practical application would be to use a PROM to convert 7-bit binary
to two BCD digits, which is a very complicated procedure using ordinary
logic gates.

Figure 22 Using a PROM look-up table to convert binary to Gray code.
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A P P L I C AT I O N  2

A Digital LCD Thermometer

Another application, one that covers several topics from within this text, is
a digital Celsius thermometer. In this application, using a PROM look-up
table simplifies the task of converting meaningless digital strings into dec-
imal digits. Figure 23 shows a block diagram of a two-digit Celsius ther-
mometer.

For the circuit of Figure 23 to work, a binary-to-two-digit BCD look-
up table has to be programmed into the PROM. Because a standard ther-
mistor is a nonlinear device, as the temperature varies the binary output of
the ADC will not change in proportional steps. Programming the PROM
with the appropriate codes can compensate for that and can also ensure that
the output being fed to the two decoders is in the form of two BCD codes,
each within the range 0 to 9. The appropriate codes for the PROM contents
are best determined through experimentation. For example, if at the
output of the ADC is 0100 1100 (4C16), then location of the PROM
should be programmed with 0011 0000 (30BCD).

The 74HC4543 will convert its BCD input into a seven-segment code
for the liquid-crystal displays (LCDs). Liquid-crystal displays consume
significantly less power than LED displays but require a separate square-
wave oscillator to drive their backplane. As shown in Figure 23, a 40-Hz os-
cillator is connected to the phase input (PH) of each decoder and the
backplane (BP) of each LCD.

4C16

30�C

Team
Discussion

How could a PROM or
EPROM be used as an
ASCII look-up table?
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Review Questions

22. Determine which EPROM and which EPROM address are accessed
when the microprocessor of Figure 20 issues a Read command for the fol-
lowing hexadecimal addresses:

(a) READ 2002H

(b) READ 0AF7H

23. In Figure 20, connect A15 to EN3 and ground EN2. What is the new
range of addresses that will access the second EPROM that was formerly
accessed at 1000H through 1FFFH?

24. In Figure 23, assume that the thermistor resistance is at 
thus making D7 to D0 equal to 1000 0000 (one-half of full scale).
Determine what data value should be programmed into the EPROM at
address 1000 0000.

6 Magnetic and Optical Storage

The types of memory storage discussed so far have all been based on semiconductor
material. They have relied on turning transistors ON or OFF or storing an electrical
charge on a capacitor or on a floating gate of a transistor.

25�C,10 k�

O4

O5

O6

O7

256 × 8
PROM

or
EPROM
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O1
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D2
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b
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g
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LCD
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BCD-to-
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digital
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Two 4-bit
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+5 V

10-kΩ

Analog Vin

10 kΩ
thermistor

Figure 23 Using a PROM as a look-up table for binary-to-BCD conversion for
an LCD thermometer.
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The most common magnetic and optical memories are more electromechanical
in nature because the memory material containing the 1s and 0s physically spins be-
neath a read/write head. They are nonvolatile, providing permanent storage and retrieval
even when power is removed.

In the case of magnetic memory, the 1 or 0 is represented on the magnetic
medium as a tiny north–south or south–north polarity magnet. Optical memory differs
in that it uses a laser to optically read the data stored on the medium. An indentation
area (called a pit) represents 1, and a non-pit (called land ) represents 0. Because of
their electromechanical nature, magnetic and optical storage units are much slower and
bulkier than semiconductor memory, but they are also much less expensive and provide
much higher storage capacity.

Magnetic Memory: The Floppy Disk and Hard Disk
Before the advent of Flash memory, the most common removable magnetic storage for
a PC was the 3.5-inch floppy disk. It consists of a magnetizable medium that spins in-
side a rigid plastic jacket at a speed of 300 rpm (revolutions per minute). The disk drive
that holds the floppy disk (or diskette) has two read/write heads, one for each side of
the diskette. They are used to record a magnetic charge to, or read a magnetic charge
from, the diskette. Up to 1.44 MB of data can be stored on the double-sided diskette.
The beauty of the diskette is that it can then be removed from its drive unit and used at
a different location or filed away for safe-keeping. Additional diskettes can then be
purchased for less than a dollar.

The highest-speed magnetic storage is achieved using a hard-disk drive. This
disk system is not considered a removable medium like the floppy disk, but instead,
uses a series of rigid platters mounted in a sealed unit inside a PC. Its recording method
is similar to the floppy, except that it uses several two-sided platters (usually three or
more) to hold the magnetic data and has one read/write head for each platter surface.
Because the platters are rigid and mounted in a permanent housing, their tolerances are
more precisely defined, allowing for tighter spacing between bits. This also enables the
disks to spin at much higher speeds (thousands of rpm). Storage capacity of hard drives
is in the gigabyte range.

The method of storing 1s and 0s magnetically is shown in Figure 24. Each disk
surface is made of an iron-oxide layer capable of becoming magnetized. This surface
is mounted on a substrate (foundation), which is usually a flexible Mylar for the floppy
disk and aluminum for the hard-drive platter. Initially, the magnetic layer consists of
totally nonaligned particles representing no particular magnetic direction. By passing
magnetic flux lines through the material, the particles align themselves in a specific
north–south or south–north direction.

As the disk surface revolves, the read/write head is moved laterally to the precise
track (ring) and bit position as dictated by the PC operating system software. If the
software is writing data to the disk, the control circuitry places the appropriate polarity
on the electromagnet in the read/write head. The example in Figure 24(b) shows how
to write a 1 onto the disk surface. (Four previously written bits are also shown.) With
the to polarity shown, magnetic flux lines will flow clockwise through the elec-
tromagnet core. As the flux lines pass through the magnetic surface of the disk, they
force the particles to align in a specific direction, leaving behind a north–south mag-
netic charge (south–north as you look at it.) To store a 0, the to polarity is reversed,
which reverses the flux lines, which in turn reverses the direction of the stored mag-
netic charge. To read the data, the read/write head is used as a magnetic sensor, read-
ing the magnetic polarity as it passes beneath it.

A hard drive achieves higher bit capacity and data access speed because it
uses rigid disk platters revolving at a much higher speed within a precision, sealed
unit. Typical rotation speed is 3600 rpm. (Some newer drives now exceed 10,000
rpm.) Because the hard drive operates in such a controlled environment, the bits can

-+

-+
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be packed closer together. Figure 25 shows how the bits are laid out on a disk sur-
face. The concentric circles on the disk are called tracks. (In the case of a hard
drive, the term cylinder is used to describe the cylindrical shape that appears from
the series of tracks having the same diameter on the entire stack of platters.) The

Disk
rotation

Read/write head

Read/write head electromagnet

Magnetic flux
lines Random (nonaligned)

media particles

Disk rotation

Substrate

Read/write
circuitry and
head positioning

Read/write
circuitry

+ −

0
N NS S

01 1

(a)

(b)

NSNS N S

Figure 24 Magnetic memory: (a) a floppy disk or hard-drive platter with one of its
read/write heads and (b) a cutaway view of Figure 24(a), showing how to store a south–north
magnetic charge.

Disk speed
= 300 RPM (floppy)
= 3600+ RPM (hard drive)

Tracks per inch
= 135 (floppy)
= 3000+ (hard drive)

Bits per inch
= 17,434 (floppy)
= 50,000+ (hard drive)

Figure 25 Bit density of a floppy disk and a hard drive.
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tracks and the bits on the hard-disk drive are packed much closer together than on a
floppy diskette. Newer drives exceed 20,000 tracks per inch and 300 kilobits per
inch on each track.

One of the most important specifications on magnetic media is the data transfer
rate. A floppy can transfer data at 45 kB/s, whereas a hard drive can exceed 30 MB/s.
The slow speed of the floppy becomes annoying when you have to wait more than half
a minute to transfer a large file that only takes a couple of seconds for a hard drive.

Since the early 2000’s researchers have turned their attention to a new form of
magnetic memory called Magnetoresistive Random Access Memory (MRAM). To
date its density is not as high as a hard disk but it has many other advantages such as
high speed and it has no moving parts. Address decoding is similar to a DRAM cell but
instead of storing a bit as a charge on a capacitor, it stores a magnetic field on ferro-
magnetic plates.

Optical Memory: The CD, CD-R, CD-RW, and DVD
Music CDs have been around since the late 1970s as a digital medium for the storage
and playback of analog music. In the mid-1980s, they were adopted for the storage and
retrieval of digital computer data. Their data transfer rate is generally not as fast as a
hard-disk drive, but manufacturers are constantly improving the speed. Because it is a
removable media and capable of holding up to 650 MB of data, most new operating
systems and applications software are provided on CDs.

Figure 26 illustrates the construction of a CD. It is made of an aluminum alloy
coating on the bottom of a rigid polycarbonate wafer. Binary data are stored on the CD
by a series of indentations (called pits) representing 1s and non-pits (called lands) rep-
resenting 0s. Pits are formed in the CD by stamping tiny indentations into the alu-
minum alloy. Data are recorded on a CD starting from the center and spiraling outward
to the perimeter. The spiral is very tight, having the equivalent of 16,000 tracks per
inch. A thin, plastic coating is then used to cover the CD, and a label is placed on top.
As the CD spins, each bit position is read optically when a laser beam is reflected off
the bottom of the CD surface. A light receptor receives the reflected light and distin-
guishes between light that is strongly reflected (from the land) versus light that is dif-
fused or absent (from the pit).

0 0 00 0 00 0 0 0001 1 1 11 11

A single, continuous,
spiral track

(bottom view)

16,000 tracks
per inch

Aluminum alloy
coating

Polycarbonate wafer (substrate)

Pits (1)

Lands (0)

Figure 26 CD construction.
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User-recordable CDs (CD-Rs) are also available. To make CDs recordable, they
are manufactured with a photosensitive dye on a reflective gold layer placed on the
bottom of the rigid polycarbonate wafer. To form a 1, the CD recorder superheats a tiny
spot on the dye/gold layer, changing its composition so that it will not reflect the laser
light in that one spot. This is not actually a pit but, instead, is just an area with reduced
reflective properties. These CDs are called WORM (Write Once, Read Many) media
because once they are full, they cannot be erased or rewritten.

The rewritable type of CD is the CD-RW. Its surface is a silver alloy crystalline
structure that is also converted into a 1 by superheating the specific bit area. The heat
turns that area into its amorphous (nonreflective) state. The beauty of the CD-RW
technology is that the 1 can be converted back to look like a 0 by reapplying a lower-
level heat to that area, which returns the silver alloy back to its crystalline (reflective)
state. Again, these are not actual pits and lands but, instead, are reflective and nonre-
flective areas.

The newest standard for the CD is called DVD (Digital Versatile Disk). DVDs
are not only important in the computer industry for data storage but also in home en-
tertainment, where they are replacing prerecorded VCR tapes, offering much higher
quality and greater content. They are constructed similarly to the CD but have a much
higher data capacity, because the pits and tracks are packed much closer on the platter.
DVDs can be single- or double-sided and have data capacities of 4.7 GB up to 17 GB.

Summary

In this chapter, we have learned the following:

1. A simple 16-byte memory circuit can be constructed from 16 octal D flip-
flops and a decoder. This circuit would have 16 memory locations (addresses)
selectable by the decoder, with 1 byte (8 bits) of data at each location.

2. Static RAM (random-access memory) ICs are also called read/write
memory. They are used for the temporary storage of data and program
instructions in microprocessor-based systems.

3. A typical RAM IC is the 2114A. It is organized as which
means that it has 1K locations, with 4 bits of data at each location. (1K is
actually an abbreviation for 1024.) An example of a higher-density RAM
IC is the 6206, which is organized as 

4. Dynamic RAMs are less expensive per bit and have a much higher den-
sity than static RAMs. Their basic storage element is an internal capacitor
at each memory cell. External circuitry is required to refresh the charge on
all capacitors every 2 ms or less.

5. Dynamic RAMs generally multiplex their address bus. This means that
the high-order address bits share the same pins as the low-order address
bits. They are demultiplexed by the RAS and CAS (Row Address Strobe
and Column Address Strobe) control signals.

6. Read-only memory (ROM) is used to store data on a permanent basis. It
is nonvolatile, which means that it does not lose its memory contents when
power is removed.

7. Three common ROMs are (1) the mask ROM, which is programmed
once by a masking process by the manufacturer; (2) the fusible-link pro-
grammable ROM (PROM), which is programmed once by the user; and (3)
the erasable-programmable ROM (EPROM), which is programmable and
UV-erasable by the user.

32K * 8.

1K * 4,
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8. Memory expansion in microprocessor systems is accomplished by us-
ing octal or hexadecimal decoders as address decoders to select the appro-
priate memory IC.

9. The electrically erasable PROM (EEPROM) and Flash memory use a
floating-gate MOSFET for their primary storage element. A charge on the
floating gate represents the stored data.

10. Magnetic storage like the floppy or hard disk use magnetized particles
to represent the stored 1 or 0. Individual data bits are read and written using
an electromagnetic read/write head.

11. Optical memory like the CD or DVD uses a laser beam to reflect light
off a rigid platter. This CD or DVD platter will have either a nonreflective
pit to represent a 1 or a non-pit (land) to represent a 0.

Glossary

Address Decoding: A scheme used to locate and enable the correct IC in a system
with several addressable ICs.

Buffer: An IC placed between two other ICs to boost the load-handling capability of
the source IC and to provide electrical isolation.

Bus Contention: Bus contention arises when two or more devices are outputting to a
common bus at the same time.

Byte: A group of 8 bits.

CAS: Column address strobe. An active-LOW signal provided when the address lines
contain a valid column address.

Delay Line: An integrated circuit that has a single pulse input and provides a se-
quence of true and complemented output pulses, with each output being
delayed from the preceding one by some predetermined time period.

Dynamic: A term used to describe a class of semiconductor memory that uses the
charge on an internal capacitor as its basic storage element.

EEPROM: Electrically erasable, programmable read-only memory.

EPROM: UV-erasable, programmable read-only memory.

Floating-Gate MOSFET: A special type of MOSFET, the gate of which can perma-
nently hold an electron charge when a strong electric field is placed across
it. This stored charge determines if the transistor is read as a 1 or a 0. It is
the basic storage element in most EEPROM and Flash-memory ICs.

Fusible Link: Used in programmable ICs to determine the logic level at that particu-
lar location. Initially, all fuses are intact. Programming the IC either blows
the fuse to change the logic state or leaves it intact.

LCD: Liquid-crystal display. A multisegmented display similar to LED displays, ex-
cept that it uses liquid-crystal technology instead of light-emitting diodes.

Look-Up Table: A table of values that is sometimes programmed into an IC to pro-
vide a translation between two quantities.

MRAM (Magnetoresistive Random Access Memory) A possible future replace-
ment for the computer hard drive. Each memory cell consists of a magnetic
charge on a stationary ferromagnetic material.
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Magnetic Memory: The most common types of magnetic memory are the floppy
disk and hard disk used in a PC. Magnetically charged north–south parti-
cles are used to represent 1s and 0s. Individual data bits are read and writ-
ten using an electromagnetic read/write head.

Mask: A material covering the silicon of a masked ROM during the fabrication
process. It determines the permanent logic state to be formed at each mem-
ory location.

Memory Address: The location of the stored data to be accessed.

Memory Cell: The smallest division of a memory circuit or IC. It contains a single bit
of data (1 or 0).

Memory Contents: The binary data quantity stored at a particular memory address.

Optical Memory: The most common types of optical memory are the CD and DVD
used by a PC. They use the reflection of a laser beam off a rigid disk plat-
ter to represent a 1 or 0. This CD or DVD platter has either a nonreflective
pit to represent a 1 or a non-pit (land) to represent a 0.

PROM: Programmable read-only memory.

RAM: Random-access memory (read/write memory).

RAS: Row address strobe. An active-LOW signal provided when the address lines
contain a valid row address.

ROM: Read-only memory.

Semiconductor Memory: Digital ICs used for the storage of large amounts of binary
data. The binary data at each memory cell are stored as the state of a flip-
flop (RAM), the charge on a capacitor (DRAM), an internal transistor con-
nection (ROM), or the charge on the gate of a floating-gate MOSFET
(EEPROM, Flash).

Static: A term used to describe a class of semiconductor memory that uses the state
on an internal flip-flop as its basic storage element.

Volatile ICs: ICs that lose their memory contents when power is removed.

Problems

Section 1
1.

(a) In general, which type of memory technology is faster, bipolar or MOS?

(b) Which is more dense, bipolar or MOS?

2. Describe the difference between the columns labeled “address” and
“data” in Figure 1.

3. In Figure 2, all s are grounded. Why isn’t there a problem with bus
contention?

4. Assume that the 74LS374s in the memory system in Figure 2 are loaded
with the output of a hex counter from 00H to 0FH (H Hex). Connecting
the circuit of Figure 4 to Figure 2 allows you to test the memory system.
When you read the data from the memory, you find that addresses 0000 to
0111 have the hex numbers 00H to 07H as they are supposed to, but ad-
dresses 1000 to 1111 have the same data (00H to 07H). What do you suppose
is wrong, and how would you troubleshoot the system?

=

OE

T
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5. Design and sketch an 8-byte memory system similar to that shown in
Figure 2, using eight 74LS374s and one 74LS138.

Section 2
6. Briefly describe the difference between SRAMs and DRAMs. What are
the advantages and disadvantages of each?

7. Use the block diagram for the 2147H in Figure 5 to determine what state
and must be in to enable the three-state buffer connected to Din.

8. What is the level of Dout on a 2147H when and are both LOW?

9. How many address lines are required to select a specific memory
location within a RAM having:

(a) 1024 locations? (c) 8192 locations?

(b) 4096 locations?

10. How many memory locations do the following RAM configurations
have?

(a) (d)
(b) (e)
(c) (f)

11. What is the total number of bits that can be stored in the following
RAM configurations?

(a) (c)
(b) (d)

12. Design and sketch a RAM memory system using two 2148Hs.
(2148Hs are with and 

13. When troubleshooting the memory system in Figure 7, you keep read-
ing incorrect values at D0 to D7. Using a logic analyzer, you observe the
waveforms of Figure P13 at A0 to A11 and CE. What is wrong and how
would you correct it?

CS.)WE1K * 4
1K * 8

16K * 14K * 4

8K * 81K * 8

16K * 18192 * 8

4K * 82K * 4

1024 * 42048 * 1

WECE

WECS

CS

New addressA0–A11

60 ns

25 ns
WE = 1

Figure P13

D

D

D

T

14. Use Table 1 to determine how many 62256 RAM ICs it would take to
design a 1MB memory system for a computer that uses 8-bit data storage.

Section 3
15. Which lines are multiplexed on DRAMs, and why?

16. What is the purpose of and on DRAMs?CASRAS
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17.

(a) Draw the timing diagrams for a Read cycle and a Write cycle of a
DRAM similar to Figure 11(b) and (c). Assume that is delayed
from by 100 ns. Also assume that 120 ns (max.),

(max.), (min.), and (min.).

(b) How long after the falling edge of will the data out be valid?

(c) How soon after the falling edge of must the data in be set up?

18. How often does a 2118 DRAM have to be refreshed, and why?

19. What functions does the 3242 DRAM controller take care of?

Section 4
20. Are the following memory ICs volatile or nonvolatile?

(a) Mask ROM (c) DRAM

(b) SRAM (d) EPROM

21. Which EPROM is electrically erasable, the 2716 or the 2864?

Section 5
22. Which EPROM and which EPROM address are accessed when the mi-
croprocessor of Figure 20 issues a read command for the following ad-
dresses?

(a) READ 1020H (c) READ 7001H

(b) READ 0ABCH (d) READ 3FFFH?

23. Redesign the connections to the 74LS138 in Figure 20 so that the four
EPROMs are accessed at addresses 8000H to BFFFH.

24. When testing the EPROM memory system of Figure 20, 
the microprocessor reads valid data from all EPROMs except
EPROM2(1000H–1FFFH). What are two probable causes?

25. When the microprocessor of Figure 20 reads data from addresses
8000H to 8FFFH, it finds the same data as that at 0000H to 0FFFH. What
is the problem?

26. In Figure 20, should the microprocessor software be designed to read
data from the EPROMs when it issues the HIGH-to-LOW or LOW-to-
HIGH edge on Why?

27. Design and sketch an address decoding scheme similar to Figure 20 for
an EPROM memory system using 2716 EPROMs. (The 2716 is a

EPROM.)

28. What single decoder chip could be used in Figure 21 in place of the
two 74LS138s?

29. Design a PROM IC to act like a 3-bit controlled inverter. Use a 
PROM similar to that in Figure 22. When A3 is HIGH, the input at A0 to A2
is to be inverted; otherwise, it is not. Build a truth table showing the 16 pos-
sible inputs and the resultant output at Q0 to Q2 (Q3 is not used).

30. If at the output of the ADC in Figure 23 is 0111 1010 (7AH), de-
termine what location 7AH in the EPROM should contain.

65�C

16 * 4

2K * 8
8K * 8

RD?

RAS

RAS

30 nstDH =tDS = 40 nstRAC = 180 ns
tCAC =RAS

CAS

C

D

D

D

T

T

C

DC
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Section 6
31. Which of the following memories are nonvolatile?

(a) RAM (d) Floppy disk

(b) DRAM (e) Hard disk

(c) EEPROM (f) CD

32. How is a single data bit stored in the following types of memory?

(a) Magnetic memory (b) Optical memory

33.

(a) Which magnetic memory system has a higher bit density, floppy disk
or hard disk?

(b) Which optical memory system has a higher bit density, CD or DVD?

34. How does the construction of a CD-RW differ from that of a CD-R to
make it rewritable?

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

35. The 62256 (U10) IC in the 4096/4196 schematic is a MOS static
RAM. By looking at the number of address lines and data lines, determine
the size and configuration of the RAM.

36. Repeat Problem 35 for U6 of the HC11D0 schematic. Looking at the
connections to the address lines, determine how much of the RAM is actu-
ally accessible.

37. The HC11D0 schematic uses two 27C64 EPROMS.

(a) What are their size and configuration?

(b) What are the labels of the control signals used to determine which
EPROM is selected?

(c) Place a jumper from pin 2 to pin 3 of jumper J1 (grid location D-6).
Determine the range of addresses that make SMN_SL active (active-
LOW).

(d) Determine the range of addresses that make MON_SL active (active-
LOW).

MultiSIM® Exercises

E1. Load the circuit file for Section 1a. The 74374 will be used as an 8-bit
memory system in this circuit. The Word Generator is set up to output an 8-
bit counter from 00H to FFH repeatedly. The instant that “C” is pressed,
whatever is output by the Word Generator will be captured by the 8-bit D
flip-flop memory system. Turn the power switch ON and press “C.” The
lights that come on will be equivalent to the hex number that appeared in
the Word Generator at the instant “C” was pressed.

(a) Why don’t the lights change after the Word Generator continues to
count up?

(b) What happens if OC is connected to VCC instead of ground?¿

S

S

CS
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E2. Load the circuit file for Section 5a. This Address Decoder operates
similar to Figure 20. The high-order 4 bits of the 16-bit microprocessor ad-
dress bus are used to select which chip enable is activated. Determine
which chip enable is activated if the microprocessor issues the following
commands:

(a) READ 2036H (c) READ 0005H

(b) READ 4FFFH (d) READ 8000H

Test each of your answers.

C

Answers to Review Questions

1. Address

2. Data

3. By inputting the 4-bit address
to the 74LS154, which outputs
a LOW pulse on one of the
output lines when is
pulsed LOW

4. It shows when any or all of the
lines are allowed to change
digital levels.

5. To avoid a bus conflict

6. 1024, 4

7. LOW, HIGH

8. A0 A5, A6 A11

9. Row 7, column 9

10. Q5 and Q6

11. 35 ns max.

12. To keep the IC pin count to a
minimum. They are demulti-
plexed by using control signals

and 

13. A capacitor

14. The charge on the internal
capacitors in the RAM is
replenished.

15. 60 ms

16. It means that when the power is
removed, the memory contents
are lost.

17. After the EPROM program has
been thoroughly tested

CAS.RAS

WRITE

18. (a) Open source on a MOS
transistor.

(b) An open fuse in the source
of a MOS transistor.

(c) Having an electron charge
on the floating gate of a
MOS transistor.

(d) Same as (c).

(e) Same as (c).

19. (a) Dissipate the electron
charge on the floating gate
by exposing it to UV
radiation through the
open IC window.

(b) Ground the control gate
and put a high voltage
(VPP) on the source to
drain the electron charge
off of the floating gate.

(c) Same as (b).

20. 120, 330 (450 total)

21. When another device has to
use the bus

22. (a) Third EPROM, address
002H.

(b) First EPROM, address
AF7H.

23. 9000H–9FFFH

24. 0010 0101
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Answers to Odd-Numbered Problems

1. Bipolar, faster; MOS, more dense.

3. Data are being written into memory from
the data bus. Bus contention occurs only
when two or more devices are writing to
the data bus at the same time.

5.

19. Address line multiplexing and memory
refresh cycling

21. 2864

23.

ADDR 000

ADDR 001

ADDR 010

ADDR 011

ADDR 100

ADDR 101

ADDR 110

ADDR 111

E1

E2

E3

A0

A1

A2

A0

A1

A2

1

WRITE

A
D
D
R
E
S
S

0

1

2

3

4

5

6

7

To CP
of each
74LS374

7.
9. 10, 12, 13

11. (a) 8192 (b) 16,384 (c) 65,536
(d) 16,384

13. is not held LOW long enough. The
access time for the 2147H is given in
Figure  6(a) as 35 ns minimum. To correct,
increase the LOW pulse to 35 ns or
more.

15. The high- and low-order address lines are
multiplexed to minimize the IC pin count.

17. (a)

CS

(tacs)
CS

CS = LOW, WE = LOW

RAS 100 ns

COLUMNROWADDRs

Valid data inDin

CAS

40 nsmin 30 nsmin

RAS 100 ns

COLUMNROWADDRESSES

Valid data out

120 nsmax

180 nsmaxDout

CAS

Read cycle:

8000 - 8FFF

9000 - 9FFF

A000 - AFFF

B000 - BFFF

EN1

EN2

EN3

A0

A1

A2

A12

A13

A14

0

RD 0

7

A15

To EPROM1(0000 - 07FF)EN1

EN2

EN3

A0

A1

A2

A11

A12

A13

RD 0

7

A15

A14

To EPROM2(0800 - 0FFF)

To EPROM3(1000 - 17FF)

To EPROM4(1800 - 1FFF)

A0

A1

A2

A3

Q0

Q1

Q2

Q3 NC

A3 A2 A1 A0

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Q3 Q2 Q1 Q0

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0

0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0

25. Address line A15 is stuck LOW.

27. The circuit design will be similar except
the 2716 address inputs are A0 to A10. The
new 74LS138 connections will be as
follows:

29.

31. c, d, e, f

33. (a) Hard disk (b) DVD

35.
37. (a) (b) SMN_SEL, MON_SEL

(c) A000H–BFFFH (d) E000H–FFFFH

E1. (a) The D flip-flop only captures data at
the instant C is pressed.

(b) Outputs are all stuck LOW.

8k * 8

32k * 8

(b) 220 ns max
(c) 60 ns max

824



825



Microprocessor 
Fundamentals

OUTLINE

1 Introduction to System Components and Buses
2 Software Control of Microprocessor Systems
3 Internal Architecture of a Microprocessor
4 Instruction Execution within a Microprocessor
5 Hardware Requirements for Basic I/O Programming
6 Writing Assembly Language and Machine Language Programs
7 Survey of Microprocessors and Manufacturers

OBJECTIVES

Upon completion of this chapter, you should be able to do the following:

• Describe the benefits that microprocessor design has over hard-wired IC logic
design.

• Discuss the functional blocks of a microprocessor-based system having basic I/O
capability.

• Describe the function of the address, data, and control buses.
• Discuss the timing sequence on the three buses required to perform a simple I/O

operation.
• Explain the role of software program instructions in a microprocessor-based system.
• Understand the software program used to read data from an input port and write

it to an output port.
• Discuss the basic function of each of the internal blocks of the 8085A

microprocessor.
• Follow the flow of data as they pass through the internal parts of the 8085A

microprocessor.
• Make comparisons between assembly language, machine language, and high-

level languages.
• Discuss the fundamental circuitry and timing sequence for external

microprocessor I/O.

INTRODUCTION

The design applications you have studied have all been based on combinational 
logic gates and sequential logic ICs. One example is a traffic light controller that 
goes through the sequence green–yellow–red. To implement the circuit using 

The companion website for this text is www.pearsonhighered.com/kleitz

From Chapter 17 of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.

826



combinational and sequential logic, we would use some counter ICs for the timing, a
shift register for sequencing the lights, and a D flip-flop if we want to interrupt the se-
quence with a pedestrian cross-walk push button. A complete design solution is easily
within the realm of SSI and MSI ICs.

Conversely, think about the complexity of electronic control of a modern auto-
mobile. There are several analog quantities to monitor, such as engine speed, manifold
pressure, and coolant temperature, and there are several digital control functions to
perform, such as spark plug timing, fuel mixture control, and radiator circulation con-
trol. The operation is further complicated by the calculations and decisions that have to
be made on a continuing basis. This is definitely an application for a microprocessor-
based system.

A system designer should consider a microprocessor-based solution whenever an
application involves making calculations, making decisions based on external stimu-
lus, and maintaining memory of past events. A microprocessor offers several advan-
tages over the hard-wired SSI/MSI IC approach. First, the microprocessor itself is a
general-purpose device. It takes on a unique personality by the software program in-
structions given by the designer. If you want it to count, you tell it to do so, with soft-
ware. If you want to shift its output level left, there’s an instruction for that. And if you
want to add a new quantity to a previous one, there’s another instruction for that. Its ca-
pacity to perform arithmetic, make comparisons, and update memory makes it a very
powerful digital problem solver. Making changes to an application can usually be done
by changing a few program instructions, unlike the hard-wired system that may have
to be totally redesigned and reconstructed.

New microprocessors are introduced every year to fill the needs of the design en-
gineer. However, the theory behind microprocessor technology remains basically the
same. It is a general-purpose digital device that is driven by software instructions and
communicates with several external support chips to perform the necessary I/O of a spe-
cific task. Once you have a general understanding of one of the earlier microprocessors
that came on the market, such as the Intel 8080/8085, the Motorola 6800, or the Zilog
Z80, it is an easy task to teach yourself the necessary information to upgrade to the new
microprocessors as they are introduced. Typically, when a new microprocessor is intro-
duced, it will have a few new software instructions available and have some of the I/O
features, previously handled by external support chips, integrated right into the micro-
processor chip. Learning the basics on these new microprocessor upgrades is more diffi-
cult, however, because some of their advanced features tend to hide the actual operation
of the microprocessor and may hinder your complete understanding of the system.

*1 *Introduction to System Components and Buses

Figure 1 shows a microprocessor with the necessary support circuitry to perform ba-
sic input and output functions. We use this figure to illustrate how the microprocessor
acts like a general-purpose device, driven by software, to perform a specific task re-
lated to the input data switches and output data LEDs. First, let’s discuss the components
of the system.

Microprocessor
The heart of the system is an 8-bit microprocessor. It could be any of the popular 8-bit
microprocessors such as the Intel 8085, the Motorola 6800, or the Zilog Z80. They are
called 8-bit microprocessors because external and internal data movement is per-
formed on 8 bits at a time. It will read program instructions from memory and execute

*Sections 1 through 4 are reprinted from Digital and Microprocessor Fundamentals: Theory and Applications, Fourth
Edition, by William Kleitz, © 2003. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ.

MICROPROCESSOR FUNDAMENTALS

827



those instructions that drive the three external buses with the proper levels and timing
to make the connected devices perform specific operations. The buses are simply
groups of conductors that are routed throughout the system and tapped into by various
devices (or ICs) that need to share the information that is traveling on them. 

Address Bus
The address bus is 16 bits wide and is generated by the microprocessor to select a par-
ticular location or IC to be active. In the case of a selected memory IC, the low-order
bits on the address bus select a particular location within the IC. Because the address
bus is 16 bits wide, it can actually specify 65,536 (216) different addresses. The input
port is one address, the output port is one address, and the memory in a system of this
size may be 4K (4096) addresses. This leaves about 60K addresses available for future
expansion.

Data Bus
Once the address bus is set up with the particular address that the microprocessor
wants to access, the microprocessor then sends or receives 8 bits of data to or from that
address via the bidirectional (two-way) data bus.

Control Bus
The control bus is of varying width, depending on the microprocessor being used. It
carries control signals that are tapped into by the other ICs to tell what type of opera-
tion is being performed. From these signals, the ICs can tell if the operation is a read,
a write, an I/O, a memory access, or some other operation.

MICROPROCESSOR FUNDAMENTALS

Team
Discussion

Discuss the flow of data as
the microprocessor reads
program instructions from
memory, which then tell it
to read the input data
switches and transfer what
it has read out to the LEDs.

Team
Discussion

Which port could be con-
nected to a D/A converter?
To an A/D converter?

Input port
(octal 3-state

buffer)

CE
I0

– I7

O0 – O7

Memory
(ROM

and RAM)

CE
Output port

(octal
D F-F)

CE
O0

– O7

D0 – D7

Address
decoder
(1-of-8)

0  1  2  3  4  5  6  7

Micro-
processor

D0

D7

A0

A15

From
input
toggle

switches

To output
data LEDs

C
o
n
t
r
o
l

b
u
s

A
d
d
r
e
s
s

b
u
s

D
a
t
a

b
u
s

16 8

Provides control
signals like
RD, WR to
I/O ports and
memory

Specifies memory location
or I/O port location

Data travels to
and from microprocessor

Figure 1 Example of a microprocessor-based system used for simple I/O operations.
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Address Decoder
The address decoder is usually an octal decoder like the 74LS138. Its function is to pro-
vide active-LOW Chip Enables to the external ICs based on information it re-
ceives from the microprocessor via the control and address buses. Because there are
multiple ICs on the data bus, the address decoder ensures that only one IC is active at
a time to avoid a bus conflict caused by two ICs writing different data to the same bus.

Memory
There will be at least two memory ICs: a ROM or EPROM and a RAM. The ROM
will contain the initialization instructions, telling the microprocessor what to do
when power is first turned on. This includes tasks like reading the keyboard and driv-
ing the CRT display. It also contains several subroutines that can be called by the mi-
croprocessor to perform such tasks as time delays or I/O data translation. These
instructions, which are permanently stored in ROM, are referred to as the monitor
program or operating system. The RAM part of memory is volatile, meaning that
it loses its contents when power is turned off and, therefore, is used only for tempo-
rary data storage.

Input Port
The input port provides data to the microprocessor via the data bus. In this case, it is an
octal buffer with three-stated outputs. The input to the buffer is provided by some in-
put device like a keyboard or, as in this case, from eight HIGH–LOW toggle switches.
The input port will dump its information to the data bus when it receives a Chip Enable

from the address decoder and a Read command from the control bus.

Output Port
The output port provides a way for the microprocessor to talk to the outside world. It
could be sending data to an output device like a printer or, as in this case, it could send
data to eight LEDs. An octal D flip-flop is used as the interface because, after the
microprocessor sends data to it, the flip-flop will latch on to the data, allowing the
microprocessor to continue with its other tasks.

To load the D flip-flop, the microprocessor must first set up the data bus with the
data to be output. Then, it sets up the address of the output port so that the address de-
coder will issue a LOW to it. Finally, it issues a pulse on its (write) line that
travels the control bus to the clock input of the D flip-flop. When the D flip-flop
receives the clock trigger pulse, it latches onto the data that are on the data bus at that
time and drives the LEDs.

Review Questions

1. What are the names of the three buses associated with microprocessors?

2. How much of the circuitry shown in Figure 1 is contained inside a mi-
crocontroller IC?

3. Why must the data bus be bidirectional?

4. The purpose of the address decoder IC in Figure 1 is to enable two or
more of the external ICs to be active at the same time to speed up process-
ing. True or false?

WRCE

(RD)(CE)

(CE)
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5. The input port in Figure 1 must have three-state outputs so that its out-
puts are floating whenever any other IC is writing data to the data bus. True
or false?

6. What would be the consequence of using an octal buffer for the output
port in Figure 1 instead of an octal D flip-flop?

2 Software Control of Microprocessor Systems

The nice thing about microprocessor-based systems is that, once you have a working
prototype, you can put away the soldering iron because all operational changes can
then be made with software. The student of electronics has a big advantage when writ-
ing microprocessor software because he or she understands the hardware at work as
well as the implications that software will have on the hardware. Areas such as address
decoding, chip enables, instruction timing, and hardware interfacing become impor-
tant when programming microprocessors.

As a brief introduction to microprocessor software, let’s refer back to Figure 1
and learn the statements required to perform some basic I/O operations. To route the
data from the input switches to the output LEDs, the data from the input port must first
be read into the microprocessor before they can be sent to the output port. The micro-
processor has an 8-bit internal register called the accumulator that can be used for this
purpose.

The software used to drive microprocessor-based systems is called assembly
language. The Intel 8080/8085 assembly language statement to load the contents of
the input port into the accumulator is LDA addr. LDA is called a mnemonic, an ab-
breviation of the operation being performed, which in this case is “Load Accumulator.”
The suffix addr will be replaced with a 16-bit address (4 hex digits) specifying the ad-
dress of the input port.

After the execution of LDA addr, the accumulator will contain the digital value that
was on the input switches. Now, to write these data to the output port, we use the com-
mand STA addr. STA is the mnemonic for “Store Accumulator,” and addr is the 16-bit ad-
dress where you want the data stored.

Execution of those two statements is all that is necessary to load the value of the
switches into the accumulator and then transfer these data to the output LEDs. The mi-
croprocessor takes care of the timing on the three buses, and the address decoder takes
care of providing chip enables to the appropriate ICs.

If the system is based on Motorola or Zilog technology, the software in this case will
be almost the same. Table 1 makes a comparison of the three assembly languages. 

TABLE 1 Comparison of I/O Software on Three Different Microprocessors

Operation Intel 8080/8085 Motorola 6800 Zilog Z80

Load accumulator 
with contents of 
location addr LDA addr LDAA addr LD A, (addr)

Store accumulator 
to location addr STA addr STAA addr LD (addr), A

3 Internal Architecture of a Microprocessor

The design for the Intel 8085A microprocessor was derived from its predecessor, the
8080A. The 8085A is software compatible with the 8080A, meaning that software
programs written for the 8080A can run on the 8085A without modification. The 8085A

Helpful
Hint

It is beyond the scope of
this text to cover an entire
software instruction set,
but it might be instructive
for you to locate a
programmer’s manual for
one of the more popular
microprocessors to see an
entire list of instructions so
that you can get a feel for
its power.
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has a few additional features not available on the 8080A. The 8085A also has a higher
level of hardware integration, allowing the designer to develop complete microprocessor-
based systems with fewer external support ICs than were required by the 8080A.
Studying the internal architecture of the 8085A in Figure 2 and its pin configuration
in Figure 3 will give us a better understanding of its operation.

Incrementer/ decrementer
address latch (16)

(16)

(16)

(8)

(8)

(8)

Program counter

Stack pointer

C
Reg

E
Reg

L
Reg

(8)

(8)

(8)B
Reg

D
Reg

H
Reg

Register
array

(8)Address buffer (8)Data/address buffer

A15 – A8
To Address bus

AD7 – AD0
To Address/data bus

Instruction
decoder

and
machine

cycle
encoding

Instruction
decoder (8)

Arithmetic
logic
unit

Flag
flip flops

(5)

(ALU)
(8)

Temp reg. (8)Accumulator(8)

Timing and control Reset

Reset out
Reset in

Hlda
Hold

DMAStatus

IO/MS0 S1ALEWRRD

Control

Ready
Clk out

Clk
Gen

X1

X2

Power
supply

+5 V
GND

8-bit internal data bus

Serial I/O control

Intr Rst 5.5 Rst 7.5
Rst 6.5 TrapInta

Interrupt control

SID SOD

Figure 2 The 8085A CPU functional block diagram. (Courtesy of Intel Corporation.)
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AD7

AD6
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RESET OUT

X2

X1

A8
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A12

A13

A14

A15
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READY

RESET IN
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VCC

20 21
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18 23
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16 25
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11 30
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9 32

8 33

7 34

6 35
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3 38

2 39

1 40

SOD

SID

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA
8085A

Figure 3 The 8085A pin configuration. (Courtesy of Intel Corporation.)
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The 8085A is an 8-bit parallel central processing unit (CPU). The accumula-
tor discussed in the previous section is connected to an 8-bit internal data bus. Six
other general-purpose registers labeled B, C, D, E, H, and L are also connected to the
same bus.

All arithmetic operations take place in the arithmetic logic unit (ALU). The ac-
cumulator, along with a temporary register, is used as input to all arithmetic operations.
The output of the operations is sent to the internal data bus and to five flag flip-flops
that record the status of the arithmetic operation.

The instruction register and decoder receive the software instructions from
external memory, interpret what is to be done, and then create the necessary timing and
control signals required to execute the instruction.

The block diagram also shows interrupt control, which provides a way for an
external digital signal to interrupt a software program while it is executing. This is ac-
complished by applying the proper digital signal on one of the interrupt inputs: INTR,
RSTx.x, or TRAP. Serial communication capabilities are provided via the SID and
SOD I/O pins (Serial Input Data, Serial Output Data).

The register array contains the six general-purpose 8-bit registers and three 16-
bit registers. Sixteen-bit registers are required whenever you need to store addresses.
The stack pointer stores the address of the last entry on the stack. The stack is a data
storage area in RAM used by certain microprocessor operations. The program
counter contains the 16-bit address of the next software instruction to be executed.
The third 16-bit register is the address latch, which contains the current 16-bit address
that is being sent to the address bus.

The six general-purpose 8-bit registers can also be used in pairs (B–C, D–E,
H–L) to store addresses or 16-bit data.

Review Questions

7. The suffix addr in the LDA and STA mnemonics is used to specify the
address of the accumulator. True or false?

8. The LDA command is used by the microprocessor to _________
(read/write) data, and the STA command is used to _________ (read/write)
data.

9. The 8085A microprocessor has an internal accumulator and six
external registers called B, C, D, E, H, and L. True or false?

10. The ALU block inside the 8085A determines the timing and control
signals required to execute an instruction. True or false?

4 Instruction Execution within a Microprocessor

Now, referring back to the basic I/O system diagram of Figure 1, let’s follow the flow
of the LDA and STA instructions as they execute in the block diagram of the 8085A.
Figure 4 shows the 8085A block diagram with numbers indicating the succession of
events that occurs when executing the LDA instruction.

Remember, LDA addr and STA addr are assembly language instructions, stored
in an external memory IC, that tell the 8085A CPU what to do. LDA addr tells the CPU
to load its accumulator with the data value that is at address addr. STA addr tells the
CPU to store (or send) the 8-bit value that is in the accumulator to the output port at
address addr.
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The mnemonics LDA and STA cannot be understood by the CPU as they are;
they have to be assembled, or converted, into a binary string called machine code.
Binary or hexadecimal machine code is what is actually read by the CPU and passed
to the instruction register and decoder to be executed. The Intel 8085A Users Manual
gives the machine code translation for LDA as 3A16 (or 3AH) and STA as 32H.

Before studying the flow of execution in Figure 4, we need to make a few as-
sumptions. Let’s assume that the input port is at address 4000H and the output port is
at address 6000H. Let’s also assume that the machine code program LDA 4000H, STA
6000H is stored in RAM starting at address 2000H. 

Load Accumulator
The sequence of execution of LDA 4000H in Figure 4 is as follows:

1. The program counter puts the address 2000H on the address bus.

2. The timing and control unit issue a LOW pulse on the line. This pulse
travels the control bus to the RAM in Figure 1 and causes the contents at lo-
cation 2000H to be put onto the external data bus. RAM (2000H) has the ma-
chine code 3AH, which travels across the internal data bus to the instruction
register.

3. The instruction register passes the 3AH to the instruction decoder, which de-
termines that 3AH is the code for LDA and that a 16-bit (2-byte) address
must follow. Because the entire instruction is 3 bytes (one for the 3AH and
two for the address 4000H), the instruction decoder increments the program
counter two more times so that the address latch register can read and store
bytes 2 and 3 of the instruction.
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Figure 4 Execution of the LDA instruction within the 8085A.
Team
Discussion

Identify the route that data
travel, from an external
input to the accumulator
and then to an output port.

Common
Misconception

Students often confuse the
external data bus with the
internal data bus.
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4. The address latch and address bus now have 4000H on them, which provides
the LOW for the input port in Figure 1.

5. The timing and control unit again issues a LOW pulse on the line. This
pulse travels the control bus to the input port, causing the data at the input
port (4000H) to be put onto the external data bus.

6. Those data travel across the external data bus in Figure 1, to the internal data
bus in Figure 4, to the accumulator, where they are now stored. The instruc-
tion is complete.

Store Accumulator
Figure 5 shows the flow of execution of the STA 6000H instruction.
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Figure 5 Execution of the STA instruction within the 8085A.

1. After the execution of the 3-byte LDA 4000H instruction, the program
counter has 2003H in it. (Instruction LDA 4000H resided in locations 2000H,
2001H, 2002H.)

2. The timing and control unit will issue a LOW pulse on the line. This
causes the contents of RAM location 2003H to be put onto the external data
bus. RAM (2003H) has the machine code 32H, which travels up the internal
data bus to the instruction register.

3. The instruction register passes the 32H to the instruction decoder, which de-
termines that 32H is the code for STA and that a 2-byte address must follow.
The program counter gets incremented two more times, reading and storing
bytes 2 and 3 of the instruction into the address latch.

RD
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4. The address latch and address bus now have 6000H on them, which is the
address of the output port in Figure 1.

5. The instruction decoder now issues the command to place the contents of the
accumulator onto the data bus.

6. The timing and control unit issues a LOW pulse on the line. Because the
line is used as a clock input to the D flip-flop of Figure 1, the data from

the data bus will be stored and displayed on the LEDs. (The line from the
microprocessor is part of the control bus in Figure 1.)

The complete assembly language and machine code program for the preceding
I/O example is given in Table 2.

WR
WR

WR

TABLE 2 Assembly Language and Machine Code Listing for the 
LDA-STA Program

Memory Assembly Machine 
Location Language Code

2000H LDA 4000H 3A
2001H 00

Three-byte instruction to load accumulator

2002H 40
with contents from address 4000H

2003H STA 6000H 32
2004H 00

Three-byte instruction to store accumulator

2005H 60
out to address 6000H

s

s

Review Questions

11. What is the difference between assembly language and machine code?

12. Why is the instruction LDA 4000H called a 3-byte instruction?

13. When executing the instruction LDA 4000H, the microprocessor
fetches the machine code from RAM location 4000H. True or false?

14. Which instruction, STA or LDA, issues a pulse on the line? Why?

15. How many bytes of RAM does the program in Table 2 occupy?

5 Hardware Requirements for Basic I/O Programming

A good way to start out in microprocessor programming is to illustrate program exe-
cution by communicating to the outside world. In Section 4, we read input switches at
memory location 4000H using the LDA instruction and wrote their value to output
LEDs at location 6000H using the STA instruction. This was an example of
memory-mapped I/O. Using this method, the input and output devices were
accessed as if they were memory locations by specifying their unique 16-bit address
(4000H or 6000H).

The other technique used by the 8085A microprocessor for I/O mapping is
called standard I/O or I/O-mapped I/O. I/O-mapped systems identify their input and

WR
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output devices by giving them an 8-bit port number. The microprocessor then ac-
cesses the I/O ports by using the instructions OUT port and IN port, where port is
00H to FFH.

Special hardware external to the 8085A is required to provide the source for
the IN instruction and the destination for the OUT instruction. Figure 6 shows a ba-
sic hardware configuration, using standard SSI and MSI ICs, that could be built to
input data from eight switches and to output data to eight LEDs using I/O-mapped
I/O.
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Figure 6 Hardware requirements for the IN FFH and OUT FEH instructions.

Figure 6 is set up to decode the input switches as port FFH and the output LEDs
as port FEH. The line from the microprocessor goes HIGH whenever an IN or
OUT instruction is being executed (I/O-mapped I/O). All instructions that access
memory and memory-mapped devices will cause the line to go LOW. The 
line from the microprocessor will be pulsed LOW when executing the IN instruction,
and the line will be pulsed LOW when executing the OUT instruction. 

IN FFH
The 74LS244 is an octal three-state buffer that is set up to pass the binary value of the
input switches over to the data bus as soon as and are brought LOW. To get
that LOW, U6a, the inverted-input NAND gate (OR gate), must receive three LOWs at
its input. We know that the IN instruction will cause the inverted line to go LOW
and the line to go LOW. The other input is dependent on the output from the right-
input NAND gate (U4). Gate U4 will output a LOW because the binary value of the
port number (1111 1111) used in the IN instruction is put onto 
the high-order address bus during the execution of the IN FFH instruction.

RD
IO/M

OE2OE1

WR

RDIO/M

IO/M

Helpful 
Hint

Review the operation of the
74LS244 octal buffer and
the 74LS374 octal D
flip-flop before studying
this figure.
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All conditions are now met; U6a will output a LOW pulse (the same width as the
LOW pulse), which will enable the outputs of U2 to pass to the data bus. After the
microprocessor drops the line LOW, it waits a short time for external devices (U2
in this case) to respond, and then it reads the data bus and raises the line back
HIGH. The data from the input switches are now stored in the accumulator.

OUT FEH
The 74LS374 is an octal D flip-flop set up to sink current to illuminate individual
LEDs based on the binary value it receives from the data bus. The outputs at Q0 to Q7
will latch onto the binary values at D0 to D7 at the LOW-to-HIGH edge of Cp. U5 and
U6b are set up similarly to U4 and U6a, except U5’s output goes LOW when FEH
(1111 1110) is input. Therefore, during the execution of OUT FEH, U6b will output a
LOW pulse, the same width as the pulse issued by the microprocessor.

The setup time of the 74LS374 latch is accounted for by the microprocessor tim-
ing specifications. The microprocessor issues a HIGH-to-LOW edge at that makes
its way to Cp. At the same time, the microprocessor also sends the value of the accu-
mulator to the data bus. After a time period greater than the setup time for U3, goes
back HIGH, which applies the LOW-to-HIGH trigger edge for U3, latching the data at
Q0 to Q7.

To summarize, the instruction IN FFH reads the binary value at port FFH into the
accumulator. The instruction OUT FEH writes the binary value in the accumulator out
to port FEH. Port selection is taken care of by eight-input NAND gates attached to the
high-order address bus and by use of the and lines.

6 Writing Assembly Language and Machine 
Language Programs

The microprocessor is driven by software instructions to perform specific tasks. The
instructions are first written in assembly language using mnemonic abbreviations and
then converted to machine language so that they can be interpreted by the micro-
processor. The conversion from assembly language to machine language involves
translating each mnemonic into the appropriate hexadecimal machine code and storing
the codes in specific memory addresses. This can be done by a software package called
an assembler, provided by the microprocessor manufacturer, or it can be done by the
programmer by looking up the codes and memory addresses (called hand assembly).

Assembly language is classified as a low-level language because the programmer
has to take care of all the most minute details. High-level languages such as Pascal,
FORTRAN, C , and BASIC are much easier to write but are not as memory effi-
cient or as fast as assembly language. All languages, whether Pascal, C , BASIC, or
FORTRAN, get reduced to machine language code before they can be executed by the
microprocessor. The conversion from high-level languages to machine code is done by
a compiler. The compiler makes memory assignments and converts the English-
language-type instructions into executable machine code.

On the other hand, assembly language translates directly into machine code. This
allows the programmer to write the most streamlined and memory-efficient and fastest
programs possible on the specific hardware configuration that is being used.

Assembly language and its corresponding machine code differ from processor to
processor. The fundamentals of the different assembly languages are the same, how-
ever, and once you have become proficient on one microprocessor, it is easy to pick it
up on another.

++

++

IO/MRD, WR,

WR

WR

WR

RD
RD

RD
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Let’s start off our software training by studying a completed assembly language
program and comparing it to the same program written in the BASIC computer lan-
guage. BASIC is a high-level language that uses English-language-type commands
that are fairly easy to figure out, even by the inexperienced programmer.

Program Definition
Write a program that will function as a down-counter, counting 9 to 0 repeatedly. First
draw a flowchart, and then write the program statements in the BASIC language,
assembly language, and machine language.

Solution
The flowchart in Figure 7 is used to show the sequence of program execution,
including the branching and looping that takes place.

Start

Initialize
count = 9

Decrement
count

Count
= 0
?

YesNo

Figure 7 Flowchart for Table 3.

According to the flowchart, the counter is decremented repeatedly until zero is
reached, at which time the counter is reinitialized to 9 and the cycle repeats. The in-
structions used to implement the program are given in Table 3.

TABLE 3 Down-Counter Program in Three Languages

8085A 8085A
BASIC Language Assembly Language Machine Language

Line Instruction Label Instruction Address Contents

10 COUNT�9 START: MVI A,09H 2000 3E (opcode)
2001 09 (data)

20 COUNT�COUNT-1 LOOP: DCR A 2002 3D (opcode)
30 IF COUNT�0 JZ START 2003 CA (opcode)

THEN GO TO 10 2004 00 (address)
2005 20

40 GO TO 20 JMP LOOP 2006 C3 (opcode)
2007 02 (address)
2008 20

s

s
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BASIC
BASIC uses the variable COUNT to hold the counter value. Line 30 checks the count.
If COUNT is equal to zero, then the program goes back to the beginning. Otherwise, it
goes back to subtract 1 from COUNT and checks COUNT again.

The 8085A version of the program is first written in assembly language, and then
it is either hand assembled into machine language or computer assembled using a per-
sonal computer with an assembler software package.

Assembly Language
Assembly language is written using mnemonics: MVI, DCR, JZ, and the like. The term
mnemonics is defined as “abbreviations used to assist the memory.” The first
mnemonic, MVI, stands for “Move Immediate.” The instruction MVI A,09H will
move the data value 09H into register A (register A and the accumulator are the same).
The next instruction, DCR A, decrements register A by 1.

The third instruction, JZ START, is called a conditional jump. The condition that
it is checking for is the zero condition. As the A register is decremented, if A reaches 0,
then a flag bit, called the zero flag, gets set (a set flag is equal to 1). The instruction JZ
START is interpreted as “jump to statement label START if the zero flag is set.”

If the condition is not met (zero flag not set), then control passes to the next in-
struction, JMP LOOP, which is an unconditional jump. This instruction is interpreted
as “jump to label LOOP regardless of any condition flags.”

At this point you should see how the assembly language program functions
exactly like the BASIC language program.

Machine Language
Machine language is the final step in creating an executable program for the micro-
processor. In this step, we must determine the actual hexadecimal codes that will be
stored in memory to be read by the microprocessor. First, we have to determine what
memory locations will be used for our program. This depends on the memory-map as-
signments made in the system hardware design. We have 64K of addressable memory
locations (0000H to FFFFH). We’ll make an assumption that the user program area
was set up in the hardware design to start at location 2000H. The length of the program
memory area depends on the size of the ROM or RAM memory IC being used. A

RAM memory is usually sufficient for introductory programming assign-
ments and is commonly used on educational microprocessor trainers. The machine
language program listed in Table 3 fills up 9 bytes of memory (2000H to 2008H).

The first step in the hand assembly is to determine the code for MVI A. This is
known as the opcode (operation code) and is found in an 8085A Assembly Language
Reference Chart. The opcode for MVI A is 3E. The programmer will store the binary
equivalent for 3E (0011 1110) into memory location 2000H. Instructions for storing
your program into memory are given by the manufacturer of the microprocessor trainer
that you are using. If you are using an assembler software package, then the machine
code that is generated will usually be saved on a computer disk or used to program an
EPROM to be placed in a custom microprocessor hardware design.

The machine language instruction MVI A,09H in Table 3 requires 2 bytes to
complete. The first byte is the opcode, 3E, which identifies the instruction for the mi-
croprocessor. The second byte (called the operand) is the data value, 09H, which is to
be moved into register A.

The second instruction, DCR A, is a 1-byte instruction. It requires just its op-
code, 3D, which is found in the reference chart.

The opcode for the JZ instruction is CA. It must be followed by the 16-bit (2-byte)
address to jump to if the condition (zero) is met. This makes it a 3-byte instruction. 
Byte 2 of the instruction (location 2004H) is the low-order byte of the address, and

256 * 8
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byte 3 is the high-order byte of the address to jump to. (Be careful to always enter
addresses as low-order first and then high-order.)

The opcode for JMP is C3 and must also be followed by a 16-bit (2-byte) address
specifying the location to jump to. Therefore, this is also a 3-byte instruction where
byte 2–byte 3 gives a jump address of 2002H.

7 Survey of Microprocessors and Manufacturers

Since its introduction in the early 1970s, the microprocessor has had a huge impact on
the electronics industry. The first microprocessors had a 4-bit internal data width. In
1974, Intel introduced the first 8-bit microprocessor, the 8008. Within a year it offered an
upgrade, the 8080, which served as a point of comparison for all other manufacturers.

The first challenger to the 8080 was the Motorola 6800. Other IC manufacturers
(National Semiconductor, Texas Instruments, Zilog, RCA, and Fairchild) soon intro-
duced their own versions of the microprocessor. The race had begun. Since then, 16-,
32-, and 64-bit architectures have been developed and are finding their way into most
new high-end applications.

Along the way, manufacturers started integrating whole multichip systems with
RAM, ROM, and I/O into a single package called a microcontroller. Today, the microcon-
troller is the most popular choice for embedded control applications such as those found in
automobiles, home entertainment systems, and data acquisition and control systems.

Each microprocessor and microcontroller has its own special niche, but through-
out the years, the two most important players have been Intel and Motorola. Table 4

TABLE 4 Popular Intel and Motorola Microprocessors and Microcontrollers

Part Data Address 
No. Bits Bits Comments

8085 8 16 Upgrade of the 8080
8051 8 16 Microcontroller with on-chip ROM, RAM, and I/O
6809 8 16 Upgrade of the original 6800
68HC11 8 16 Microcontroller with on-chip ROM, RAM, 

I/O, and A/D converter
8088 8 20 8-Bit downgrade of the 8086
8086 16 20 Made popular by its use in IBM PC-compatible

computers
80186 16 20 8086 with on-chip support functions
80286 16 24 8086 upgrade with extended addressing capability; 

used in IBM AT-compatible computers
8096 16 16 Microcontroller with on-chip ROM, RAM, 

I/O, and A/D converter
68000 16 23 Made popular by its use in Apple Macintosh II 

and Unix-based workstations
68010 16 24 Upgrade of the 68000
80386 32 32 32-Bit upgrade of the 80286
80486 32 32 Upgrade of the 80386
68020 32 32 32-Bit upgrade of the 68010
68030 32 32 Upgrade of the 68020
Pentium 64 32 Dual instruction pipelining allows concurrent 

execution of instructions, decreasing 
processing times

Pentium II 64 36 Higher speeds and memory capacity
Pentium III 64 36 Upgrade of the Pentium II
Pentium IV 64 36 Upgrade of the Pentium III
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lists the most popular processors manufactured by these two companies. You can iden-
tify the manufacturer by the first two numbers in the part number (68 for Motorola and
80 for Intel).

Review Questions

16. Programs written in assembly language must be converted to machine
code before being executed by a microprocessor. True or false?

17. Programs written in a high-level language are more memory efficient
than those written in assembly language. True or false?

18. What is the port number of the input switches and of the output LEDs
in Figure 6?

19. The OUT FEH statement is used to output the switch data to the mi-
croprocessor, and the IN FFH statement is used to input data to the LEDs.
True or false?

20. In Table 3, addresses 2000 through 2008 are where the _________ is
stored.

21. How does the JZ instruction differ from the JMP instruction?

Summary of Instructions

LDA Addr: (Load Accumulator Direct) Load the accumulator with the contents of
memory whose address (addr) is specified in byte 2–byte 3 of the
instruction.

STA Addr: (Store Accumulator Direct) Store the contents of the accumulator to
memory whose address (addr) is specified in byte 2–byte 3 of the
instruction.

IN Port: (Input) Load the accumulator with the contents of the specified port.

OUT Port: (Output) Move the contents of the accumulator to the specified port.

MVI r,data: (Move Immediate) Move into register r the data specified in byte 2 of
the instruction.

DCR r: (Decrement Register) Decrement the value in register r by 1.

JMP Addr: (Jump) Transfer control to address addr specified in byte 2–byte 3 of
the instruction.

JZ Addr: (Jump If Zero) Transfer control to address addr if the zero flag is set.

Summary

In this chapter, we have learned the following:

1. A system designer should consider using a microprocessor instead of
logic circuitry whenever an application involves making calculations, mak-
ing decisions based on external stimuli, and maintaining memory of past
events.
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2. A microprocessor is the heart of a computer system. It reads and acts on
program instructions given to it by a programmer.

3. A microprocessor system has three buses: address, data, and control.

4. Microprocessors operate on instructions given to them in the form of
machine code (1s and 0s). The machine code is generated by a higher-level
language like C or assembly language.

5. The Intel 8085A is an 8-bit microprocessor. It has seven internal regis-
ters, an 8-bit data bus, an arithmetic logic unit, and several I/O functions.

6. Program instructions are executed inside the microprocessor by the in-
struction decoder, which issues the machine cycle timing and initiates I/O
operations.

7. The microprocessor provides the appropriate logic levels on the data
and address buses and takes care of the timing of all control signals output
to the connected interface circuitry.

8. Assembly language instructions are written using mnemonic abbrevia-
tions and then converted into machine language so that they can be inter-
preted by the microprocessor.

9. Higher-level languages like C or Pascal are easier to write than
assembly language, but they are not as memory efficient or as fast. All lan-
guages must be converted into a machine language matching that of the
microprocessor before they can be executed.

Glossary

Accumulator: The parallel register in a microprocessor that is the focal point for all
arithmetic and logic operations.

Address Bus: A group of conductors that are routed throughout a computer system
and used to select a unique memory or I/O location based on their binary
value.

Architecture: The layout and design of a system.

Arithmetic Logic Unit (ALU): The part of a microprocessor that performs all the
arithmetic and digital logic functions.

Assembler: A software package that is used to convert assembly language into
machine language.

Assembly Language: A low-level programming language unique to each micro-
processor. It is converted, or assembled, into machine code before it can be
executed.

BASIC Language: A high-level computer programming language that uses English-
language-type instructions that are converted to executable machine code.

Bidirectional: Systems capable of transferring digital information in two directions.

Central Processing Unit (CPU): The “brains” of a computer system. The term is
used interchangeably with microprocessor.

Compiler: A software package that converts a high-level language program into
machine language code.

++
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Control Bus: A group of conductors that is routed throughout a computer system and
used to signify special control functions, such as Read, Write, I/O,
Memory, and Ready.

Data Bus: A group of conductors that is routed throughout a computer system and
contains the binary data used for all arithmetic and I/O operations.

Flowchart: A diagram used by the programmer to map out the looping and condi-
tional branching that a program must make. It becomes the blueprint for the
program.

Hand Assembly: The act of converting assembly language instructions into machine
language codes by hand, using a reference chart.

Hardware: The ICs and electronic devices that make up a computer system.

Instruction Decoder: The circuitry inside a microprocessor that interprets the
machine code and produces the internal control signals required to execute
the instruction.

Instruction Register: A parallel register in a microprocessor that receives the
machine code and produces the internal control signals required to execute
the instruction.

Interrupt: A digital control signal that is input to a microprocessor IC pin that
suspends current software execution and performs another predefined
task.

I/O-Mapped I/O: A method of input/output that addresses each I/O device as a port
selected by a binary (or hex) port number.

Machine Code: The binary codes that make up a microprocessor’s program instructions.

Memory-Mapped I/O: A method of input/output that addresses each I/O device as a
memory location selected by a binary (or hex) address.

Microprocessor: An LSI or VLSI integrated circuit that is the fundamental building
block of a digital computer. It is controlled by software programs that allow
it to do all digital arithmetic, logic, and I/O operations.

Mnemonic: The abbreviated spellings of instructions used in assembly language.

Monitor Program: The computer software program initiated at power-up that super-
vises system operating tasks such as reading the keyboard and driving the
CRT.

Opcode: Operation code. It is the unique 1-byte code given to identify each instruc-
tion to the microprocessor.

Operand: The parameters that follow the assembly language mnemonic to complete
the specification of the instruction.

Operating System: See Monitor program.

Port Number: A number used to select a particular I/O port.

Program Counter: An internal register that contains the address of the next program
instruction to be executed.

Software: Computer program statements that give step-by-step instructions to a com-
puter to solve a problem.

Stack Pointer: An internal register that contains the address of the last entry on the
RAM stack.
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Statement Label: A meaningful name given to certain assembly language program
lines so that they can be referred to from different parts of the program,
using statements like JUMP or CALL.

Support Circuitry: The integrated circuits and electronic devices that assist the
microprocessor in performing I/O and other external tasks.

Zero Flag: A bit internal to the microprocessor that, when set (1), signifies the last
arithmetic or logic operation had a result of zero.

Problems

Section 1
1. Describe the circumstances that would prompt you to use a micro-
processor-based design solution instead of a hard-wired IC logic design.

2. In an 8-bit microprocessor system, how many lines are in the data bus?
The address bus?

3. What is the function of the address bus?

4. Use a TTL data manual to find an IC that you could use for the output
port in Figure 1. Draw its logic diagram and external connections.

5. Repeat Problem 4 for the input port.

6. Repeat Problem 4 for the address decoder. Assume that the input port is
at address 4000H, the output port is at address 6000H, and memory is at ad-
dress 2000H.

7. Why does the input port in Figure 1 have to have three-stated outputs?

8. What two control signals are applied to the input port in Figure 1 to
cause it to transfer the switch data to the data bus?

9. How many different addresses can be accessed using a 16-bit address
bus?

Sections 2 and 3
10. In the assembly language instruction LDA 4000H, what does the LDA
signify and what does the 4000H signify?

11. Describe what the statement STA 6000H does.

12. What are the names of the six internal 8085A general-purpose 
registers?

13. What is the function of the 8085A’s instruction register and 
instruction decoder?

14. Why is the program counter register 16 bits instead of 8?

Section 4
15. During the execution of the LDA 4000 instruction in Figure 4, the 
line goes LOW four times. Describe the activity initiated by each LOW
pulse.

RD

D

D

DC

C
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16. What action does the LOW pulse initiate during the STA 6000 in-
struction in Figure 5?

Section 5
17. Describe one advantage and one disadvantage of writing programs in a
high-level language instead of assembly language.

18. Are the following instructions used for memory-mapped I/O or for
I/O-mapped I/O?

(a) LDA addr

(b) STA addr

WR

(c) IN port

(d) OUT port

19. What is the digital level on the microprocessor’s line for each of
the following instructions?

(a) LDA addr

(b) STA addr

IO/M

(c) IN port

(d) OUT port

20. List the new IN and OUT instructions that would be used to I/O to the
switches and LEDs if the following changes to U4 and U5 were made in
Figure 6.

(a) Add inverters to inputs A8 and A9 of U4 and to A9 and A10 of U5.

(b) Add inverters to inputs A14 and A15 of U4 and to A14 and A15 of U5.

21. U6a and U6b in Figure 6 are OR gates. Why are they drawn as in-
verted-input NAND gates?

22. Are the LEDs in Figure 6 active-HIGH or active-LOW?

23. Is the line or the line pulsed LOW by the microprocessor dur-
ing the:

(a) IN instruction? (b) OUT instruction?

24. What three conditions must be met to satisfy the output enables of U2
in Figure 6?

25. What three conditions must be met to provide a pulse to the Cp input of
U3 in Figure 6?

26. Which internal data register is used for the IN and OUT instructions?

Section 6
27. Write the assembly language instruction that would initialize the accu-
mulator to 4FH.

28. Describe in words what the instruction JZ LOOP does.

WRRD

D
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29. Write the machine language code for the following assembly language
program. (Start the machine code at address 2010H.)

INIT: MVI A,04H

X1: DCR A

JZ INIT

JMP X1

Schematic Interpretation Problems

See Appendix: Schematic Diagrams for Chapter-End Problems for the
schematic diagrams.

30. Locate the 68HC11 microcontroller in the HC11D0 schematic. (A mi-
crocontroller is a microprocessor with built-in RAM, ROM, and I/O ports.)
Pins 31–38 are the low-order address bus (A0–A7) multiplexed (shared)
with the data bus (D0–D7). Pins 9–16 are the high-order address bus
(A8–A15). The low-order address bus is demultiplexed (selected and
latched) from the shared address/data lines by U2 and the AS (Address
Strobe) line.

(a) Which ICs are connected to the data bus (DB0–DB7)?

(b) Which ICs are connected to the address bus (AD0–AD15)?

31. U9 and U5 in the HC11D0 schematic are used for address decoding.
Determine the levels on AD11–AD15 and AD3–AD5 to select (a) the LCD
(LCD_SL) and (b) the keyboard (KEY_SL).

32. Locate the microcontroller in the 4096/4196 schematic.

(a) What is its grid location and part number?

(b) Its low-order address is multiplexed like the 68HC11 in Problem 30.
What IC and control signal are used to demultiplex the address/data bus
(AD0–AD7) into the low-order address bus (A0–A7)?

(c) What IC and control signal are used to demultiplex the address/data
bus (AD0–AD7) into the data bus (D0–D7)?

MultiSIM® Exercises

E1. Load the circuit file for Section 5a. This circuit simulates the In-
put/Output portion of the microprocessor circuit of Figure 6. The object is
to load the value of the input port onto the Data Bus and then send the data
on the Data Bus out to the Output Port.

(a) The on the 74LS244 must be _________ (HIGH/LOW) to load
the switches to the data bus.

(b) Then to transfer the data on the Data Bus over to the Output Port you
must _________.

(c) Change (E) on the 74LS244 back to 1. List the order of opera-
tions involved to transfer the number 7CH from the Input Port to the
Output Port.

OE¿

OE¿

C

S

CS

S
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Answers to Review Questions

1. Address, data, control

2. All of it

3. To use the same path for both
input and output data

4. False

5. True

6. The output to the LEDs would
float when returns HIGH.

7. False

8. Read, write

9. False

10. False

11. Assembly language, which is
written in short mnemonics,
needs to be assembled or con-
verted into a binary string
called a machine code, which
is read by the CPU.

WR

12. 1 byte is used to store 3AH; 2
bytes are used to store 4000H.

13. False

14. STA, the is used as the
clock input to the D flip-flop.

15. 6 bytes

16. True

17. False

18. Input is FFH, output is FEH.

19. False

20. Machine code

21. The JZ instruction looks for a
zero flag and jumps to the 
label START if the flag is set.
The JMP instruction jumps to
the label LOOP, regardless of
any flags.

WR

MICROPROCESSOR FUNDAMENTALS

Answers to Odd-Numbered Problems

1. A microprocessor-based system would be
used whenever calculations are to be made,
decisions based on inputs are to be made, a
memory of events is needed, or a modifi-
able system is needed.

3. The address bus is used to select a particu-
lar location or device within the system.

5.

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

74LS244

From
Input
Switches

To
Data
Bus

CE from
address decoder

RD from
μp control busOEa OEb

7. The input port has three-stated outputs so
that it can be disabled when it is not being
read.

9. 216 (65,536)

11. It stores the contents of the accumulator
out to address 6000H.

13. Instruction decoder and register: register
and circuitry inside the microprocessor that
receives the machine language code and
produces the internal control signals re-
quired to execute the instruction.

15. (1) Pulse: read memory location 2000
(LDA); (2) and (3) Pulse: read address
bytes at 2001, 2002 (4000H); (4) Pulse:
read data at address 4000H

17. A high-level language (FORTRAN, BASIC,
etc.) has the advantage of being easier to
write and understand. Its disadvantage is
that the programs are not memory efficient.
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19. (a) LOW
(b) LOW
(c) HIGH
(d) HIGH

21. U6a and U6b are drawn as inverted-input
NAND gates to make the logical flow of
the schematic easier to understand.

23. (a) IN instruction, is pulsed LOW.
(b) OUT instruction, is pulsed LOW.

25. (1)
(2)
(3) is pulsed LOW/HIGH

27. MVI A, 4FH

29.

WR
IO/M = HIGH
A8 to A15 = FEH

WR
RD

2010 3E
2011 04
2012 3D
2013 CA
2014 10
2015 20
2016 C3
2017 12
2018 20

LCD_SL KEL_SL

AD3 0 1
AD4 0 0
AD5 0 0
AD11 1 1
AD12 1 1
AD13 0 0
AD14 0 0
AD15 0 0

31.

E1. (a) LOW
(b) Press C
(c) Put 7C on the switches, make

(data appear on the data
bus), press C [data appear at output
port if (G) is LOW].OE¿

OE¿ = 0
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Appendix

Web Sites

Useful Web sites for this text include the following:

www.acebus.com (AceBus) Downloadable 8051 microcontroller editor, assembler,
and simulator

www.ahinc.com/scsi.htm (Advanced Horizons, Inc.) SCSI, CD, and DVD definitions
and standards

www.allegromicro.com (Allegro MicroSystems, Inc.) Hall Effect Sensors and 
Power ICs

www.altera.com (Altera Corporation) CPLDs and FPGAs

www.ocf.berkeley.edu/~amanb/8085.html 8085 simulator

www.amd.com (Advanced Micro Devices, Inc.) Microprocessors, EPROMs, and
Flash memory

www.analog.com (Analog Devices, Inc.) Analog ICs, ADCs, and DACs

www.bipom.com (BiPom Electronics, Inc.) Downloadable 8051 microcontroller
editor, assembler, and simulator

www-03.ibm.com/chips/ (IBM Microelectronics Corporation) Microprocessors,
SRAMs, DRAMs, and custom logic

www.datasheetcatalog.com pdf datasheet downloads

www.digikey.com Sales catalog of electronic products and components

www.educypedia.be/electronics Free circuit schematics, information and tutorials

www.elexp.com (Electronics Express, Inc.) Sales of electronic products, CPLD
programmer boards, and microprocessor trainers and components

www.emacinc.com (EMAC, Inc.) Microprocessor and microcontroller trainers and
single-board computers

www.fairchildsemi.com (Fairchild Semiconductor, Inc.) Digital Logic ICs, analog
ICs, discrete semiconductors, EEPROMs, and microcontrollers

www.fujitsumicro.com (Fujitsu, Inc.) Microcontrollers, DRAMs, and Flash memory

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix A of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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www.hitachi.com (Hitachi, LTD.) Microprocessors, DRAMs, SRAMs, Flash
memories, EEPROMs, digital logic ICs, analog ICs, and discrete semiconductors

www.howstuffworks.com (HowStuffWorks) Beginners guide to the operation of
electronic and computer hardware and software

www.idt.com (Integrated Device Technology, Inc.) SRAMs and digital logic ICs

www.intel.com (Intel Corporation) Microprocessors, microcontrollers, and Flash memory

www.interactiv.com (Interactive Image Technology, Inc.) Multisim® software

www.intersil.com (Intersil Corporation) Analog ICs, ADCs, DACs, SRAMs,
microprocessors, microcontrollers, and discrete semiconductors

www.jameco.com Sales catalog of electronic products and components

www.jdr.com Sales catalog of electronic products and components

www.latticesemi.com (Lattice Semiconductor Corporation) CPLDs

www.linear-tech.com (Linear Technology Corporation) ADCs and DACs

www.microchip.com (Microchip Technology, Inc.) EEPROMs and microcontrollers

www.micronsemi.com (Micron Semiconductor Products, Inc.) DRAMs, SRAMs,
and Flash memory

www.mot-sps.com (Motorola Semiconductors, Inc.) Analog ICs, digital logic ICs,
microcontrollers, microprocessors, SRAMs, and discrete semiconductors

www.mp3-tech.org (MP3 Tech) MP3 definitions and standards

www.national.com (National Semiconductor Corp.) Analog ICs, digital logic ICs,
and microcontrollers

www.ni.com (National Instruments, Inc.) Provider of Multisim simulation software
and LabView measurement and control software

www.nxp.com (NXP Semiconductors N.V.) Digital and Mixed Signal logic ICs

www.onsemi.com (ON Semiconductor, Inc.) Analog ICs, digital logic ICs, and
discrete semiconductors

www.pctechguide.com (PCTechGuide) Technicians guide to PC hardware and software

www.semiconductors.philips.com (Philips Semiconductors, Inc.) Analog ICs, digital
logic ICs, microcontrollers, and discrete semiconductors

www.sharpmeg.com (Sharp Microelectronics Corporation) Microprocessors,
microcontrollers, SRAMs, and Flash memory

www.terasic.com Provider of Altera FPGA Development and Education boards like
the DE-x series

www.ti.com (Texas Instruments, Inc.) Analog ICs, digital logic ICs, and microcontrollers

www.toshiba.com (Toshiba America, Inc.) Analog ICs, digital logic ICs,
microcontrollers, DRAMs, SRAMs, and Flash memory

www.usb.org (Universal Serial Bus) USB definitions and standards

www.webopedia.com Glossary of PC and internet terms with links to other sites

www.xess.com (XESS Corporation) CPLD programmer boards

www.xilinx.com (Xilinx, Inc.) CPLDs and FPGAs

www.zilog.com (Zilog Inc.) Microprocessors and microcontrollers

APPENDIX: WEB SITES
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Web Site Links to Complete Data Sheets and Useful
Reference Material

NXP Semiconductors [Formerly Philips (Signetics) Semiconductor]
74F00 NAND http://www.nxp.com/documents/data_sheet/

74F00.pdf

74F112 Flip-Flop http://www.nxp.com/documents/data_sheet/
74F112.pdf

74HC/HCT00 NAND http://ics.nxp.com/products/hc/datasheet/
74hc00.74hct00.pdf

74LV00 Low-V NAND http://www.nxp.com/documents/data_sheet/
74LV00.pdf

74ABT244 Buffer http://www.nxp.com/documents/data_sheet/
74ABT244.pdf

Appendix

Manufacturers’ Data Sheets*

*Courtesy of NXP Semiconductors, Fairchild Semiconductors, Xilinx, Inc., and Altera Corporation.

Data Sheet IC Numbers Function

74HC00 High-speed CMOS NAND

74LV00 Low-voltage NAND

74ABT244 BiCMOS Octal Buffer

KA741 Operational Amplifier

LM555 Timer

EP2C FPGA Altera Cyclone II family

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix B of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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Fairchild Semiconductor
LM555 Timer http://www.fairchildsemi.com/ds/LM/LM555.pdf

KA741 Op-Amp http://www.fairchildsemi.com/ds/KA/KA741.pdf

National Semiconductor
ADC0801 ADC http://cache.national.com/ds/AD/ADC0801.pdf

DAC0800 DAC http://cache.national.com/ds/DA/DAC0800.pdf

LM741 Op-Amp http://cache.national.com/ds/LM/LM741.pdf

LM555 Timer http://cache.national.com/ds/LM/LM555.pdf

STmicroelectronics
27C64 EPROM http://www.st.com/stonline/books/pdf/docs/2388.pdf

Texas Instruments Inc.
TIBPAL16L8 PAL http://focus.ti.com/lit/ds/symlink/tibpal1618-30m.pdf

IEEE 91-1984 Logic Symbols http://focus.ti.com/lit/ml/sdyz001a/sdyz001a.pdf

Altera Corp.
EP2C Cyclone II FPGA http://www.altera.com/literature/hb/cyc2/

cyc2_cii5v1_01.pdf

Atmel Corp.
8051 instruction set http://www.atmel.com/dyn/resources/

prod_documents/doc0509.pdf

Mini-Circuits Inc
ESD Prevention http://www.minicircuits.com/appnote/an40005.pdf
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Section I. Cyclone II
Device Family Data Sheet

This section provides information for board layout designers to 
successfully layout their boards for Cyclone® II devices. It contains the 
required PCB layout guidelines, device pin tables, and package 
specifications.

This section includes the following chapters:

� Chapter 1. Introduction

� Chapter 2. Cyclone II Architecture

� Chapter 3. Configuration & Testing

� Chapter 4. Hot Socketing & Power-On Reset

� Chapter 5. DC Characteristics and Timing Specifications

� Chapter 6. Reference & Ordering Information

Revision History Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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1. Introduction

Introduction Following the immensely successful first-generation Cyclone® device
family, Altera® Cyclone II FPGAs extend the low-cost FPGA density
range to 68,416 logic elements (LEs) and provide up to 622 usable I/O 
pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are 
manufactured on 300-mm wafers using TSMC's 90-nm low-k dielectric
process to ensure rapid availability and low cost. By minimizing silicon 
area, Cyclone II devices can support complex digital systems on a single 
chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who 
compromise power consumption and performance for low-cost, Altera’s 
latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher
performance and half the power consumption of competing 90-nm
FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make 
them ideal solutions for a wide array of automotive, consumer, 
communications, video processing, test and measurement, and other 
end-market solutions. Reference designs, system diagrams, and IP, found 
at www.altera.com, are available to help you rapidly develop complete 
end-market solutions using Cyclone II FPGAs.

Low-Cost Embedded Processing Solutions

Cyclone II devices support the Nios II embedded processor which allows 
you to implement custom-fit embedded processing solutions.  Cyclone II 
devices can also expand the peripheral set, memory, I/O, or performance
of embedded processors.  Single or multiple Nios II embedded processors 
can be designed into a Cyclone II device to provide additional 
co-processing power or even replace existing embedded processors in 
your system.  Using Cyclone II and Nios II together allow for low-cost,
high-performance embedded processing solutions, which allow you to 
extend your product's life cycle and improve time to market over
standard product solutions.

Low-Cost DSP Solutions

Use Cyclone II FPGAs alone or as DSP co processors to improve

CII51001-3.2

(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Features

� DSP intellectual property (IP) cores
� DSP Builder interface to The Mathworks Simulink and Matlab 

design environment
� DSP Development Kit, Cyclone II Edition

Cyclone II devices include a powerful FPGA feature set optimized for 
low-cost applications including a wide range of density, memory, 
embedded multiplier, and packaging options. Cyclone II devices support 
a wide range of common external memory interfaces and I/O protocols 
required in low-cost applications. Parameterizable IP cores from Altera 
and partners make using Cyclone II interfaces and protocols fast and easy.

Features The Cyclone II device family offers the following features:

� High-density architecture with 4,608 to 68,416 LEs
� M4K embedded memory blocks
� Up to 1.1 Mbits of RAM available without reducing available

logic
� 4,096 memory bits per block (4,608 bits per block including 512 

parity bits)
� Variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32, 

and ×36
� True dual-port (one read and one write, two reads, or two 

writes) operation for ×1, ×2, ×4, ×8, ×9, ×16, and ×18 modes
� Byte enables for data input masking during writes
� Up to 260-MHz operation

� Embedded multipliers
� Up to 150 18- × 18-bit multipliers are each configurable as two 

independent 9- × 9-bit multipliers with up to 250-MHz 
performance

� Optional input and output registers

� Advanced I/O support
� High-speed differential I/O standard support, including LVDS, 

RSDS, mini-LVDS, LVPECL, differential HSTL, and differential
SSTL 

� Single-ended I/O standard support, including 2.5-V and 1.8-V,
SSTL class I and II, 1.8-V and 1.5-V HSTL class I and II, 3.3-V PCI 
and PCI X 1 0 3 3 2 5 1 8 and 1 5 V LVCMOS and 3 3 2 5

(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Introduction

� 133-MHz PCI-X 1.0 specification compatibility
� High-speed external memory support, including DDR, DDR2, 

and SDR SDRAM, and QDRII SRAM supported by drop in 
Altera IP MegaCore functions for ease of use

� Three dedicated registers per I/O element (IOE): one input 
register, one output register, and one output-enable register

� Programmable bus-hold feature
� Programmable output drive strength feature
� Programmable delays from the pin to the IOE or logic array
� I/O bank grouping for unique VCCIO and/or VREF bank 

settings
� MultiVolt™ I/O standard support for 1.5-, 1.8-, 2.5-, and 

3.3-interfaces
� Hot-socketing operation support
� Tri-state with weak pull-up on I/O pins before and during 

configuration
� Programmable open-drain outputs
� Series on-chip termination support

� Flexible clock management circuitry
� Hierarchical clock network for up to 402.5-MHz performance
� Up to four PLLs per device provide clock multiplication and 

division, phase shifting, programmable duty cycle, and external 
clock outputs, allowing system-level clock management and 
skew control

� Up to 16 global clock lines in the global clock network that drive 
throughout the entire device

� Device configuration
� Fast serial configuration allows configuration times less than 

100 ms
� Decompression feature allows for smaller programming file 

storage and faster configuration times
� Supports multiple configuration modes: active serial, passive

serial, and JTAG-based configuration
� Supports configuration through low-cost serial configuration 

devices
� Device configuration supports multiple voltages (either 3.3, 2.5, 

or 1.8 V)
(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Features

protocols. Visit the Altera IPMegaStore at www.altera.com to 
download IP MegaCore functions.

� Nios II Embedded Processor support

The Cyclone II family offers devices with the Fast-On feature, which 
offers a faster power-on-reset (POR) time. Devices that support the 
Fast-On feature are designated with an “A” in the device ordering code.  
For example, EP2C5A, EP2C8A, EP2C15A, and EP2C20A. The EP2C5A is 
only available in the automotive speed grade. The EP2C8A and EP2C20A 
are only available in the industrial speed grade. The EP2C15A is only 
available with the Fast-On feature and is available in both commercial 
and industrial grades. The Cyclone II “A” devices are identical in feature 
set and functionality to the non-A devices except for support of the faster
POR time.

f Cyclone II A devices are offered in automotive speed grade. For more
information, refer to the Cyclone II section in the Automotive-Grade Device 
Handbook.

f For more information on POR time specifications for Cyclone II A and 
non-A devices, refer to the Hot Socketing & Power-On Reset chapter in the 
Cyclone II Device Handbook.

Table 1–1 lists the Cyclone II device family features. Table 1–2 lists the
Cyclone II device package offerings and maximum user I/O pins.

Table 1–1. Cyclone II FPGA Family Features (Part 1 of 2)

Feature EP2C5 (2) EP2C8 (2) EP2C15 (1) EP2C20 (2) EP2C35 EP2C50 EP2C70

LEs 4,608 8,256 14,448 18,752 33,216 50,528 68,416

M4K RAM blocks (4 
Kbits plus 
512 parity bits

26 36 52 52 105 129 250

Total RAM bits 119,808 165,888 239,616 239,616 483,840 594,432 1,152,00
0

Embedded 
multipliers (3)

13 18 26 26 35 86 150

PLLs 2 2 4 4 4 4 4(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Maximum user 
I/O pins

158 182 315 315 475 450 622

Notes to Table 1–1:
(1) The EP2C15A is only available with the Fast On feature, which offers a faster POR time. This device is available in

both commercial and industrial grade.
(2) The EP2C5, EP2C8, and EP2C20 optionally support the Fast On feature, which is designated with an “A” in the 

device ordering  code. The EP2C5A is only available in the automotive speed grade. The EP2C8A and EP2C20A 
devices are only available in industrial grade.

(3) This is the total number of 18 × 18 multipliers. For the total number of 9 × 9 multipliers per device, multiply the 
total number of 18 × 18 multipliers by 2.

Table 1–1. Cyclone II FPGA Family Features (Part 2 of 2)

Feature EP2C5 (2) EP2C8 (2) EP2C15 (1) EP2C20 (2) EP2C35 EP2C50 EP2C70

(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Cyclone II devices support vertical migration within the same package 
(for example, you can migrate between the EP2C35, EPC50, and EP2C70
devices in the 672-pin FineLine BGA package). The exception to vertical 
migration support within the Cyclone II family is noted in Table 1–3. 

Table 1–2. Cyclone II Package Options & Maximum User I/O Pins Notes (1) (2)

Device 144-Pin 
TQFP (3)

208-Pin 
PQFP (4)

240-Pin 
PQFP

256-Pin 
FineLine 

BGA

484-Pin 
FineLine 

BGA

484-Pin 
Ultra 

FineLine 
BGA

672-Pin
FineLine 

BGA

896-Pin 
FineLine

BGA

EP2C5 (6) (8) 89 142 — 158 (5) — — — —

EP2C8 (6) 85 138 — 182 — — — —

EP2C8A (6), (7) — — — 182 — — — —

EP2C15A (6), (7) — — — 152 315 — — —

EP2C20 (6) — — 142 152 315 — — —

EP2C20A (6), (7) — — — 152 315 — — —

EP2C35 (6) — — — — 322 322 475 —

EP2C50 (6) — — — — 294 294 450 —

EP2C70 (6) — — — — — — 422 622

Notes to Table 1–2:
(1) Cyclone II devices support vertical migration within the same package (for example, you can migrate between the

EP2C20 device in the 484-pin FineLine BGA package and the EP2C35 and EP2C50 devices in the same package).
(2) The Quartus® II software I/O pin counts include four additional pins, TDI, TDO, TMS, and TCK, which are not 

available as general purpose I/O pins.
(3) TQFP: thin quad flat pack.
(4) PQFP: plastic quad flat pack.
(5) Vertical migration is supported between the EP2C5F256 and the EP2C8F256 devices. However, not all of the DQ

and DQS groups are supported. Vertical migration between the EP2C5 and the EP2C15 in the F256 package is not 
supported.

(6) The I/O pin counts for the EP2C5, EP2C8, and EP2C15A devices include 8 dedicated clock pins that can be used 
for data inputs. The I/O counts for the EP2C20, EP2C35, EP2C50, and EP2C70 devices include 16 dedicated clock 
pins that can be used for data inputs.

(7) EP2C8A, EP2C15A, and EP2C20A have a Fast On feature that has a faster POR time. The EP2C15A is only available 
with the Fast On option.

(8) The EP2C5 optionally support the Fast On feature, which is designated with an “A” in the device ordering code. 
The EP2C5A is only available in the automotive speed grade. Refer to the Cyclone II section in the Automotive-Grade
Device Handbook. 

(Altera is a trademark and service mark of Altera Corporation in the United States and other countries.
Altera products are the intellectual property of Altera Corporation and are protected by copyright laws
and one or more U.S. and foreign patents and patent applications.)
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Appendix

Explanation of the IEEE/IEC 
Standard for Logic Symbols 
(Dependency Notation)*

The IEEE/IEC standard for logic symbols introduces a method of determining the
complete logical operation of a given device just by interpreting the notations on the
symbol for the device. At the heart of the standard is dependency notation, which pro-
vides a means of denoting the relationship between inputs and outputs without actually
showing all of the internal elements and interconnections involved. The information
that follows briefly explains the standards publication IEEE Std. 91–1984 and is in-
tended to help in the understanding of these new symbols.

A complete explanation of the logic symbols is available from Texas
Instruments, Inc., in Publication SDYZ001, “Overview of IEEE Std 91–1984.” They
also have a publication (SZZZ003) entitled “Using Functional Logic Symbols,” which
explains several applications of the symbols.

Explanation of Logic Symbols

F. A. Mann
Texas Instruments Incorporated

Contents
1.0    INTRODUCTION

2.0    SYMBOL COMPOSITION

3.0    QUALIFYING SYMBOLS

*Courtesy of Texas Instruments, Inc.

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix C of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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IEEE standards may be purchased from:
Institute of Electrical and Electronics Engineers, Inc.
IEEE Standards Office
345 East 47th Street
New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:
American National Standards Institute, Inc.
1430 Broadway
New York, N.Y. 10018

APPENDIX: EXPLANATION OF THE IEEE/IEC STANDARD FOR LOGIC SYMBOLS

889



APPENDIX: EXPLANATION OF THE IEEE/IEC STANDARD FOR LOGIC SYMBOLS

890



APPENDIX: EXPLANATION OF THE IEEE/IEC STANDARD FOR LOGIC SYMBOLS

891



APPENDIX: EXPLANATION OF THE IEEE/IEC STANDARD FOR LOGIC SYMBOLS

892



Appendix

VHDL Language Reference

Library-Entity-Architecture Model

Figure 1 is a sample VHDL program showing the syntax rules and language format
of a basic program.

Declare which VHDL
library to use

Define the logic

Library
declaration

Entity  
declaration

Architecture  
body

Entity name

Architecture name

Figure 1 VHDL program model showing the syntax for Library, Entity, and Architecture
declarations.

Program, Entity, and Architecture Naming Conventions

Valid VHDL names can consist of letters, numbers, and the underscore (_) character [hy-
phens (-) are not allowed]. The name must start with a letter and cannot contain spaces.

Valid Names Invalid Names

fig4_13 fig4-13 (cannot use hyphen)

boolean3 boolean 3 (cannot use space)

counter_5_a counter_5.a (cannot use period)

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix E of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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VHDL Program Comments

Comments can be placed within a VHDL program to document a particular statement
or group of statements. Any words preceded by a double hyphen (--) are considered to
be a comment for documentation purposes and will be ignored by the VHDL compiler.

Sample Comments

-- Boolean solution to example 5-3

-- Problem C5-3 -- 

General VHDL Rules

VHDL logical operators have no order of precedence so the order must be explicitly
defined using parentheses. For example, the Boolean equation must be
written in VHDL as: x *� a OR (b AND c); (The symbol 6= is used to assign the re-
sult of the operation on the right-hand side to the left-hand side.) Also note that VHDL
is not case-sensitive so the letters a, b, and c could have been capitalized, but the con-
vention used by most VHDL programmers is to only capitalize the reserved keywords
like AND, OR, PORT, ENTITY, and so on. (See Figure 1.)

Logical Operators

The logic operators are used to perform Boolean bit-wise operations on individual bits
or arrays of bits. (Example: x 6= a AND b;)

Operator Description

AND And
OR Or
NAND Not-And
NOR Not-Or
XOR Exclusive-Or
XNOR Exclusive-Nor
NOT Complement

Relational Operators

The relational operators are used to test the relative values of two scalar types. The re-
sult is a Boolean true or false value. [Example: IF a * b THEN result *� "001".
This is interpreted as “if the logic (a less than b) is true, then the bit string "001" is
moved to the variable result.”]

Operator Description

= Equality
/= Inequality
6 Less than
6= Less than or equal
7 Greater than
7= Greater than or equal

x = a + bc

APPENDIX: VHDL LANGUAGE REFERENCE
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Arithmetic Operators

The arithmetic operators are used to perform mathematical operations. (Example: sum_
string6=astring+bstring+cin;) The following is a partial list of the arithmetic operators.

Operator Description

+ Addition

- Subtraction

& Concatenation

* Multiplication

> Division

** Exponentiation

mod Modulus

rem Remainder

abs Absolute value

sll Shift left

srl Shift right

Data Types

The data type defines the type of value that can be used with the specified input, out-
put, or internal signal. The most common data types used are as follows:

Type Values

bit '0', '1'

std_logic '0', '1', 'U', 'X', 'Z', 'W', 'L', 'H', '-'

integer Integer values

bit_vector Multiple instances of '0', '1"

std_vector Multiple instances of '0', '1', 'U', 'X', 'Z', 'W', 'L', 'H', '-'

std_logic Data Type Values

The values that the std_logic data type can have are defined as follows:

Value Description

'0' Logic 0

'1' Logic 1

'U' Uninitialized

'X' Unknown

'Z' High impedance

'W' Weak unknown

'L' Weak 0

'H' Weak 1

'-' Don’t care

APPENDIX: VHDL LANGUAGE REFERENCE
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Appendix

Review of Basic Electricity Principles

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix F of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.

Definitions for Figure 1

source that pushes the current (I) through the circuit, like water 
through a pipe

that flows through the circuit [conventional current flows (+) to (-).]

to the flow of currentR K resistance

I K current

V K voltage

+
V

R

I

–

Figure 1 Series circuit used to illustrate Ohm’s law.

Units

(V), for example, 12 V, 6 mV

(A), for example, 2 A, 2.5 mA

for example,

Common Engineering Prefixes

100 V, 4.7 kVresistance = ohms (V),

current = amperes

voltage = volts

Prefix Abbreviation Value

Mega- M 1,000,000 or 106

kilo- k 1,000 or 103

milli- m 0.001 or 10-3

micro- 0.000001 or 10-6m
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V

I R

Figure 2 Ohm’s law circle.

Ohm’s Law

The current (I) in a complete circuit is proportional to the applied voltage (V) and
inversely proportional to the resistance (R) of the circuit (see Figure 2).

Formulas

R =

V

I

V = I * R

I =

V

R

E X A M P L E  1

(a) Determine the current (I) in the circuit of Figure 1 if and

(b) Recalculate the current if 

(c) Describe what happened to the value of the current when the resistance
doubled to in (b).

(d) Calculate the voltage required in Figure 1 to make 2 A flow if

(e) What voltage would be required in (d) if you only need one-half that
current?

(f) If in Figure 1, what resistance is required to limit the current
to 2 A?

(g) To limit the current to 1 A in (f), what resistance would you need?

Solution:

(a)

(b)

(c) As the resistance to current flow doubled, the current dropped to one-half.

(d)
(e)
Note we only need one-half the voltage to get one-half the current.

(f )

(g)

Note that, to reduce the current to 1 A, we needed to increase the circuit’s
resistance.

R =

V

I
=

12 V

1 A
= 12 V

R =

V

I
=

12 V

2 A
= 6 V

V = I * R = 1 A * 10 V = 10 V

V = I * R = 2 A * 10 V = 20 V

I =

V

R
=

10 V

4 V
= 2.5 A

I =

V

R
=

10 V

2 V
= 5 A

V = 12 V

R = 10 V.

4 V

R = 4 V.

R = 2 V.
V = 10 V

V

I R
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E X A M P L E  2

Apply the values listed below to the circuit of Figure 1 to determine the un-
known quantity.

(a) I 2 mA, R 4 kV, V __________?

(b) I 6 mA, R 200 kV, V __________?

(c) I 24 mA, V 12 V, R __________?

(d) I 100 mA, V 5 V, R __________?

(e) V 5 V, R 50 kV, I __________?

(f) V 12 V, R 600 V, I __________?

Solution:

(a)
(b)

(c)

(d)

(e)

(f) I =

V

R
=

12 V

600 V
= 20 mA

I =

V

R
=

5 V

50 kV
= 100 mA

R =

V

I
=

5 V

100 mA
= 50 V

R =

V

I
=

12 V

24 mA
=

12 V

24 * 10-6 A
= 500 kV (or 0.5 MV)

V = I * R = 6 mA = 200 kV = (6 * 10-6 A) * (200 * 103 V) = 1.2 V

V = I * R = 2 mA * 4 kV = (2 * 10-3 A) * (4 * 103 V) = 8 V

===

===

===

===

===

===

E X A M P L E  3

A series circuit has two or more resistors end to end. The total resistance is
equal to the sum of the individual resistances Also, the
sum of the voltage drops across all resistors will equal the total supply volt-
age 

Find the current in the circuit (I), the voltage across R1 and the
voltage across R2 in Figure 3.(VR2)

(VR1),
(VS = VR1 + VR2).

(RT = R1 + R2).

VS

R1 VR1

VR2

I

R2

10 V

8 kΩ

2 kΩ

Figure 3 A series circuit used to derive the voltage divider equation.

Solution:

VR2 = 1 mA * 2 kV = 2 V

VR1 = 1 mA * 8 kV = 8 V

I =

10 V

10 kV
= 1 mA

RT = 8 kV + 2 kV = 10 kV
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4 kΩ

12 V 2 kΩ Short
circuit

Vout

Ground (V = 0)

Figure 5 A short circuit across the resistor forces the output to zero V.2 kV

E X A M P L E  5

A short circuit occurs when an electrical conductor is purposely or inad-
vertently placed across a circuit component. The short causes the current to
bypass the shorted component. Calculate Vout in Figure 5.

E X A M P L E  4

Use the voltage-divider equation to find Vout in Figure 4. (Vout is the voltage
from the point labeled Vout to the ground symbol.)

VS

R1

Vout
R2

Vout
12 V

4 kΩ

2 kΩ

Figure 4 Circuit used to calculate the output voltage (Vout) with respect
to ground.

Solution:

= 4 V

Vout = 12 V *

2 kV

2 kV + 4 kV

Solution: Vout is connected directly to ground; therefore, All 
of the 12-V supply is dropped across the resistor.4@kV

Vout = 0 V.

Check:

Notice that the voltage across any resistor in the series circuit is propor-
tional to the size of the resistor. That fact is used in developing the voltage-
divider equation:

= 2 V

= 10 V *

2 kV

2 kV + 8 kV

VR2 = VS *

R2

R1 + R2

VS = 8 V + 2 V = 10 V

APPENDIX: REVIEW OF BASIC ELECTRICITY PRINCIPLES
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E X A M P L E  6

Find Vout in Figure 6.

4 kΩ

12 V

2 kΩ

Short
circuit

Vout

Figure 6 A short across the top resistor causes the entire 12 volts to reach Vout.

Solution: Vout is connected directly to the top of the 12-V source battery.
Therefore, The entire 12-V source voltage is now across the

resistor.2@kV
Vout = 12 V.

E X A M P L E  7

An open circuit is a break in a circuit. This can be done purposely by an
electronic switching component, or it could be a circuit fault caused by a
bad connector or burnt-out component. This break will cause the current
to stop flowing to all components fed from that point. Calculate Vout in
Figure 7.

I = 0A

Vout

12 V

4 kΩ

Open

2 kΩ

Figure 7 An open circuit causes current to stop flowing.

Solution: Because 

Vout = V2 kV = 0 V

V2 kV = 0 A * 2 kV = 0 V

I = 0 A,

905



APPENDIX: REVIEW OF BASIC ELECTRICITY PRINCIPLES

E X A M P L E  8

Calculate Vout in Figure 8.

I = 0A

Vout
12 V

4 kΩ

Open

2 kΩ

Figure 8 An open circuit below the measurement point allows the entire supply
voltage to reach the output.

4 kΩ

+12 V

2 kΩ

Vout

Figure 9 Series circuit drawn without the battery symbol.

E X A M P L E  9

The symbol for a battery is seldom drawn in schematic diagrams. Figure 9
is an alternative schematic for a series circuit. Solve for Vout.

Solution: Because 

Note:
This is probably the hardest concept to understand. Another way to explain
why the entire supply reaches Vout is to assume that an open circuit can be
modeled by an extremely large resistance, let’s say, If you then ap-
ply the voltage-divider equation to the circuit with in place of the
open, the calculation will be

Vout = 12 V *

10,002,000

10,002,000 + 4,000
= 11.995 V

10 MV
10 MV.

Vout = 12 V - Vdrop = 12 V

Vdrop (4 kV) = 0 A * 4 kV = 0 V

I = 0 A,

Solution:

= 4 V

Vout = 12 V *

2 kV

2 kV + 4 kV
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+12 V

4 kΩ

2 kΩ

Vout

R1

(a)

5 V
0 V

R1

R1
energized

R1
de-energized

(b)

5 V

0 V

Cp

Cp

0 V

4 V

Vout

Figure 10 Using a relay to intermittently short the resistor.2@kV

E X A M P L E  1 0

A relay’s contacts or a transistor’s collector–emitter can be used to create
opens and shorts. Figure 10(a) uses a relay to short one resistor in a series
circuit (relay operation is described in Section 2–6). Sketch the waveform
at Vout in Figure 10(a).

Solution: When the R1 coil energizes, the R1 contacts close, shorting the
resistor and making When the coil is deenergized, the

contacts are open, and Vout is found using the voltage-divider equation.

The clock oscillator (Cp) and Vout waveforms are given in Figure 10(b).

= 4 V

Vout = 12 V *

2 kV

2 kV + 4 kV

Vout = 0 V.2@kV

Review Questions

1. What value of voltage will cause 6 mA to flow in Figure 1 if 
(3 V, 0.333 V, or 12 V)?

2. To increase the current in Figure 1, the resistor value should be
_________ (increased/decreased).

3. In a series voltage-divider circuit like Figure 3, the larger resistor will
have the larger voltage across it. True or false?

R = 2 kV
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4. In Figure 3, if R1 is changed to and R2 is changed to will
be close to __________ (0 V/10 V).

5. If the supply voltage in Figure 4 is increased to 18 V, Vout becomes
_________ (6 V/12 V).

6. A short circuit causes current to stop flowing in the part of the circuit
not being shorted. True or false?

7. The current leaving the battery in Figure 5 _________ (increases, de-
creases) if the short circuit is removed.

8. The short circuit in Figure 6 causes Vout to become 12 V because the
current through the resistor becomes 0 A. True or false?

9. In Figure 7, the voltage across the resistor is the same as that
across the resistor. True or false?

10. If the resistor in Figure 8 is doubled, Vout will _________ (in-
crease/decrease/remain the same)?

4@kV

4@kV
2@kV

2@kV

VR22 V,8 MV

Problems

1. Refer to Figure 1 to solve for the unknown quantities in the following
table. [Example: For part (A), calculate the resistance if and
I = 4 A.]

V = 12 V

Answers to Review Questions

1. 12 V

2. Decreased

3. True

4. 0 V

5. 6 V

6. False

7. Decreases

8. False

9. True

10. Remain the same

2. Repeat problem 1 for the following table. 

Voltage Current Resistance

A 12 V 4 A
B 8 V 2 A
C 100 V
D 6 V
E 6 A
F 0.5 A 5 V

2 V
2 V

20 V

Voltage Current Resistance

A 12 mV
B 6 V 2 mA
C 100 mV
D 8 V
E 6 mA
F 5 kV0.5 mA

3 kV
2 MV

20 kV

3 mA
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VS R1 R2 Vout

A 18 V

B 18 V

C 12 V

D 6 V 100 kV1 kV

20 kV20 kV

6 kV3 kV

3 kV6 kV

3. Refer to Figure 4 to solve for the unknown quantities in the following
table. 

4. Refer to the original Figure 4 to solve for Vout given the following open-
and short-circuit conditions. 

Vout

A Short R1
B Short R2
C Open R1
D Open R2

Answers to Problems

1(a).

1(b).
1(c). 5 A

1(d). 3 A

1(e). 12 V

1(f). 2.5 V

2(a).

2(b).

2(c).

2(d).
2(e). 18 V

2(f). 2.5 mV

4 mA

5 mA

3 kV

4 kV

4 V

3 V 3(a). 6 V

3(b). 12 V

3(c). 6 V

3(d). 5.94 V

4(a). 12 V

4(b). 0 V

4(c). 0 V

4(d). 12 V
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Appendix

Schematic Diagrams for 
Chapter-End Problems

Schematic Description

4096/4196 Control Card (Sheet 1 of 2) An 8031 microcontroller-based circuit
used to control the front panel of an
analog frequency filter.

4096/4196 Control Card (Sheet 2 of 2) The power supply regulators and I/O
buffers for the front panel controller.

HC11D0 Master Board A 68HC11 microcontroller-based
circuit used to interface to a PC and
drive a multiline LCD display.

Watchdog Timer Control circuit for an AT&T printer
used to ensure a safe power-down of
the internal printer circuitry.

The companion website for this text is www.pearsonhighered.com/kleitz

From Appendix G of Digital Electronics: A Practical Approach with VHDL, Ninth Edition. 
William Kleitz. Copyright © 2012 by Pearson Education, Inc. Published by Pearson Prentice Hall.
All rights reserved.
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8051 Instruction Set Summary*

*Courtesy of Intel Corporation.
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7414 7421 7427 7432 7442

7447 7454 7474 7475 7476

7483 7485 7486 7490 7492

7493 74106 74109 74112 74121

7400 7402 7404 7408

1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

5

6

1

2

3

4

5

6

7

VCC

GND

14

13

12

11

10

9

8

TTL PIN CONFIGURATIONS

7411

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND

1 14

GND

2 13

3 12

4

10

9

7

VCC

11

1 14

GND

13

12

4

10

9

7

VCC

11

161

152

143

134

125

116

107

98

BI/RBO

A2

A1

A3

A0

f

VCC

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND 8 Q2

9 Q2

10

GND

11 Cp2

12 D2

13 RD2

14RD1

7

Q1 6

Q1

VCC

5

4SD1

3Cp1

2D1

1

SD2

VCC

161

152

143

134

125

116

107

98

GND

E2-3

D1

D0

Q0

D2

D3

Q3

E0-1

Q1

Q1

Q0

Q2

Q2

Q3

VCC

161

152

143

134

125

116

107

98

GNDJ1

CP1

K2

Q1

Q1

K1

Q2

Q2

J2

SD1

RD1

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND

VCC161

152

143

134

125

116

107

98GND

A3

9

8

7

A2

A1

A0

8

VCC

9

 10

11

 12

 13

14

7

6

5

4

3

2

1

GND

VCC

161

152

143

134

125

116

107

98

GND

B3

A3

∑3

A4

∑2

B2

A2

CIN

COUT

∑4

B4

B1

A1

∑1

A > B

161

152

143

134

125

116

107

98GND

IA< B

B3

A2

VCC

B1

A0

8 Q2

9 Q1

10 GND

11 Q3

12 Q0

13

14CP1

7

6

VCC 5

4NC

3MR2

2MR1

1

6

5

4

3

2

1

0

5

6

CP2

SD2

RD2

RBI

GND

g

a

b

c

d

e

LT

IA= B

IA> B

A = B

A < B

B2

A3

A1

B0

MS1

MS2

CP0

NC

8 Q3

9 Q2

10 GND

11 Q1

12 Q0

13

14CP1

7

6

VCC 5

4NC

3

2

1

MR1

MR2

CP0

NC

NC

NC

8 Q2

9 Q1

10 GND

11 Q3

12 Q0

13

14CP1

7

6

VCC 5

4NC

3

2

1

MR1

MR2

CP0

NC

NC

NC

161

152

143

134

125

116

107

98

GND

CP1 K1

VCC

J2

SD1

RD1

J1

CP2

SD2

RD2

Q1

Q1

K2

Q2

Q2

161

152

143

134

125

116

107

98GND

RD1 VCC

SD1

Q2

J1

K1

CP1

RD2

J2

CP2

RD2

Q2

Q1

Q1

K2

161

152

143

134

125

116

107

98GND

CP1 VCC

Q2

K1

J1

SD1

RD1

CP2

SD2

J2Q1

Q2

K2Q1

RD2

8

9 Rint

10

GND

11 Rext/Cext

12

13

14Q

7

6

VCC

5

4

3

2

1

Q

B

A2

A1

C 

Q Q

2

3

8 8

The companion website for this text is www.pearsonhighered.com/kleitz
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1 VCC20OE

2 19Q0

3 18D0

4 17D1

5 16Q1

6 15Q2

7 14D2

8 13

9 12Q3

10 11GND E

74148 74150 74151 74154 74163

74164 74165 74181 74190 74191

74192 74193 74194 74244 74245

74280 74283 74373 74374 74395

74123 74132 74138 74139

TTL PIN CONFIGURATIONS

U/D

161

152

143

134

125

116

107

98GND

CE

Q0

Q1

D1

Q2

Q3

RC

CP

D0

VCC

PL

D2

D3

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

GND

VCC161

152

143

134

125

116

107

98GND

Q2

CET

PE

Q1

Q0

TC

U/D

161

152

143

134

125

116

107

98GND

CE

D1

TC

CP

D0

VCC

PL

D2

D3

Q1

Q0

CPU

161

152

143

134

125

116

107

98GND

Q0

Q1

D1

Q2

Q3

TCD

MR

D0

PL

D2

D3

161

152

143

134

125

116

107

98GND

D1 VCC

74147

VCC161

152

143

134

125

116

107

98GND

Eb

VCC161

152

143

134

125

116

107

98GND

4

5

6

VCC161

152

143

134

125

116

107

98GND

I2

I3

A3

I1

I9

A0

D1

D0

CP

SR

CEP

D3

D2

Q3

6

E0

19

7 18

8 17

9 16

10 15

GND

1 VCC24

2 23

3 22

4 21

5 20

E1

A3

A2

A1

A0

15

14
13

6

7

8

9

10

1

2

3

4

5

0
VCC161

152

143

134

125

116

107

98GND

I0

I1

E

Y

Y

S0

I2

I3

I7

I6

I5

I4

S1

S2

6

D13

19

7 18

8 17

9 16

10 15

GND

1 VCC24

2 23

3 22

4 21

5 20

D12

D11

D10

D9

D8

E

Y

S2

S1

S0

D15

D14

D2

D3

D4

D5

D6

D7

D0

D1

S3

VCC161

152

143

134

125

116

107

98GND

I7

I6

EI

I1

I5

I4

I2

I3

GS

EO

I0

A0

A2

A1

8 CP

9 MR

10

GND

11 Q5

12 Q6

13 Q7

14Dsa

7

Q3 6

Q2

VCC

5

4Q1

3Q0

2Dsb

1

Q4

D6

161

152

143

134

125

116

107

98

D5

D4

CP

PL

D7

Q7

GND

D3

CE

VCC

DS

Q7

D2

D1

D0

6

B3

19

7 18

8 17

9 16

10 15

GND

1 VCC24

2 23

3 22

4 21

5 20

A3

B2

A2

B1

A1

F3

A = B

P

Cn + 4

G

S0

S1

S2

S3

A0

B0

M

Cn

F2

F1

F0

TC

RC

VCC161

152

143

134

125

116

107

98GND

Q2

Q1

VCC

CPD

TCU

Q1

Q0

Q2

Q3

TCD

MR

D0

PL

D2

D3

TCU

161

152

143

134

125

116

107

98GND

MR VCC

DSR

D0

Q0

CP

S1

S0

D1

D2

D3

DSL

Q1

Q2

Q3

D3

Q7

D7

D6

Q6

Q5

D5

Q4

D4

1 VCC20OE

2 19Q0

3 18D0

4 17D1

5 16Q1

6 15Q2

7 14D2

8 13

9 12Q3

10 11GND CP

D3

Q7

D7

D6

Q6

Q5

D5

Q4

D4

129

1110

138

147

GND

156Ia2

165Yb1

174Ia1

183Yb0

192Ia0

201

Yb2

Ia3

Yb3

Ib3

Ya3

Ib2

Ya2

Ib1

Ya1

Ib0

Ya0

OEb

VCC

Q2

Q3

CPD

8 I0

9 I1

10

GND

11 I3

12 I4

13

14I6

7

6

VCC

5

4

3

2

1

I7

161

152

143

134

125

116

107

98GND

∑2 VCC

B2

A2

∑1

B1

CIN

B3

A3

A4

B4

∑4

A1

B1

RD1

Q1

Q2

Cext2

Rext/Cext2

Cext 1

Rext/Cext 1

RD2

A2

B2

A0

A1

A2

E1

E2

E3

7

0

1

2

3

Ea

A0a

A1a

0a

1a

2a

3a

A0b

A1b

0b

1b

2b

3b

I4

I5

I6

I7

I8

A2

A1

11

12

14

13

12
11

11

12

14

13

11

12

14

13

CPU

B1

B2

B3

B4

B5

B6

B7

A1

A2

A3

A4

A5

A6

A0

A7

174

165

156

147

138

129

I8

∑E

∑O

I5

I2

A1

∑3

Cout

161

152

143

134

125

116

107

98GND

VCC

DS

D0

D1

D3

PE

Q0

Q1

Q3

Q3

CP

D2

Q2

OE

201S/R VCC

1110GND

192 CE

183 B0

´

OEa

MR
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Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

1
100BaseT, 34

4
4G, 235

5
555 timer, 706-742

A
Accelerometer, 543
Access time, 253, 784, 791, 797-798, 807, 824
Accumulator, 830-835, 837, 839, 841-842, 845, 847
accuracy, 3, 733, 741, 755, 764-765
A/D conversion, 744, 757-758, 760, 766, 774, 778
ADC0804, 761-765, 767-768, 770-771, 774, 778-779
Adder, 270, 286-302, 305-309, 312-313, 316-322

full, 270, 286-293, 295, 312-313, 316, 318-319, 322
half, 270, 286-287, 290-291, 293, 295, 312-313,

316
look-ahead carry, 292-293, 295, 302, 313, 316
ripple carry, 302, 313

Addition, 168-169, 209, 241, 270-271, 275-276,
280-287, 290-291, 293, 295-297, 299-302,
305, 308-309, 311-313, 318, 322, 338, 364,
453-454, 508, 603, 619, 653, 721, 754, 811,
895

Address, 21-22, 128, 266, 370-372, 376, 381, 389,
780, 784-792, 794-799, 801-802, 805-806,
808-813, 816-824, 826, 828-844, 846-847

Address access time, 791
Address bus, 785-787, 791-792, 799, 809-810, 817,

823, 828, 831-837, 842, 844, 846-847
Address decoder, 371, 389, 786, 808-809, 823,

828-830, 844, 847
Alarm circuit, 552
Algorithm, 352-353
Algorithms, 351
amperes, 776, 901
Amplification, 438
Amplifier, 5, 426-427, 438, 541, 744, 746-747, 751,

767-768, 773, 775, 852
audio, 5
complementary, 438
differential, 426-427, 438, 773, 775
instrumentation amplifier, 767-768, 773
isolation, 438
linear, 773
op-amp, 746-747
operational, 744, 746-747, 852
power, 426, 438
transistor, 426-427, 438

Amplitude, 413-414, 780
Analog, 2-7, 21, 23, 26-27, 57, 369-370, 374-375, 484,

536, 540-541, 603, 626-628, 724, 735-736,
744-782, 813, 816, 827, 850-851, 910

Analog multiplexer, 369-370, 374-375, 767-768
Analog quantity, 4, 745, 768, 774
Analog signal, 3-5, 769, 780
Analog-to-digital converter, 7, 744, 765, 768, 775
Analog-to-digital converter (ADC), 7
AND gate, 66-69, 71-77, 81, 84-85, 89, 91-92,

100-102, 104-105, 111-115, 122, 129-130,
139-140, 159, 163-164, 168-170, 172,
183-187, 195, 197, 207, 209, 211, 226, 229,
255, 263, 267, 286-287, 325, 334, 336, 359,
390, 401-402, 412, 418-419, 441, 444, 452,
460, 520-521, 574, 577, 589-590, 601, 603,
647, 649, 662, 671, 679, 716, 757

AND-OR, 162, 189, 207-209, 211, 220-221, 236, 247
AND-OR-Invert, 162, 189, 207-209, 220, 236

Angle, 678, 692
Anode, 45-47, 60, 536-538, 592-595, 599, 601, 609,

634, 643-644, 647
applications, 2, 20, 41, 118, 126, 153, 157, 162, 165,

217, 246, 254, 257, 262, 270, 297, 305, 324,
334, 345, 348, 358, 371, 373, 377, 382, 401,
425-426, 428, 488, 534, 540, 543, 558, 583,
586, 594, 603, 614, 650, 664, 671, 675,
691-692, 707, 735, 745, 774, 784, 788, 795,
797, 801, 807-808, 816, 826-827, 840,
881-887, 888

electronic circuits, 41
Applications software, 816
Architecture, 118, 122-123, 129-130, 156, 159, 190,

197, 221, 240, 288, 295, 329, 373, 444, 619,
659, 686-688, 826, 830-831, 842, 881, 883,
893, 896

Architecture, VHDL, 159, 197, 221
Arithmetic logic unit (ALU), 832, 842
Arithmetic operator, 295, 312
ASCII, 2, 18-20, 22-23, 25, 37-38, 60, 62, 674-675,

699, 812
Assembler, 140, 837, 839, 842, 850
Assembly language, 826, 830, 832, 835, 837-839,

841-847
Astable, 706-708, 711, 713, 724-730, 734-737,

739-741
Astable multivibrator, 706-708, 711, 713, 725,

727-730, 734-737, 739-740
Astable operation, 706, 724
Asynchronous, 448, 453, 455, 459-468, 473, 475-478,

480-481, 483, 485-486, 488, 490, 492-494,
497-500, 502, 507, 509, 520, 532-533, 561,
563-565, 567, 569, 586, 617-619, 621,
634-635, 643-644, 652-653, 659-660, 664,
684, 692, 701-703, 899

Asynchronous counter, 634-635, 899
atoms, 47
Audio, 4-6, 121
Audio amplifier, 5

B
Base, 2, 7-12, 14, 16-17, 20, 23-24, 47-49, 51, 55,

58-60, 63, 276, 281, 284, 311, 315, 402-404,
413-414, 420-421, 426, 537-538, 542,
545-546, 553, 635, 672, 677, 708, 764

numbers, 2, 9, 12, 14, 23-24, 59, 276, 281, 284,
311, 315

time, 7, 11-12, 20, 55, 58-59, 63, 403, 413-414,
420, 538, 545-546, 553, 635, 708

Base current, 48, 55
Base voltage, 404
Base-emitter junction, 404
Battery, 41, 55, 424-425, 594, 905-906, 908
Bias, 45, 47, 58, 541, 751, 790

base, 47, 58
diode, 45, 47, 58
emitter, 47, 58
forward, 45, 47, 58
reverse, 45, 47, 58
zero, 45

Bias current, 541, 751
Biasing, 677
BiCMOS, 425, 428, 438, 540, 852
Binary, 2-3, 7-18, 20-26, 28, 30, 34-35, 39, 58-59,

68-70, 72, 91, 119, 128, 145, 157, 161, 200,
228, 235-236, 241, 246, 251, 255-256,
258-259, 262-263, 265-268, 270-284, 286,
291, 294-295, 297-300, 302, 304, 309,
311-314, 316, 318, 322, 324-325, 327,
330-331, 334, 336, 339, 343, 347, 349,
351-358, 361, 368, 372, 374-375, 377,
381-384, 386-387, 389-391, 395, 452, 457,
489, 558-559, 563-565, 568-572, 574-577,
581, 588, 592, 601-603, 605-606, 610, 616,
622-624, 626-628, 634, 637, 642, 646,
656-657, 662, 664, 675, 679, 691-693,

697-698, 744-751, 753-754, 757-760, 762,
764, 768-771, 774-775, 777-780, 785, 789,
803, 811-813, 816, 819, 833, 836-837, 839,
842-843, 847

adder, 270, 286, 291, 294-295, 297-300, 302, 309,
312-313, 316, 318, 322

arithmetic, 255, 270-284, 286, 291, 294-295,
297-300, 302, 304, 309, 311-314, 316,
318, 322, 351, 375, 377, 382, 390, 833,
842-843

data, 2, 7, 14, 18, 20, 22, 26, 34-35, 58, 251, 255,
281, 291, 295, 313, 324, 336, 347, 355,
358, 361, 368, 374-375, 377, 381-382,
389, 391, 395, 489, 601, 606, 610, 616,
622-623, 626-628, 634, 656, 662, 679,
691-693, 697-698, 744, 749-750, 754,
759-760, 762, 768-770, 774-775, 777,
779-780, 785, 789, 803, 811-813, 816,
819, 833, 836-837, 839, 842-843, 847

digit, 2, 8-10, 14-15, 17, 21-23, 25, 268, 281, 284,
300, 312, 352-353, 355, 358, 375, 382,
386, 391, 588, 592, 811-812

division, 9, 11-12, 14, 16-17, 23, 270-271, 275-276,
284, 311, 558, 749, 819

fraction, 754
information, 7, 18, 23, 34, 59, 128, 161, 251,

324-325, 336, 347, 375, 452, 489, 679,
691-692, 747, 749, 769, 774, 842

multiplication, 10, 241, 270-271, 274-276, 284, 311,
313

number, 2-3, 7-18, 20-26, 28, 34-35, 58-59, 68,
200, 241, 251, 263, 267, 272, 275,
277-281, 284, 295, 297-300, 302,
311-314, 318, 322, 330, 336, 351-352,
354-355, 358, 372, 377, 384, 386-387,
389, 391, 395, 452, 559, 563, 565, 568,
571-572, 574, 576, 581, 592, 602-603,
616, 622, 634, 637, 656, 662, 679,
691-692, 697-698, 744, 753, 758-760,
764, 770, 774-775, 777, 780, 803, 836,
843

point, 16, 358, 381-382, 592, 605, 634, 691-692,
746, 749-750, 758, 762, 811, 839, 842

sequence, 22, 91, 489, 558-559, 565, 571-572,
574-576, 616, 622-624, 626, 657,
691-692, 775, 833

subtraction, 270-274, 276-277, 279-280, 283-284,
297-298, 304, 311-313, 318

system, 2-3, 7-8, 10, 12, 14-18, 20-25, 34, 39, 59,
236, 241, 246, 251, 255, 263, 266, 270,
277, 281, 284, 297, 312-314, 324, 330,
351, 356, 372, 374, 381, 387, 452, 558,
603, 622, 627-628, 646, 657, 691-692,
698, 744-745, 759, 768, 779, 785, 803,
819, 839, 842-843, 847

Binary coding, 381
BIOS, 807
Bipolar, 47-48, 55, 421-422, 425, 432, 438, 442, 445,

784, 819, 824
Bistable multivibrator, 707, 736
Bit, 7, 11-12, 14, 17, 19, 21-24, 26-27, 31, 34-39,

59-60, 121, 161, 197-198, 200, 217, 231,
241, 251-259, 261-263, 265-269, 270,
274-275, 277-281, 284, 286-320, 325-331,
334, 336, 339, 341, 350, 352-356, 358,
364-365, 371-373, 376-377, 379-382, 384,
387, 389-390, 393-395, 425-426, 452,
473-474, 483, 487-488, 497, 558, 563-565,
569, 576, 581-583, 592, 594, 596, 599,
601-603, 605, 610, 615-619, 622, 625-628,
631, 633-634, 637-638, 640-642, 644-646,
651, 653-657, 659-660, 662-664, 666,
668-674, 677, 680-684, 686-691, 694,
698-699, 701-702, 740, 745-753, 755-763,
765, 767-768, 770-771, 773-776, 778-781,
785-786, 788-792, 794-796, 801-802, 805,
807-817, 819-823, 827, 830-836, 839-840,
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842, 844, 883, 894-895
Boolean algebra, 162-244

distributive law, 168-169, 208, 241-242
expressions, 162, 207-208, 211
laws, 162, 168-169, 171-173, 220
rules, 162, 168-173, 176, 183, 186-187, 189, 220,

224, 227, 239
simplification, 162, 173, 177, 183-185, 192,

196-197, 226
Borrow, 272-273, 276, 283, 304, 309, 312, 606, 616
Branch, 749-750
Breadboard, 535, 595
Breakdown, 536, 547

zener, 536, 547
Bridge rectifier, 535
bubbles, 183-185, 194-195, 221, 334, 344, 382
Buffer, 417, 425-426, 431-433, 438, 473-474, 522,

540, 553, 569, 626, 630-632, 667-668, 677,
679-681, 684, 687, 691, 698, 704, 725, 761,
763-764, 771, 778, 782, 790-791, 794, 811,
818, 820, 828-831, 833-834, 836, 852

Burst, 799
Bus, 6-7, 34, 257-260, 263, 268, 306, 309-310,

375-376, 379, 381, 389, 394, 425-426, 497,
569, 578, 621, 627-628, 630-631, 645,
680-684, 686, 691, 698, 761-762, 767-768,
773, 775, 782, 785-788, 791-792, 794, 799,
809-811, 817-819, 823-824, 828-837,
842-844, 846-848, 851, 884

address, 376, 381, 389, 785-788, 791-792, 794,
799, 809-811, 817-819, 823-824,
828-837, 842-844, 846-847

control, 257, 260, 263, 268, 426, 569, 628, 645,
691, 698, 767-768, 775, 799, 817, 823,
828-835, 842-844, 846-847, 851, 884

external, 34, 263, 376, 627, 691, 761-762, 768,
817, 828-829, 831-834, 836-837, 844,
884

internal, 7, 381, 426, 631, 683, 761-762, 788, 794,
817-819, 823, 830-834, 842-844, 847

multiplexed, 375-376, 824, 846
PCI, 34, 884
USB, 6-7, 34, 680, 851

Bus contention, 787, 818-819, 824
Byte, 5, 14, 785-788, 802, 805, 809, 817-818, 820,

833-835, 839-841, 843, 847, 883

C
Cache memory, 788, 807
calculators, 55, 231, 281, 284, 355, 594
Capacitance, 535, 543, 708, 717-718, 722, 736

input, 535, 543, 717-718, 722, 736
output, 535, 543, 717-718, 722, 736
stray, 717-718, 722
transition, 543, 722

Capacitor, 419, 522-523, 529-530, 535, 543, 545, 547,
554, 577, 585, 648, 706-715, 717-718,
725-727, 729-731, 733-737, 741, 751,
761-762, 767-768, 782, 795-796, 807, 813,
816-819, 823

bypass, 725
charging, 522, 530, 545, 706-708, 710-712, 714,

725-727, 729-730, 735, 741
decoupling, 419, 535
electrolytic, 717
fixed, 717-718
surface-mount, 795
tantalum, 535
variable, 543

Capacitor charging, 706, 708, 712, 726, 729-730
capacitors, 419, 535, 545, 711, 733, 788, 796, 798,

817, 823
standard values, 733

Capacity, 121, 788, 814, 817, 827, 840
Carrier, 56-57, 120
Carry, 271, 275, 280-282, 284-296, 298, 300-305, 309,

312-313, 316, 321, 606, 608
Cascade, 504, 558, 563, 565, 586, 588, 616, 634, 669,

672
Cascading, 313, 588-589, 592, 646
Case statement, 341, 473, 599, 623, 628
Cathode, 45-47, 60, 404, 536-538, 592-593, 596, 598,

601, 634, 644
CD player, 5, 7, 21, 788
CD-RW, 816-817, 822
Cell, 211-214, 216, 220-221, 436, 543, 788-791,

795-796, 801-805, 807-808, 816-819
cells, 25, 126-127, 211-216, 219-221, 422, 789, 798,

803

Channel, 43, 59, 73, 369, 392, 421-422, 439, 444,
525, 543, 573, 667, 729, 761, 766, 790

Characteristic curve, 45, 769
Charge, 420, 423, 522, 530, 543, 577, 706-709, 711,

726-727, 730, 736, 788, 795-796, 798,
804-805, 813-819, 823

Chip, 52-53, 56-58, 99, 110, 118, 120-121, 125, 157,
179-182, 202-203, 220, 233, 267, 293, 301,
313, 334, 336, 353, 368-370, 382, 390-391,
397, 401, 419, 422, 437, 511, 536, 568, 581,
612, 669, 683, 724, 733, 762, 764, 768, 771,
781, 785, 790-791, 794-795, 801-805, 808,
810, 821, 823, 827, 829-830, 840, 882, 884

Chips, 55, 66, 120, 125, 226, 270, 324, 332, 371, 401,
491, 534, 586, 606, 801, 810, 827, 850

Clear, 247, 420, 464, 466, 477, 485-486, 497, 500,
537, 621, 631, 644, 665-666, 701, 757-758

Clock, 6-7, 30-39, 41-43, 57, 59-60, 62-63, 74-78, 81,
90, 104-105, 112, 116, 121, 145, 375, 426,
428, 448-449, 459-461, 463-465, 467-477,
480-481, 483, 485-489, 499-501, 504-510,
515-518, 522-523, 530, 535-537, 543,
545-547, 549, 554-555, 558-563, 565, 567,
569-571, 577-578, 581-590, 592, 596-597,
601-611, 613-620, 622-623, 627-628, 630,
634-635, 637-642, 644-647, 649, 651-660,
662-667, 669-674, 677, 684-688, 690-695,
697-698, 700-704, 706, 735-736, 739, 752,
757-764, 766, 768, 778, 785, 799, 829, 835,
847, 884, 887, 907

Clock generator, 31, 589-590
CMOS, 30, 55-58, 72, 77-78, 96-100, 204-205, 209,

226, 248, 252, 265, 291, 293, 297, 301-302,
316, 325, 332, 359, 369-371, 400, 417,
420-433, 436-439, 442-443, 445-446, 483,
496, 553, 594, 605, 684, 711-712, 715, 734,
807, 852

Code converter, 355, 357, 381, 811
binary-to-Gray, 357, 811

Codec, 121
Codes, 2-28, 218, 252, 333, 355, 358, 374, 386,

623-624, 676, 747, 755, 812, 837, 839, 843
Coding, 381, 622
Coil, 40-44, 58-59, 63, 540, 552, 675-678, 692, 907
Collector, 47-52, 55, 58-61, 63-64, 400, 402, 404,

416-421, 438-439, 442, 444, 446, 534,
537-538, 540, 542, 545, 596, 599, 603, 605,
635, 638, 671, 677, 679, 703, 726, 763, 907

Collector current, 48, 52, 61, 64
Combinational logic, 162-163, 166, 168, 171-173, 177,

196, 208, 220-221, 234-237, 246-247, 270,
312-313, 324, 331-334, 336, 343, 364, 400,
448, 453, 488, 504, 560, 635, 826

Common, 12, 20-21, 30, 32-34, 42, 48, 51-52, 55,
57-61, 69, 77, 79-80, 82, 98-99, 122, 128,
156, 158-159, 164, 166, 169, 174, 195, 204,
210, 212, 214-216, 247, 254, 257, 259, 263,
275, 278, 285, 300, 326, 329, 360, 368, 375,
381, 402, 405, 407, 414-415, 422, 425, 438,
449, 455, 459, 481, 483-484, 489, 509-510,
524, 527, 529, 540, 543, 553, 558, 562, 564,
571, 575, 582, 592-596, 598-599, 601, 607,
609, 623, 626, 633-634, 643-644, 653, 657,
669-670, 673, 675, 679, 683, 688, 690-692,
716, 718, 730, 735, 745, 754, 761, 768, 772,
775, 797, 803, 810-811, 814, 817-819, 833,
883, 895, 901

Common anode, 594, 601
Common cathode, 601
Communications, 33-34, 150, 652, 882
Comparator, 246, 255, 259, 263, 266-268, 324-328,

330, 377-378, 381-382, 390, 393-394,
540-541, 724-727, 730, 735, 746, 756-758,
763, 765, 774, 778

Compensation, 751
bias current, 751

Compiler, 128, 130, 140, 147, 157, 159, 164, 181, 198,
238, 259, 268, 837, 842, 894

Complement, 51, 83-85, 88, 100, 115, 117, 122-123,
126, 170-171, 248, 250, 255, 257, 260, 266,
270, 273, 277-281, 284-285, 297-299,
302-306, 308, 311-315, 317-318, 353, 360,
422, 460, 480, 488, 516, 568, 653, 663-664,
764, 894

Complementary pair, 55
Component instantiation, 686
Component, VHDL, 691-692
computers, 3, 11-12, 17, 23, 34, 270, 272-273, 281,

315, 425, 442, 652-653, 801, 840, 850

conductors, 35, 38-39, 53, 58, 375, 381, 389, 681,
691, 768, 775, 828, 842-843

flow, 39, 58, 691, 775, 828
semiconductors, 58

Control bus, 767-768, 828-829, 833-835, 843
Control unit, 833-835
Controller, 121, 240, 626-631, 642, 645, 671-672, 679,

739, 798-799, 821, 826, 910
Conventional current, 403, 405, 421, 707, 901
conventional current flow, 403
Conversion, 2, 5, 7, 10, 16, 18, 25-26, 277-278, 324,

351-355, 357, 370, 433, 626-628, 650-653,
655-656, 662-663, 673, 691, 744-746, 748,
757-764, 766, 768, 771, 774-775, 777-778,
781, 801, 813, 837

binary-to-decimal, 278
decimal-to-binary, 2, 10

conversions, 2, 5, 12, 15-16, 26, 177-178, 196-197,
204, 281, 353-354, 356, 650, 690, 692, 748,
758, 761-762, 764-765, 775, 778-779

Converter, 5-7, 177-178, 196-197, 234-235, 267, 324,
353-355, 357, 381, 386, 484, 626, 656,
672-673, 679, 693, 744-754, 757-759, 761,
763, 765, 767-769, 774-776, 779, 811, 828,
840

Converters, 7, 324-398, 744-745, 747-749, 751, 754,
756-758, 761, 774, 779

copper, 79
Core, 814
Counter, 66, 68-70, 72, 90-92, 94-95, 100-101,

108-109, 113, 145, 235-236, 258, 318, 339,
361, 374-377, 391, 539-542, 558-649,
657-659, 671-672, 688-695, 699, 701-702,
744, 752-753, 757-759, 766, 774, 778,
798-799, 819, 822, 827, 831-834, 838-839,
843-844, 893, 899

asynchronous, 561, 563-565, 567, 569, 586,
617-619, 621, 634-635, 643-644, 659,
692, 701-702, 899

bidirectional, 691-692
binary, 68-70, 72, 91, 145, 235-236, 258, 318, 339,

361, 374-375, 377, 391, 558-559,
563-565, 568-572, 574-577, 581, 588,
592, 601-603, 605-606, 610, 616,
622-624, 626-628, 634, 637, 642, 646,
657, 691-693, 744, 753, 757-759, 774,
778, 819, 833, 839, 843

decade, 583, 605
ripple, 558, 563-568, 570, 572-574, 581-583, 594,

596, 601-602, 605, 610, 633-635,
638-639

synchronous, 558, 562, 565, 585-586, 601-603,
605-606, 610, 612, 614-617, 619, 621,
634-635, 639-641, 657, 659, 688-690,
692, 702

up/down, 558, 605, 617, 619-621, 635, 643-644,
758

Counter design, 558, 603
Coupling, 449, 546
Crystal, 58, 62, 594, 601, 634, 642, 706, 733-736,

739, 812, 818
Crystal oscillator, 706, 734
current, 39, 41, 44-49, 52, 55, 58-59, 61, 64, 132, 137,

142, 151-152, 238, 268, 312, 334, 400,
402-408, 410-413, 416-417, 419, 421, 423,
425-426, 428-432, 434-435, 437-440,
442-443, 445-446, 458, 464, 468-469, 474,
504-505, 511, 513, 527, 529-530, 533,
535-536, 538-541, 543, 547, 552-555, 577,
587, 590, 593-594, 596, 599, 610, 635, 639,
646, 648, 668, 671, 676-678, 680-681, 691,
707, 718, 725-727, 745-747, 749-752, 755,
774-777, 779-781, 802, 805, 811, 832, 837,
843, 901-905, 907-908

bias, 45, 47, 58, 541, 751
constant, 419, 437, 530, 535, 547, 726-727, 745,

802
conventional, 403, 405, 421, 707, 901
dark, 552, 555
electron, 47, 403, 805
holding, 646, 671, 775
hole, 58-59
induced, 58, 421, 438
leakage, 407, 417
load, 52, 55, 61, 403, 405, 417, 437, 443, 458, 511,

540, 553, 596, 610, 635, 677, 691,
779-780, 811, 832

measuring, 58, 505, 554, 745
rotor, 676-677
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source, 41, 334, 405-407, 413, 416, 421, 425,
430-432, 435, 439-440, 445, 536, 540,
543, 552, 554, 593, 668, 680-681, 691,
707, 751, 776, 802, 805, 901, 905

surge, 671
switching, 39, 44, 48, 55, 58-59, 403, 416, 419,

425-426, 428, 438, 442, 505, 529, 535,
553-554, 905

Current limiting, 594
Current source, 751
Current-limiting, 530, 553, 639
Cutoff, 51-52, 58, 420
Cycle, 32, 38, 59, 92, 101, 392, 416, 425, 469,

526-527, 536, 546, 551, 554, 570-571, 574,
576, 588, 599, 614-616, 623, 640, 659, 707,
712-713, 717-719, 721, 726-730, 734,
736-737, 739-741, 753, 769, 791-792, 795,
797-798, 806, 808, 821, 824, 831, 833-834,
838, 842, 882, 884

D
D flip-flop, 448, 454-455, 459-468, 480-486, 488,

491-493, 497-500, 520, 532-533, 537, 553,
560, 578, 662, 681-682, 684, 686-687,
757-759, 761, 785-788, 822, 824, 827,
829-830, 835-837, 847

D latch, 448, 455-459, 482, 488, 492-493, 498, 590
D/A conversion, 748

resolution, 748
Data, 2, 5-7, 14, 18-20, 22, 26-27, 34-36, 38, 58, 77,

96, 98, 100, 110-111, 123, 125-127, 148,
150, 159, 194, 198, 204, 209, 221, 229, 232,
251-255, 260-261, 281, 291, 295, 301, 306,
313, 324, 332-333, 336, 347, 355, 358-370,
373-375, 377, 379, 381-382, 389, 391-392,
395, 397, 400-401, 407-409, 414-415, 420,
423-424, 432, 436, 440-444, 448-450, 454,
456, 459-461, 469-471, 480, 482-485,
487-489, 495-497, 502, 504-505, 508,
510-511, 516-517, 533-536, 538, 543,
545-547, 596, 601, 606-607, 610, 612,
616-618, 620-623, 626-628, 630-634, 645,
647, 650-656, 659-660, 662-663, 665-674,
679-686, 688, 690-693, 697-704, 720, 733,
740, 744, 749-750, 754, 759-762, 766-770,
773-775, 777, 779-780, 782, 784-792,
794-798, 800-814, 816-824, 826-848,
852-887, 895

Data acquisition, 382, 744, 766-767, 774-775, 779,
840

Data bus, 6, 34, 497, 627-628, 630-631, 645, 680-683,
691, 698, 761, 767-768, 773, 782, 785-788,
794, 810-811, 824, 828-837, 842-844,
846-848

Data register, 785, 845
Data selector, 126, 358, 365, 370, 382
Data sheet, 148, 301, 336, 407-409, 420, 436, 442,

444, 496, 510-511, 612, 788-789, 796, 805,
852, 881

Data storage, 22, 448-449, 487, 489, 653, 784, 817,
820, 829, 832

Data transfer, 626, 816
Data transmission, 679, 691-692
Datasheet, 850, 852

operational amplifier, 852
dB, 243, 749, 761, 846
DC power supply, 78, 105, 121
Decade, 583, 605
Decade counter, 583
Decimal numbers, 24-25, 272, 274-276, 281, 284,

314-316, 320, 336, 386
Decoder, 121, 218, 324, 330-342, 351, 367-368,

370-372, 374, 376, 378-379, 381, 383-384,
389-395, 397, 590, 592-596, 599-600,
633-634, 643-644, 704, 763, 785-789,
808-810, 812-813, 817, 821, 823, 828-835,
842-844, 847, 897-898

4-line-to-10-line, 333, 337
4-line-to-16-line, 333, 368, 384, 785

Decoupling, 419, 438, 535
Delay line, 738, 799-800, 818
Dependency notation, 409, 888
Design entry, 121, 128, 143, 150, 156, 159, 161,

259-260, 305, 457, 464, 466, 473
Design flow, 118-119, 128, 130, 158
Detector, 493, 738, 740
Development board, 121, 126, 147
Development software, 121, 159
Dielectric, 803-805, 882

Difference, 50, 57, 75, 130, 202, 263, 272, 355, 383,
405, 413, 438-439, 448, 523-524, 545-546,
558, 698, 708, 747, 753, 761, 764, 775, 795,
819-820, 835

Differential amplifier, 426-427, 438
Differential nonlinearity, 755
Digital, 2-11, 14, 17-18, 20-21, 23, 26-27, 30-64,

66-67, 72, 78-79, 83-84, 89-90, 98, 100-101,
111, 115, 117, 118-119, 121-123, 128,
137-138, 150, 157-158, 162-163, 173, 246,
251, 254, 262-263, 270-273, 280, 284-285,
309, 312-313, 324-325, 331, 351, 355-356,
358, 364, 373-375, 381-382, 387, 392-393,
400-401, 413, 419, 425, 427-428, 438-439,
448, 461, 469, 484, 488-490, 504-556, 558,
570, 583, 586, 589-590, 595, 603, 622,
626-628, 634-635, 645, 647, 650-651, 653,
656-657, 664, 671, 674-676, 680-681, 684,
690-692, 704, 706-707, 735-736, 744-762,
764-766, 768-769, 774-781, 784-785, 787,
794, 803-804, 812-813, 816-817, 819, 823,
826-827, 830, 832, 842-843, 845, 850-851,
852, 882, 888, 893, 901, 910, 919, 924

Digital clock, 536, 589-590
Digital codes, 23, 676
Digital communication, 653, 690, 735
Digital electronics, 2-3, 8, 10, 18, 23, 30-31, 59, 66,

101, 118, 128, 162, 246, 270, 284, 324, 331,
400, 448, 504, 546-547, 558, 622, 650, 657,
706, 736, 744, 784, 826, 850, 852, 888, 893,
901, 910, 919, 924

Digital multimeter, 525
Digital waveform, 4, 6, 31
Diode, 30, 41, 44-47, 52, 58, 62, 64, 402-404, 407,

420, 522, 526-527, 535-536, 538, 540, 544,
547, 552, 555, 730, 771

forward-biased, 45-47, 58, 402, 404, 536
light-emitting, 536
optical, 538, 547
pin, 52, 58, 62, 64, 730, 771
rectifier, 535, 547
reverse-biased, 45, 58, 536, 547
Schottky, 420
symbol, 47, 402, 420

Diode drop, 403, 407, 730
diodes, 30, 39, 41, 44, 46, 51, 53, 55, 58, 60, 63-64,

402, 439, 527, 535-536, 545, 592, 635, 677,
818

biasing, 677
characteristics, 30, 402, 439
equivalent circuits, 402
LEDs, 53, 55, 536, 545, 592
regulator, 535, 545
silicon, 58, 439, 527

discharging, 428, 706-708, 712, 726, 729-730, 735,
741

Disk, 5, 19, 22, 229, 240, 539, 547, 623, 675, 784,
788, 802, 814-819, 822, 824, 839

Dissipation, 416, 419-421, 425-426, 428, 436-437,
439, 442, 445, 534

Distributive law, 168-169, 208, 241-242
Division, 9, 11-12, 14, 16-17, 23, 270-271, 275-276,

284, 311, 558, 586, 749, 819, 884, 895
DMM, 525
Download, 121, 132-133, 153, 159-161, 238-241, 268,

319-320, 393-395, 407, 436, 444, 498-500,
511, 643, 700-702, 803, 885

Drain, 240, 417, 421, 436, 439, 540, 646, 790, 796,
804-805, 823, 884

DSB, 229, 662-663, 673, 704
duty cycle, 392, 416, 425, 526-527, 536, 546, 551,

570-571, 616, 640, 707, 712-713, 717-719,
727-730, 734, 736-737, 739-740, 884

E
ECL (emitter-coupled logic), 400
Edge-triggered flip-flop, 471, 475-476, 479, 494, 515,

562
EEPROM, 125, 802-805, 807-808, 818-819, 822
efficiency, 6-7
Electric circuit, 30, 41, 46, 68, 70
Electric field, 421, 804, 818
Electrical isolation, 545, 818
Electrical noise, 251, 257, 263, 419, 489, 523, 546
Electromagnet, 814-815
electromagnetic interference (EMI), 419
electromagnetism, 543
Electron, 47, 403, 804-805, 818, 823
Electronic, 4, 30-64, 67, 78, 101, 270-271, 382, 400,

426, 522, 543, 547, 684, 707, 735-736, 769,
775-776, 803, 807, 827, 843-844, 850-851,
905

electrons, 421, 803-805
Electrostatic discharge (ESD), 423
Element, 198, 305-306, 329, 341, 659, 803-804,

817-819, 884
Elsif statement, 329
Emitter, 30, 47-49, 51-52, 55, 57-61, 63, 400, 402-404,

407, 421, 426, 438-439, 537-538, 545, 596,
599, 603, 635, 671, 677, 907

Emitter current, 439, 635
Encoder, 324, 343-348, 350-351, 372, 381, 384,

391-392, 394-395, 539, 547, 559, 756-757
keyboard, 346
priority, 344-347, 350-351, 372, 384, 394, 756-757

Energy, 3, 6-7, 438, 537, 769, 805
engineering notation, 32
Entity, 129-130, 135, 157, 159, 161, 221, 328, 339,

473, 643, 687, 691, 700-702, 893-894, 896
Enumeration, 622, 634
EPROM, 801-803, 805-813, 817-818, 821-823, 829,

839, 853
Equality, 165, 248, 255, 263, 303, 325-326, 381, 390,

894
Equivalent circuit, 46, 49-50, 173, 183-184, 188-189,

221, 223-224, 230, 469
Erase, 802-805, 808
Error, 22, 128, 152, 251-254, 257, 262-263, 266, 269,

300-301, 356, 407, 505, 566, 626, 718,
755-756, 759-760, 775, 778, 780-781, 798

Error correction, 300-301
Error detection, 262, 798
Ethernet, 34, 121
Even parity, 251-252, 254, 257-258, 267-268
Event, 464, 538, 635
Exclusive-NOR, 101, 246-269, 325, 894
Exclusive-OR, 101, 180, 246-269, 286, 356, 894

F
fall time, 413, 438, 444
Falling edge, 32-34, 36, 113, 724, 821
Feedback, 469-470, 523, 546, 675, 691

negative, 523, 546
positive, 469, 523, 546

Ferromagnetic, 675, 691, 816, 818
Field, 55, 122, 125, 138, 157, 421, 439, 442, 675, 691,

790, 803-804, 816, 818
Figure of merit, 419, 428, 438
Filter, 143, 910

power supply, 910
filters, 911, 913
Fixed-function logic, 263
Flag, 831-834, 839, 841, 844, 847
Flash memory, 125, 802-805, 807-808, 814, 818,

850-851
Flat pack, 887
Flicker, 502
Flip-flop, 123, 233, 448-455, 459-494, 497-500,

504-506, 510, 515-520, 522-523, 530,
532-533, 536-537, 549, 553, 555, 559-565,
567-568, 571, 576-578, 581, 583, 589, 601,
603, 605, 614, 635, 638, 649, 652-659,
662-663, 669, 671, 679, 681-682, 684,
686-690, 694, 699, 702-703, 707, 724, 726,
730, 734, 736, 757-759, 761, 785-790, 819,
822, 824, 827, 829-830, 835-837, 847, 852

D, 233, 448, 451, 454-455, 459-468, 477, 480-486,
488, 491-493, 497-500, 519-520,
532-533, 537, 553, 560-561, 578, 605,
614, 635, 638, 653-654, 657, 662, 669,
679, 681-682, 684, 686-688, 694, 699,
702-703, 736, 757-759, 761, 785-788,
822, 824, 827, 829-830, 835-837, 847

J-K, 448, 468-478, 480-482, 488, 494, 498-499,
505, 517, 523, 536, 561, 563, 581, 601,
653-655, 658, 688-690, 699

S-R, 448-455, 468-469, 487-488, 490, 494, 497,
500, 532, 653, 707, 724, 726, 736, 790

Floating gate, 803-805, 813, 818, 823
Floppy disk, 22, 675, 814-815, 819, 822
Flow control, 543
Flow rate, 543
flux, 540-542, 675-676, 691, 814-815
Focal point, 842
Footprint, 57
For loop, 257, 263
Forward bias, 47
frequencies, 57, 425, 427-428, 443, 571
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corner, 443
square wave, 443

Frequency, 30, 32-33, 36, 39, 57-60, 62-63, 75, 391,
424, 428-429, 440, 480-481, 505, 508, 513,
536, 558, 565, 568, 570-571, 581-584,
586-587, 614-616, 634-635, 637-638,
641-642, 644, 646, 649, 671, 679, 698,
706-707, 712-713, 728, 733, 736-737,
739-740, 752, 761-762, 764, 778, 910

break, 39, 63
carrier, 57
critical, 428, 707, 733
difference, 57, 75, 558, 698, 761, 764
motor, 679, 698
oscillation, 733
side, 58

Frequency division, 558, 586
Full-adder, 270, 286-293, 312-313, 316, 318-319, 322
Function, 51, 53, 66, 68-69, 75, 77, 88, 100-101, 104,

109, 118-119, 127, 147, 159, 161, 163,
165-169, 173, 184, 193, 202, 204, 210-211,
220-221, 246-249, 252-255, 257, 263-264,
266-268, 270, 286-287, 296-297, 302-305,
313, 316, 324, 332-334, 337-339, 344-345,
347, 358-359, 364-365, 368-370, 381, 383,
394, 404, 417, 419, 433, 437, 439, 449-451,
453, 455-457, 460, 463, 472, 476, 483, 489,
491, 504, 511, 524-525, 528-529, 547,
550-551, 553-554, 570, 581, 605-606, 612,
617, 622, 657, 663, 665, 667-670, 679, 692,
716-717, 721-722, 725, 746, 755-756, 770,
775-778, 826, 829, 838, 844, 852

Function generator, 525, 553-554
Function table, 252-254, 263, 302-304, 333-334,

337-339, 344-345, 347, 381, 383, 449-450,
453, 455-456, 460, 472, 476, 483, 489, 606,
665, 667-668, 716-717, 721-722

Functional simulation, 146, 238
Fuse, 535, 555, 802, 818, 823
fuses, 818
Fusible link, 802, 818

G
Gain, 26, 168, 746, 755-756, 767-768, 771, 773, 775,

780-781, 803
Gallium, 427
Gallium arsenide, 427
Gate, 52-53, 55, 66-78, 81-94, 99-102, 104-105,

110-115, 117, 120, 122, 125, 129-130,
139-140, 157, 159, 162-164, 168-170,
172-173, 178, 183-187, 191, 194-195, 197,
204, 207-211, 220-221, 226, 229-230, 233,
235-237, 244, 246-248, 250, 255, 259,
262-264, 266-269, 286-287, 300-302, 313,
322, 325, 332-334, 336, 343, 359, 363, 371,
376, 382, 390, 400-402, 404-408, 412-423,
425-432, 434, 437-446, 449-450, 452-453,
455, 460, 470, 487, 489-490, 493, 500, 510,
515-516, 518, 520-522, 527, 540-541, 549,
554, 566, 570-572, 574-575, 577, 587,
589-590, 601, 603, 616, 635-636, 646-647,
649, 662, 671, 679, 714-716, 757, 763, 790,
795-796, 803-805, 807, 813, 818-819, 823,
836

Generator, 26, 31, 37-38, 72-73, 76, 90-91, 100-101,
113, 115, 235-236, 246, 251-254, 257,
265-267, 287, 301-302, 375, 390-391, 498,
525, 535, 544, 552-554, 589-590, 642-643,
753, 780, 822

pulse, 31, 91, 101, 113, 535, 544, 552-553, 589,
642-643

signal, 31, 37-38, 76, 100, 115, 251, 257, 390, 498,
535, 553-554, 642, 780

Germanium, 45
Glitch, 381, 571-574, 578-581, 616-617, 633-634,

641-643
gold, 817
Graphic entry, 130, 156
Gray code, 324, 355-358, 381, 386, 622-624, 644,

811-812
Ground, 34, 41, 43, 47-50, 53, 55-56, 58, 77, 93, 98,

115, 117, 205, 233, 241, 254, 267-268, 370,
372, 402, 405, 412, 416, 419, 423-424, 439,
445, 450, 505, 526, 533, 535-536, 539, 543,
556, 595-596, 599, 603, 652, 677-679, 691,
724-726, 730, 734, 746, 749-752, 762, 765,
776-778, 801-802, 804, 813, 822-823, 904

H
Half-adder, 270, 286-287, 290-291, 293, 295, 312-313,

316
Hall effect, 541, 850
Handshaking, 34, 626, 630, 674, 691, 768, 775
Hard disk, 814, 816, 818-819, 822, 824
Hardware, 119, 128, 150, 158, 161, 351, 353, 382,

679, 768, 826, 830-831, 835-837, 839, 843,
851

Hardware description language (HDL), 119
heat, 81, 432, 439, 535, 541, 769, 774, 776, 817
Heat sink, 535
Hertz, 32, 58
Hertz (Hz), 32, 58
Hex inverter, 53, 55-56, 58, 96, 110
Hexadecimal addition, 281-282, 312
Hexadecimal numbers, 22, 24, 265, 268, 281, 283,

315
Hexadecimal subtraction, 283
High-level language, 838, 841-842, 845, 847
Hit, 791
Hold, 5, 140, 168, 367, 419, 449-450, 453, 468,

472-474, 476-478, 480, 483-484, 489-490,
497, 504, 506-508, 510, 514, 516, 519,
521-522, 529, 532, 535, 542, 545-546, 554,
559, 562-563, 601, 605, 631, 664-665, 692,
701, 704, 714, 767-768, 775, 782, 792,
796-798, 806, 814, 818, 831, 833-834, 839,
884

Hold capacitor, 767-768, 782
Hold time, 504, 506, 510, 522, 545-546, 797, 806
Hole, 57-59, 79
hysteresis, 523-525, 542, 545-547, 554, 681, 737

I
IC, 26, 49, 52-53, 55, 57-58, 64, 66, 77-79, 81-85, 87,

96, 98-101, 104, 109, 111-113, 118, 120-121,
125, 127-128, 148, 153, 156-157, 161,
202-205, 207, 209-211, 232-233, 238-239,
244, 248, 252, 265, 267-268, 293, 295, 297,
300-302, 305, 312-313, 318-320, 324, 331,
333-334, 336-337, 343, 345, 353, 355, 360,
368, 371-372, 374, 376, 382, 387-389,
392-395, 400-401, 407, 409, 413-414,
416-417, 419-420, 422-427, 437-438, 443,
448, 450-451, 455, 459-460, 471, 475, 483,
488-491, 493, 497-500, 504-505, 510,
522-523, 529, 535, 537, 539, 541-542,
544-547, 558, 568, 581, 585-587, 589,
592-593, 599, 601, 605, 612, 619, 633,
642-643, 653, 662-664, 670, 678, 680,
691-692, 699-702, 706, 711, 716-718, 721,
724, 730, 733-736, 744, 749, 755, 758,
769-770, 773-775, 784, 795-798, 800-803,
805, 808, 811, 817-819, 821-824, 826-830,
832, 839-840, 843-844, 846, 852

IC package, 101, 125, 148, 301, 382, 426-427, 475,
483, 488, 581, 605, 716, 721, 733

IC voltage regulator, 544
IEEE, 66, 98-100, 130, 150, 306, 308, 853, 888-892
IEEE standard library, 130
IEEE std, 888
If statement, 329, 464, 466, 473, 569, 578, 626, 659
If-Then-Else, 308, 312-313, 320, 324, 328-329,

341-342, 394, 464, 473
Impedance, 198, 329, 421, 426, 540, 668, 690-691,

746-747, 761, 775, 781, 791-792, 797, 805,
895

Implementation, 128, 163, 189, 209, 218-219, 305,
313, 319-320, 365, 393, 448, 498-500, 619,
622, 627, 629, 643, 691, 700-702, 803

In-circuit testing, 81
Inequality, 260, 325, 894
Infrared, 538
Infrared light, 538
Input, 7, 18, 23, 26-27, 30, 34, 47-52, 55, 58, 60,

66-77, 79, 81-90, 92-93, 96, 100-106, 108,
110-113, 115-117, 119-123, 125-126,
128-130, 139-140, 144-148, 156-161,
163-164, 167, 169-173, 180-186, 192, 195,
197-200, 204, 210-211, 217-218, 220-221,
231, 233-235, 238-241, 244, 247-248, 252,
254-261, 263, 266-269, 270, 273, 286-291,
295, 297-298, 300, 302, 304-306, 308-309,
311, 313, 317-319, 325-328, 330-334, 336,
339, 341, 343-344, 346-348, 350-351, 353,
357-374, 376, 379, 381-385, 387, 390,

392-395, 397, 400-419, 421, 424-427,
429-440, 443-446, 448-455, 457, 459-464,
468-471, 473-475, 477-482, 485, 488-494,
499-501, 504-513, 515-516, 518, 522-527,
529-530, 534-541, 543, 545-547, 550,
553-555, 559-563, 565, 567, 569-571,
574-575, 577, 581-590, 592, 594-596, 599,
601-603, 605-608, 610, 612, 616-617, 622,
624-627, 634-638, 642, 644-646, 648-649,
651-659, 662-665, 668-675, 678-681,
683-684, 686-688, 690-696, 699, 701-704,
712-726, 734-741, 746-760, 762, 764-766,
769, 772-781, 785, 788, 791, 794, 797-799,
802, 805, 810, 812, 818, 821, 826-830,
832-837, 841, 843-848, 883-884, 895-896

Input impedance, 421, 540, 746-747, 775, 781
Instance, 504, 592, 686, 688, 768, 808
Instruction, 826-827, 830-845, 847-848, 853, 919-923
Instruction decoder, 831, 833-835, 842-844, 847
Instruction register, 832-834, 843-844
instrumentation, 767-768, 773
Instrumentation amplifier, 767-768, 773
Instruments, 4, 26, 77, 124, 354, 401, 425-426, 840,

851, 853, 888
Integer, 270, 295, 297, 306, 312-313, 569, 623, 895
Integrated circuit, 30, 51-52, 55, 58-59, 67, 77, 82,

119, 127, 156, 158, 220, 263, 439, 818, 843
74HC, 77
74LS, 77

integration, 270, 285, 291, 313, 364, 382, 400,
420-421, 831

Integrity, 253
Intellectual property (IP), 883
Interfacing, 400, 426, 428-438, 443, 446, 534, 681,

684, 698, 744-782, 794, 830
Internal resistance, 522
Internet, 5, 33-34, 424, 543, 581, 610, 684, 851
Interrupt, 373, 538, 546, 827, 831-834, 843
Inversion, 53, 83-85, 101, 183-185, 188, 196, 220-221,

227, 241, 334, 394
Inverter, 30, 51, 53, 55-56, 58, 60-61, 66-67, 83-84,

87, 89, 96-100, 109-110, 112, 115, 117, 122,
184-185, 187, 202, 204, 210, 220, 229, 246,
255-256, 260, 263, 266, 268, 297, 401,
405-406, 417-418, 422, 431, 433, 435, 443,
454, 460, 463, 469, 473, 480, 490, 502,
523-524, 539, 545, 550-551, 585, 656, 671,
703, 711-712, 733-734, 737, 741, 800, 821

Irradiance, 6
Isolation, 41, 421, 438, 538, 545-546, 680, 691, 818

J
J-K flip-flop, 448, 468-478, 480, 482, 488, 494,

498-499, 505, 517, 523, 536, 561, 655,
688-690

Johnson counter, 92
JTAG, 121, 150, 884
Jump, 804, 839-841, 844
Junction, 48-49, 58-59, 402, 404, 420-421, 427, 438,

635

K
Karnaugh map, 211-213, 218-221, 231, 316
Key, 4, 16, 19, 27, 32, 54-55, 67, 81, 144, 163-164,

178, 234, 254, 289-290, 299, 336, 389-391,
397, 404, 425-426, 443, 461, 477, 521, 545,
644, 655, 686, 771, 846

L
Ladder, R/2R, 744, 748-749, 751, 774
Lamp test, 594
Lands, 816-817
Language, 119, 128, 130, 140-141, 157-158, 161, 198,

295, 312, 324, 338, 599, 659, 686, 801, 826,
830, 832, 835, 837-839, 841-847, 893-899

Laser, 5, 814, 816-819
Latch, 448-449, 455-459, 469, 478, 482, 488-490,

492-493, 496, 498, 501-502, 537, 555, 590,
596, 679, 681-682, 691-692, 698, 704, 758,
829, 831-835, 837

LCD, 121, 389, 397, 443, 596, 634, 642, 739,
812-813, 818, 846, 848, 910

Leakage, 407, 417
Leakage current, 407, 417
LEDs, 53, 55, 121, 147-148, 153, 268, 294, 298,

318-320, 336, 346-347, 390-395, 536,
543-545, 553, 558, 592-593, 596, 601, 609,
633, 643, 654, 673, 700-702, 764-765, 778,
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827-830, 835-837, 841, 845, 847
Level indicator, 79
Level sensor, 201, 241, 372, 377
Library, 128-130, 157, 159, 240, 257, 263, 268,

305-306, 309, 312-313, 377, 485, 621, 634,
684-686, 893, 896

Light intensity, 537, 541
Limiting resistor, 530, 543, 592, 596, 634, 639
Linear, 543, 754, 770-773, 781, 851
Load, 26-27, 40, 50-52, 55, 61-63, 112-114, 234-237,

257, 266-267, 318, 329, 333, 390-392, 403,
405, 409, 417, 437, 443-444, 458, 461, 477,
481, 486, 497-498, 500, 511, 525, 534, 540,
553, 568, 572, 596, 606-607, 610, 614-620,
634-635, 641-644, 651-652, 654-655, 659,
661-667, 669-670, 673-675, 677, 685,
691-693, 699-702, 704, 719, 729, 740, 753,
765, 779-780, 797, 811, 818, 822-823,
829-830, 832-833, 835, 841, 846

Loading, 333-334, 375, 394, 400, 486, 522, 622,
653-654, 659-660, 666, 669, 679-680,
684-685, 698

Logarithm, 708
Logic, 26, 31, 36-38, 40, 51-53, 55, 57-59, 66-117,

118-161, 162-178, 180-181, 183-185,
187-198, 200, 202-211, 220-230, 232-239,
241, 246-248, 252-253, 256, 261, 263, 267,
270, 277, 285-288, 291-293, 295, 297, 300,
302-303, 305-306, 308-309, 312-313, 317,
319, 321, 324, 326, 329, 331-338, 343-344,
346-347, 353, 359-360, 364, 367-368, 370,
382, 384, 387-388, 390-392, 397, 400-446,
448, 450, 452-453, 455-456, 458-459,
463-464, 468-471, 473-474, 476, 479, 484,
488-489, 491-494, 498, 504-505, 507,
515-516, 538, 540-543, 545-546, 554,
558-560, 566-568, 570, 581, 583, 594, 596,
601, 605, 610, 612, 619, 622-623, 626, 628,
635, 642-643, 647, 662-664, 668-669, 678,
682-684, 691, 695, 699, 707, 721-722, 736,
761, 789-790, 794-795, 800-801, 812,
818-820, 826-827, 831-834, 841-844,
850-851, 853, 882-884, 888-892, 893-895

Logic analyzer, 37-38, 72, 90-92, 100, 112-114,
234-237, 267, 388, 390, 397, 498, 566-568,
642-643, 699, 761, 820

Logic array block, 221
Logic array block (LAB), 221
Logic diagram, 120, 124, 130, 180, 185, 288, 291-292,

333-334, 336-338, 359-360, 367-368, 484,
491, 581, 583, 662, 800, 844

Logic function, 118, 127, 147, 161, 163, 166, 202, 211,
221, 246, 305

Logic gates, 55, 66-117, 118-119, 122, 125, 156, 159,
161, 163, 167, 202, 204, 220-221, 246, 248,
277, 285, 297, 300, 331, 359, 364, 391, 400,
412, 423, 434, 448, 559-560, 695, 707, 812,
826

Logic level, 79, 101-102, 107, 110-111, 126, 169-171,
175, 221, 261, 263, 336, 370, 438-439,
463-464, 540, 626, 678, 818

Logic operations, 40, 118-119, 128, 130, 157, 302-303,
312, 842

Logic probe, 66, 79, 81-83, 100-101, 104-105,
110-112, 114-115, 117, 205, 232, 236-237,
267, 317, 387, 391-392, 450, 452

Logic pulser, 66, 79, 82-83, 100-101, 104, 110, 113,
117

Loop, 257, 260-263, 578, 623, 626-627, 675, 691,
838-839, 845, 847

M
Machine language, 826, 837-839, 842-843, 846-847
Magnetic disk, 802
Magnetic field, 691, 816
Magnetic flux, 540-541, 691, 814-815
magnetic flux lines, 541, 691, 814-815
Magnetic storage, 814, 818
Magnetic tape, 6, 784, 788
Magnitude, 58, 268, 277, 324-328, 381-382, 389, 393
Mark, 91, 137, 142, 151, 180, 350, 465, 521, 532, 578,

618, 628, 881-887
Mask ROM, 801, 803, 807-808, 817, 821
Master-slave flip-flop, 469, 478, 489, 494
Matrix, 125
Mean, 168, 463, 501, 505, 510, 522, 601, 724
Memory, 21-22, 25, 122-123, 125-127, 147, 156-157,

194-195, 233, 240, 253, 312, 315, 371-373,
376, 381-382, 388, 397, 422, 437, 720,

767-768, 775, 779, 784-824, 827-829, 832,
835-837, 839-845, 847, 850-851, 882-884

cache, 788, 807
dynamic, 784, 788, 795, 797-800, 817-818
magnetic, 784-824
nonvolatile, 125, 157, 801-803, 814, 817, 821-822
random access, 788, 801, 816, 818
random-access, 126, 768, 788, 817, 819
read-only, 784, 801, 817-819
static, 126, 784, 788-791, 794-795, 797-798, 817,

819, 822
volatile, 126-127, 157, 790, 807-808, 819, 821, 829

Memory access time, 253
Memory address, 371, 785, 798, 802, 819
Memory array, 789-790, 795-796, 805
Memory cell, 788-791, 795-796, 801-802, 804-805,

808, 817-819
Memory expansion, 784, 792, 794, 808, 818
Memory modules, 800
Microcontroller, 372-374, 377, 382, 388, 422, 448,

483-484, 543, 553, 596, 603-605, 641,
739-740, 762, 767-768, 771, 779, 829, 840,
846, 850, 910

Microprocessor, 32-33, 40, 72, 194-195, 218-219, 229,
240, 284, 313, 371, 373, 376, 382, 388, 400,
422, 425-426, 428, 438, 452, 488, 504, 540,
558, 586, 596, 626-628, 645, 674, 676,
679-683, 691, 698, 720, 735, 738, 761,
768-770, 773, 775, 782, 788, 801-802,
809-810, 813, 817-818, 821, 823, 826-848,
850

Mnemonic, 830, 837, 839, 842-843
Modulus, 558-559, 563-565, 572, 582, 585, 602, 616,

621-622, 633-634, 637, 642, 895
Monostable, 706-707, 713-716, 718-719, 721-722,

724, 730, 735-737, 740-741
Monostable multivibrator, 706-707, 713-716, 718-719,

721-722, 724, 730, 735-737, 740
Monostable operation, 706, 730
Multimeter, 525, 552
Multiplexer, 7, 324, 358-366, 369-370, 373-375,

379-380, 382, 387, 391-392, 394-395, 397,
642, 767-768, 773, 782, 796, 798-799

Multiplicand, 274
Multiplication, 10, 168, 241, 270-271, 274-276, 284,

311, 313, 320, 884, 895
Multiplier, 274-275, 883
Multisim, 26, 30, 37-38, 43-44, 53-55, 62, 72-73, 76,

91-92, 112, 114, 177-178, 196-197, 234,
236, 256-257, 266, 289-290, 294-295,
298-299, 301-302, 318, 335-336, 346, 362,
390, 392, 403-404, 444, 461, 477, 481-482,
497, 525-526, 553, 567-568, 572-573,
595-596, 642, 654-655, 667, 699, 719, 729,
740, 753, 765-766, 779, 822, 846, 851

Multivibrator, 616, 706-708, 711, 713-716, 718-719,
721-725, 727-730, 734-737, 739-740

Music, 3-5, 7, 816

N
NAND gate, 66, 84-87, 89-90, 93, 100-101, 110,

114-115, 183-184, 204, 229, 332, 400-401,
404, 407-408, 417, 419, 426, 490, 493, 527,
571-572, 577, 587, 616, 649, 715, 836

Natural, 708
Natural logarithm, 708
Negative temperature coefficient, 769
negative-going pulse, 714, 717, 730, 732-733, 739
Netlist, 146, 180-182, 190-191, 221, 239, 297
Nibble, 14
NMOS, 421-422, 439
Node, 143-144, 259, 317, 394
Noise immunity, 419, 424, 428
Noise margin, 400, 407-408, 430, 432, 434-436, 439
Nonlinear device, 781, 812
Nonlinearity, 755, 775
Nonvolatile memory, 802-803
NOR gate, 66, 87-90, 93-94, 100, 110, 115, 183-185,

187, 197, 204, 226, 229, 246, 248, 250,
262-264, 325, 382, 414, 418, 427, 441,
449-450, 566, 574-575, 646

NOT-AND, 894
NOT-OR, 894
NPN transistor, 47-48, 51, 55, 402, 404, 542, 726
Null, 19, 773

O
Octal numbers, 24

Odd parity, 251, 257, 265
Offset error, 755-756
Ohmmeter, 39
ohms, 39, 708, 751, 770, 901
Op-amp, 746-747, 749-750, 770, 776-777, 853
Open circuit, 45, 47-48, 79, 101, 538, 668, 905-906
open circuits, 39
Operand, 839, 843
Operational amplifier, 744, 746-747, 852
Optical storage, 5, 784, 813-814
Optocoupler, 537-538, 540, 545-546, 552-553
OR gate, 66, 69-78, 82, 87-88, 92-93, 100-102, 105,

111, 114, 122, 139, 163-164, 168, 170, 172,
183-186, 191, 195, 197, 204, 209, 220, 226,
229, 246-248, 250, 262-264, 300-301, 322,
343, 363, 371, 376, 412, 440, 549, 590, 636,
671, 836

OR gates, 66, 70, 74, 77, 82, 100, 103-104, 111, 113,
122, 156, 161, 168, 194, 209, 252, 267, 290,
302, 321, 343, 356, 412, 438, 671, 845

Oscillation, 733
Oscillator, 41-43, 60, 74-78, 90, 104-105, 121, 375,

441, 545, 586, 596-597, 609, 611, 613-617,
639, 670-672, 679, 703, 706-707, 711-712,
724, 726, 728-729, 733-736, 739, 752, 757,
759, 766, 812-813, 907

free-running, 707, 711, 735-736
Oscillator circuits, 706, 734
Oscilloscope, 31-33, 43-44, 57-58, 63, 72-73, 84, 100,

112, 362-363, 374, 392, 413, 444, 480-481,
524-525, 553-554, 572-573, 584, 642-643,
667, 719, 726-727, 729, 733, 740, 752-753,
761

analog, 57, 374, 752-753, 761
digital, 31-33, 43-44, 57-58, 63, 72, 84, 100, 374,

392, 413, 524-525, 553-554, 752-753,
761

Output, 3, 5-6, 18, 20, 23, 30, 34, 37-39, 41, 48-49,
51-53, 55, 58-61, 64, 67-77, 79, 81-90,
92-96, 100-103, 106, 108, 112-117, 118-121,
123, 126-130, 139-141, 144, 146-148, 150,
156-157, 160-161, 165, 169-172, 175, 178,
180-181, 183-185, 191, 195, 198-199,
202-206, 210-211, 217-218, 220-221, 226,
228, 233-240, 247-249, 251-258, 260-261,
263, 266-269, 270-271, 284, 286-288,
290-291, 293-298, 300, 302, 304, 306,
308-309, 311-312, 318-319, 325-326,
328-332, 334-337, 339, 341, 343-344,
346-351, 353, 355, 357-365, 368-371,
373-376, 379-385, 387-397, 400-419,
422-428, 430-440, 442-446, 449-457,
459-462, 464, 466, 470-475, 477, 480-484,
488-496, 498-500, 504-510, 512-513,
515-516, 518, 520, 522-525, 527, 530, 532,
534-543, 545-547, 549-551, 554-555, 559,
563-566, 568-572, 574-577, 580-582,
584-589, 592-594, 596, 599, 601-602,
606-608, 610, 612, 614, 616-617, 622-623,
625-628, 633-634, 637-646, 648-649, 650,
652-654, 656-660, 663-671, 673-674,
677-684, 686-688, 690-693, 695, 697,
699-704, 706-707, 711-726, 732-741,
746-748, 750-753, 755-766, 768-771,
773-775, 777-782, 785, 787, 791, 794,
797-799, 801-802, 805-806, 808, 810-812,
818-819, 821-823, 826-830, 832-837,
841-848, 883-884, 895, 904, 906

Output impedance, 426, 746, 775, 781
Overflow, 201, 241, 311
Overshoot, 426

P
Package, 51-52, 57-58, 77, 101, 119-120, 125, 148,

157-158, 202, 285, 291, 301, 382, 401, 409,
417, 422, 426-427, 475, 477, 483, 488-489,
511, 537, 543, 546, 553, 581, 592, 594, 596,
605, 633, 635, 680, 691, 716, 721, 733, 770,
788, 795, 837, 839-840, 842, 881, 885, 887

Page, 128, 135, 309-310, 377, 513
Parallel connection, 35
Parallel-to-serial conversion, 7, 650-653, 673
Parity, 22, 34, 246, 251-254, 257-258, 262-263,

265-268, 287, 626, 883, 885
Parity generator/checker, 246, 251-253
PCI (Peripheral Component Interconnect), 35
Pentium, 57, 840
Period, 30, 32-38, 57-59, 62-63, 75, 92, 142, 145, 293,

362, 392, 419, 426, 440, 481, 505, 508, 546,
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561-562, 565, 568, 571, 580, 607-608,
615-616, 640, 653, 657-659, 677, 708, 713,
717, 733, 736, 753, 785, 791-792, 796, 801,
818, 837, 893

Periodic, 30-33, 59, 488, 546, 570
Permeability, 691
Phase, 64, 538, 678, 812, 884
Photosensitive, 817
Phototransistor, 537-538, 545-546, 552-553, 603, 635,

671, 679, 703
Pin numbering, 148
Pins, 51-53, 57-58, 77, 79, 81, 83, 104-105, 111-113,

120-121, 123, 125-127, 130, 139, 147-149,
206, 233, 295, 304-305, 310, 313, 336, 348,
370, 374, 389, 391, 419, 436, 499, 535, 553,
569, 599, 610, 612, 642, 647, 649, 663,
678-679, 691, 717, 725, 739, 761-762, 766,
817, 832, 846, 882, 884-887

Pipeline, 309
Pipelining, 379, 840
Pits, 5, 816-817
PLD programming, 122, 158
PMOS, 421-422, 439
PNP transistor, 47-48
Pointer, 140, 831-834, 843
Pole, 39, 52, 55, 59, 61, 64, 77, 401-402, 405-407,

416-417, 419, 422, 439, 444-445, 529-532,
542-543, 547, 675-676, 692, 763

Poles, 675, 692
Polling, 768
Port, 34, 121, 161, 266, 309, 318, 339, 373-374,

388-389, 485, 553, 596, 599, 617, 621, 680,
686-688, 692, 740, 779, 807, 826, 828-830,
832-837, 841, 843-848, 883, 894

Port map, 686, 688, 692
Positive feedback, 523, 546
positive-going pulse, 733
potentiometers, 733, 765
Power, 7, 9-10, 23-24, 27, 32, 40, 52-53, 55, 58, 63,

77-78, 81-83, 98, 105, 110, 112-113,
115-116, 120-121, 125, 127, 150, 157, 161,
336, 346, 362, 373-374, 377, 390, 400-401,
404, 409, 416, 419-421, 423-426, 428-429,
432-433, 436-439, 442-443, 445-446, 449,
481, 489, 504, 522-523, 525, 529, 533-535,
540, 544-547, 552, 563, 568, 572, 577-578,
585, 590, 601, 605, 614, 634, 639, 657-658,
667, 669-670, 677, 679, 711, 714, 719,
726-727, 729, 753, 762-763, 765, 771, 781,
790-791, 794-795, 800-801, 812, 814, 817,
819, 822-823, 829-831, 833-834, 843, 850,
881-882, 885, 910

ratio, 546
true, 7, 27, 82, 115, 377, 404, 419, 428-429, 437,

445, 522, 601, 605, 657, 679, 711, 729,
781, 829-830

Power dissipation, 416, 419-421, 425-426, 428,
436-437, 439, 442, 445, 534

Power MOSFET, 540
Power supply, 52-53, 77-78, 81-83, 98, 105, 110, 112,

115-116, 121, 401, 409, 416, 419, 423-425,
428-429, 433, 436, 438-439, 489, 523, 535,
544-545, 547, 552, 590, 658, 727, 762, 771,
831, 833-834, 910

Power supply current, 429
Power transistor, 677
Practical applications, 217
Precision, 771, 800, 814, 911, 913
Preset, 464, 466, 477, 576-577, 589, 605-606, 610,

658
Pressure sensor, 20
Pressure transducer, 768
Primitive, 240, 457, 464, 466, 473, 499, 520
Printed circuit board, 59
Priority encoder, 344, 347, 350-351, 372, 384, 394,

756-757
Probe, 66, 79, 81-83, 100-101, 104-105, 110-115, 117,

205, 232-233, 236-237, 267, 317, 387,
391-393, 450, 452

Procedure, 8, 11, 14, 16, 23, 78, 81, 101, 162, 204,
212, 214-216, 270-271, 274-278, 280-282,
284-285, 324, 332, 343, 352-353, 366, 450,
455, 457, 464, 468, 474, 552, 554, 662, 665,
680, 698, 733, 747, 750, 770, 775, 784,
797-798, 802, 805, 812

Product, 3, 119, 122, 127, 157-158, 161, 207, 209,
211, 221, 274-275, 313, 320, 419-420,
425-426, 428, 438, 442, 522, 646, 707, 736,
803, 882

Product-of-sums (POS), 207, 221
Program, 19, 21-22, 25, 119-121, 128-130, 133,

147-149, 151-153, 155-159, 161, 164, 178,
190, 198-201, 240-241, 261-263, 281, 288,
295, 308, 315, 319-320, 328-329, 339,
341-342, 350, 352-353, 365, 374, 382,
393-395, 436, 457, 463-464, 468, 473, 484,
498-500, 569, 578, 580, 599, 619, 622-623,
625-626, 628, 631, 643-646, 659, 686-688,
691, 700-702, 768, 770, 788, 801, 803,
805-807, 817, 823, 826-829, 831-835,
838-839, 842-844, 846, 893-894

Programmable array, 122, 157
Programmable array logic (PAL), 122
Programmable logic, 40, 118-161, 189, 238, 436, 458,

464, 468, 474
Programmable logic array (PLA), 122
Programmer, 21-22, 25, 128-129, 150, 153, 158-161,

238, 263, 268, 315, 779, 802-803, 830,
837-839, 842-843, 850-851

Programming, 22, 40, 119, 121-122, 128, 147, 150,
158, 161, 674, 688, 768, 771, 802, 805-806,
812, 818, 826, 830, 835, 839, 842, 884

PROM, 802, 807-808, 811-813, 817-819, 821
Propagation delay time, 414, 419-420, 460, 787
Protocols, 883, 885
Pull-up resistor, 417, 419, 430-432, 436-437, 439,

442-443, 445-446, 504, 529, 533-534, 539,
542, 544, 547, 552, 638, 730

Pulse, 31-33, 59, 79, 81, 91-93, 101, 113, 206, 396,
410, 413-415, 438-439, 444, 448, 459-460,
469-470, 475, 478, 482-483, 488-489, 494,
496, 500-503, 508-510, 514, 519, 522-524,
529-530, 535-537, 544-545, 552-553,
558-559, 561, 563, 565, 571, 586, 589, 603,
605-606, 608, 615-619, 621-622, 626-627,
633, 635, 639, 642-644, 647, 651-656,
659-660, 662, 666, 669, 671-674, 681, 692,
699, 703-704, 706-707, 711, 714, 716-718,
720-724, 730, 732-733, 735-741, 763, 785,
787, 795-796, 800, 802, 805-806, 809, 818,
823-824, 829, 833-835, 837, 844-845, 847

Pulse width, 113, 508, 510, 699, 706, 714, 716-718,
721-722, 724, 732, 736, 738, 740-741

Pulser, 66, 79, 81-83, 100-101, 104-105, 110, 113, 117

Q
Q, 19, 37-38, 91, 148, 222, 224, 242, 318, 449-486,

488-503, 505, 507-510, 515-522, 530, 532,
536-537, 547-552, 554-555, 559-569,
571-592, 597, 601-623, 625-626, 630-638,
640-641, 643, 645-649, 652-659, 662-674,
677, 682, 686-688, 690, 693-704, 713-726,
738, 742, 752, 757, 759-761, 763, 785-788,
798-799, 821, 824, 836-837, 924-925

Quality, 817
Quartz, 733, 735-736

R
Race, 504-505, 522, 547, 840
RAM stack, 843
Ramp, 744, 757-759, 766, 774, 778
Ranging, 425, 794
Rate of change, 736, 756
RC circuit, 504, 522, 529, 545, 547, 658-659, 671,

703, 707-708, 711, 714, 735-736, 741, 762,
764, 778

Read, 19-22, 26-27, 38, 62-63, 68-69, 101, 112-113,
122, 130, 195, 229, 240-241, 304, 318, 356,
371-374, 376, 388-389, 397, 452, 470, 475,
484, 486, 489, 506, 596, 603, 605, 626-630,
645, 653, 655-656, 662-663, 674-675, 720,
758, 768-770, 774-775, 779-781, 784,
787-788, 790-792, 794-798, 801-802,
804-806, 808-811, 813-819, 821, 823-824,
826-830, 832-833, 835, 839, 843, 847, 883

Read/write head, 675, 814-815, 818-819
Receiver, 254, 653, 681
Rectifier, 535, 547

full-wave, 535
Recycle, 558, 582, 606, 616, 647
Redundancy, 217, 221
Reflection, 819
Refresh, 784, 788, 796-799, 801, 817, 824
Register, 6-7, 376, 395, 406, 450, 452, 483-485, 489,

650-656, 659-670, 672-675, 679, 684-688,
690, 692-693, 699-702, 704, 758-760, 763,
785, 827, 830-834, 839, 841-845, 847, 884

Register array, 831-834
Regulation, 547

line, 547
Regulator, 535, 544-545, 547

three-terminal, 535
Relay, 30, 39-44, 58-59, 62-63, 540, 545, 552, 555,

586, 907
Remainder, 11-12, 14, 16, 39, 121, 272, 285, 298-299,

313, 350, 599, 616, 644, 686, 895
Reset, 62, 64, 448-450, 452-455, 459-468, 470-473,

475-477, 480, 482-483, 485, 489, 496-500,
503, 504, 510, 516-517, 522-523, 529,
531-532, 537, 545-546, 553, 555, 561-562,
567, 569, 571-572, 574-578, 580-583, 585,
587, 589-590, 602-603, 605-607, 609,
616-621, 638-639, 641-644, 648, 652-655,
658-659, 662, 664-665, 669, 673, 694, 699,
702-704, 707, 721, 724-726, 734, 741, 758,
789, 831, 833-834, 881, 885

Resistance, 39, 45, 52, 57, 522, 537-538, 545, 552,
603, 605, 635, 671, 708, 729, 736, 745,
749-750, 769-770, 772-773, 776, 779, 813,
901-903, 906, 908

thermistors, 769
voltage-controlled, 736

Resistor, 42-43, 47, 50-52, 55, 61-64, 374, 403, 407,
412, 417, 419-420, 423, 430-432, 436-437,
439, 442-443, 445-446, 504, 529-530,
533-534, 536, 539-540, 542-544, 547, 552,
574, 592, 594, 596, 634, 638-639, 646, 648,
709, 711, 713, 717, 721, 724, 730, 733-734,
745-752, 757, 762, 774, 777, 780, 904-905,
907-908

chip, 52, 419, 437, 536, 724, 733, 762
Resolution, 355, 746, 748-749, 754, 756-758, 764,

774-775, 777
ADC, 754, 756-758, 764, 774-775

Resonant circuit, 733
Ring, 542, 650, 657-659, 671-672, 690, 693-694, 699,

814
Ring counter, 659, 671
Ripple blanking, 594, 596, 635
Ripple counter, 558, 563-567, 570, 572-573, 581-583,

605, 633-635, 638-639
rise time, 413, 419, 439
Rising edge, 32-33, 113, 460, 702
RMS, 535
Rotor, 542, 675-677, 692
RS-232, 121

S
Safety, 3
Sample, 25, 119, 123, 311, 358-359, 546, 653,

767-768, 775, 782, 794, 800, 805, 893-894
Sample-and-hold, 767-768
Sample-and-hold circuit, 767-768
Saturation, 51, 59, 420
Sawtooth, 774
Sawtooth waveform, 774
Schematic, 26, 53, 57, 62, 67, 81, 111-112, 119-120,

128, 130, 133, 137, 148, 150, 157, 195, 220,
233, 266, 318, 367, 389, 443, 496-497, 538,
553, 592, 641, 698-699, 739-740, 779, 795,
801-802, 822, 846, 848, 906, 910-918

Schmitt trigger, 504, 523-530, 536, 539, 541-542,
545-547, 550-551, 553, 681, 703, 711-713,
737

Schottky diode, 420
SCSI, 34, 850
Segment, 22, 121, 231-232, 244, 261, 333, 355, 376,

391, 558, 586, 592-596, 599-601, 633-635,
642-643, 780, 812

Semiconductor, 39, 41, 44-45, 47, 55, 58-59, 400-401,
421, 438-439, 541, 784-824, 840, 850-851,
852-853

n-type, 47
p-type, 47

Semiconductor memory, 784, 788, 807, 814, 818-819
Sensitivity, 308, 328-329, 341-342, 457-458, 537, 626,

772
Sensor, 20-21, 201, 240-241, 372, 377, 484, 540-543,

546, 646, 769-771, 773, 814
Serial data, 34, 36, 373-374, 377, 652, 655-656, 663,

665, 669-670, 674, 700
Set, 34, 55, 69, 72, 91, 126, 142, 148, 205, 235-236,

238, 258-259, 268, 270, 297, 302, 304-305,
309, 317, 320, 326, 329, 336, 339, 341, 345,
362, 365, 367, 371, 374-376, 392, 397, 426,
434, 436, 448-451, 453-454, 459-468,
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470-473, 475-478, 480, 482, 485-486, 489,
497-500, 503, 505-507, 509-510, 518-520,
522, 525, 531-533, 536, 539, 541-542, 546,
553, 561, 563, 567, 569, 576, 583, 585, 589,
596, 608, 614, 617, 621-622, 628-629, 644,
652-657, 659, 665-666, 668-669, 675,
678-679, 684, 690-691, 694, 699, 701-702,
704, 707, 717-719, 724-725, 729-730,
732-734, 739, 751, 753, 756-757, 762, 765,
768, 771, 773, 775, 779-780, 785, 788-789,
792, 794-795, 798, 805, 808, 810, 821-822,
828-830, 836-837, 839, 841, 844, 847, 853,
882-883, 885, 919-923

Settling time, 755
Seven-segment display, 232, 391, 595, 601, 642
Shift register, 6-7, 650-656, 659-665, 667-668, 670,

672-673, 675, 684-688, 690, 692-693,
699-701, 704, 763, 827

short circuits, 39
Short-circuit, 909
Sign bit, 277-280, 313-314
Signal, 3-7, 27, 31, 33, 37-38, 47-50, 59-60, 75-76,

78-79, 83, 100, 104, 112, 115-116, 123, 125,
128, 162, 195, 197-201, 220-221, 229, 241,
251, 255-257, 260-261, 263, 293, 297, 306,
308, 312, 314, 319, 328-329, 331, 334,
338-341, 348, 350, 362, 365, 368-369,
371-374, 389-390, 392-395, 404, 419, 438,
459-460, 463, 471, 473, 485-490, 498-499,
510, 516, 523, 526-527, 532, 535, 538,
542-543, 546, 549, 553-555, 571, 586, 588,
599-600, 622-623, 626-627, 631, 641-642,
645-646, 654, 657, 659, 667, 687-689,
691-692, 714, 716, 736, 739, 744, 746, 756,
767-769, 772-773, 775, 779-780, 798-799,
818-819, 832, 843, 846, 851, 895-896

periodic, 31, 33, 59, 488, 546
Significant digit, 23, 284, 301, 312, 496, 589
Silicon, 45, 47, 52, 58, 421, 423, 427, 439, 522, 527,

542-543, 801, 819, 882
silver, 817
Simulation, 26, 30, 37-38, 43-44, 53-55, 72, 76, 91-92,

118, 120-121, 128-130, 132-133, 141-142,
146-147, 150, 153-156, 164-165, 179,
185-186, 198-201, 238, 240-241, 256-261,
267-268, 288-290, 294-296, 298-299,
301-302, 305-307, 309-311, 320, 328, 330,
335-336, 339, 341-342, 346-347, 350,
362-363, 365, 367, 377-380, 403-404,
457-458, 461, 463-466, 468, 473-475, 477,
481, 485-487, 500, 521, 525, 532-533, 554,
567, 569-570, 572, 578-581, 595, 599-600,
618-621, 623-624, 626, 628, 630-631, 633,
643-646, 654, 659-661, 667, 685-686, 688,
690, 700-702, 719, 729, 753, 765, 851

Sine wave, 526, 554, 780
Single-ended, 445, 762, 883
Single-gate logic, 162, 426
Skipping, 148, 583
Software, 26, 53, 118-122, 128-133, 141, 143, 146,

149, 153-159, 178-179, 181, 197, 220-221,
238-239, 259-260, 263, 267, 295, 301-302,
305, 309, 312, 320, 335, 346, 351-353, 362,
382, 404, 484-485, 488, 599, 617, 684-685,
768-771, 775, 779, 801, 803, 814, 816, 821,
826-827, 830, 832, 837-839, 842-843, 851,
887

Software development tool, 157-158
Soldering, 79, 423, 830
Source, 41, 130, 334, 362, 405-407, 413, 416, 421,

425, 430-432, 435-436, 439-440, 445, 524,
536-537, 540, 543, 552, 554, 559, 593, 642,
668, 680-681, 691, 707, 735, 751, 776, 796,
801-802, 804-805, 818, 823, 836, 901, 905

Space, 19, 55, 137, 142, 256, 312, 401, 795, 893
Spectrum, 428, 795
Speed-power product, 419-420, 428, 438, 442
Square wave, 362, 391, 443, 525-527, 529, 536, 584,

640, 712-713, 717-718, 729, 737, 739-740,
752

S-R flip-flop, 448-455, 468-469, 487-488, 490, 494,
497, 500, 532, 707, 724, 726, 736, 790

S-R latch, 469
Stability, 543, 741
Stack, 815, 831-834, 843
Stack pointer, 831-834, 843
Stage, 59, 128, 161, 328, 402, 406-407, 416, 422,

427, 439, 592, 606, 608, 610, 634-635, 653,
658, 669, 673

State diagram, 564-565, 571-572, 624-625, 627-628,
631, 635, 645-646

State machine, 622-630, 634-635, 644-645
Static, 126, 423-424, 426, 784, 788-791, 794-795,

797-798, 817, 819, 822
Static charge, 423
Stator, 675-677, 692
Std_logic, 197-198, 295, 306, 308, 319, 329, 382, 473,

623, 895
Step, 26-27, 41, 120, 122, 128, 140-141, 144, 147,

149, 153, 159-161, 173, 198, 238, 267-268,
270, 275, 281, 284, 290, 302, 319-320, 362,
393-395, 404, 426, 453, 489, 498-500, 525,
535, 587, 623-624, 634-635, 651, 675,
678-679, 692, 735, 745, 752-753, 755, 758,
769, 774, 780, 802, 839, 843

Storage, 5-6, 20, 22, 125, 315, 375, 437, 448-449,
452, 484-485, 487, 489, 546, 650, 653, 655,
671, 679, 692, 704, 775, 784, 788, 795-796,
801, 803-804, 813-814, 816-820, 829, 832,
884

Strain gage, 769, 772-773, 779
Stray capacitance, 717, 722
String, 4-5, 14, 20-25, 30, 255-256, 259, 263, 268,

296-297, 309, 312, 337, 341, 381-382, 484,
489, 592, 669, 699, 744-745, 768, 775, 811,
813, 833, 847, 894

Strobing, 659
Substrate, 421-423, 439, 542-543, 814-816
Subtraction, 270-274, 276-277, 279-280, 283-285,

297-298, 304, 308, 311-313, 318, 895
Successive approximation, 627, 758-760, 774-775
Sum, 122, 158, 162, 189, 207, 209, 220-221, 251,

253-254, 257-258, 268, 270-271, 275,
280-291, 293-303, 305, 308, 312-313,
318-319, 321, 364, 382, 405, 435-436,
747-748, 770, 895, 903

Sum-of-products (SOP), 122, 158, 189, 207, 221
Supply voltage, 424-426, 436, 442, 535, 684, 726,

790, 903, 906, 908
Surface-mount, 30, 56-57, 795
Surge current, 671
Switch, 27, 30, 39-41, 44, 47-48, 51, 54-55, 58-59, 63,

78, 105, 107, 110-113, 117, 121, 147-148,
160-161, 169, 257, 297-298, 302, 318, 336,
346, 362, 390-391, 398, 404, 420, 428, 450,
452, 461, 468, 477, 481, 488, 499, 502, 504,
522-523, 525, 527, 529-534, 538-539,
541-547, 551, 553, 555-556, 568, 572,
585-586, 594-595, 642-643, 649, 667, 695,
700-703, 707-710, 713-714, 719, 729,
736-737, 747, 749-750, 753, 765, 767-768,
777, 779-780, 791, 822, 841, 844

Switching speed, 55, 409, 419-420, 425-426, 442, 546
Synchronous, 19, 448, 453, 455, 459-465, 467-468,

473, 475-478, 483, 485-489, 492-494,
497-500, 504, 507-508, 520, 522, 535,
546-547, 558, 562, 565, 585-586, 601-603,
605-606, 610, 612, 614-617, 619, 621,
634-635, 639-641, 657, 659-661, 669, 674,
684, 688-690, 692, 702-703, 898

Synchronous counter, 558, 601-603, 605-606, 610,
612, 614, 634-635, 639-640, 657, 688-690,
702

Syntax, 623, 893
System software, 814

T
T flip-flop, 481
T3, 34, 194, 241, 346, 349, 359, 362, 372, 383-385,

396, 800
T4, 194, 346, 349, 359, 362, 372, 383-385, 396, 800
Tape, 6, 169, 784, 788
Temperature coefficient, 769
Terminal count, 606-607, 610, 612, 614-615, 635, 647
Terminated, 724
Testing, 81, 111, 148, 150, 301, 594, 821, 881
Text editor, 118-120, 128-130, 133, 150-151, 156, 190,

239
Thermistor, 745, 769-770, 773, 776, 779, 781,

812-813
Thermistors, 769
Threshold, 426, 522-525, 545-547, 550, 554, 712,

725-726, 730, 734, 804-805
Threshold voltage, 523
Throw, 39, 55, 529-532, 543, 547, 695
time constant, 530, 726-727, 729-730, 736
Time delay, 547, 805
Timer, 26, 111-112, 233, 318, 389, 443, 496-497, 553,

590, 639, 641, 706-742, 852-853, 910
Timing diagram, 31, 41-43, 59-60, 71-72, 76, 84,

193-194, 223, 228, 264, 653, 785, 791
Timing simulation, 579-580
Tip, 79
Toggle, 121, 362, 448, 468-470, 472-473, 475-478,

480-482, 488-489, 499, 502, 507, 510,
515-518, 523, 529-530, 536-537, 548,
562-564, 567, 589, 601, 614, 633, 669,
828-829

Totem-pole output, 61, 64, 77, 401-402, 407, 416-417,
419, 422, 439, 444-445, 763

Track, 6-7, 691, 758, 814, 816
Traffic light, 671-672, 679, 826
Transceiver, 121, 679, 681, 683-684, 691-692, 698,

704
Transducer, 745, 767-769, 773, 776, 779, 782
Transfer characteristic, 755
Transformer, 535, 545, 555

step-down, 535
Transistor, 3, 30, 44, 47-52, 55, 57-62, 64, 68, 70, 80,

400, 402, 404, 407, 414, 416, 420-423,
426-428, 437-439, 442, 445, 537-540, 542,
546, 599, 604-605, 635, 672, 677, 725-726,
730, 734, 749, 770, 790, 795-796, 803-805,
813, 818-819, 823, 907

Transistor switch, 48, 51
Transmission line, 251
Transmitter, 653, 681
Trap, 475, 831-832
Trigger, 31, 459-460, 463, 469, 471, 473, 475-476,

482-483, 488-490, 500, 502, 504-506, 508,
510, 523-530, 536-537, 539, 541-543,
545-547, 550-551, 553, 555, 559, 563, 565,
586, 588-589, 601, 618, 622, 626-628, 635,
645-646, 669, 681, 692, 703, 707, 711-721,
723-725, 730-731, 735-737, 740-741, 758,
768, 775, 829, 837

Trigger point, 459, 506, 508, 510, 716
Troubleshooting, 26, 58, 66, 78-79, 81-82, 100-101,

104-105, 110, 112, 114, 117, 205, 236, 388,
392, 807, 820

Truth table, 67-71, 83, 85-86, 88, 93-94, 101, 106-107,
112-115, 125, 130, 157, 160-161, 162, 165,
170-171, 177-178, 183-184, 189, 191-194,
196-199, 208, 211-212, 217-219, 221-222,
226, 228, 234-235, 248, 267, 271-273,
286-288, 290, 316, 318, 331, 343, 364-365,
383, 404, 416, 426-427, 599, 678, 821

TTL (transistor-transistor logic), 400

U
UART (universal asynchronous receiver transmitter),

653
Unit load, 409
Units, 270, 302, 312, 692, 814, 901
Universal gate, 493
Universal shift register, 664, 673, 685, 700
Unused input, 81-82, 181, 211, 267
USB (universal serial bus), 7

V
Variable, 3, 52, 55, 57, 64, 164, 169, 171, 184, 201,

211-213, 215-218, 220-221, 231, 241,
381-382, 524, 543, 739, 769, 775, 839, 883,
894

Variable resistor, 55, 64
VCO, 733, 736
Vector, 132-133, 141-142, 153-155, 158-161, 162,

164, 178, 185, 197-199, 201, 220-221,
238-241, 257-258, 295, 306-307, 328-329,
341, 350, 365, 473-474, 520, 600, 622,
625-626, 659, 895

VHDL, 2, 30, 66, 118-161, 162, 164, 178-179, 181,
185, 190, 197-201, 220-221, 238-241, 246,
257, 259-260, 262-263, 267-268, 270,
288-289, 295, 305-309, 312-313, 319-320,
324, 328-329, 338-342, 350, 365-366, 377,
382, 393-394, 400, 436, 448, 455, 457-459,
463-468, 471, 473-474, 485, 488, 498-499,
504, 520, 532, 543, 554, 558-649, 650,
659-661, 684, 686-689, 691-692, 700-702,
706, 744, 784, 826, 850, 852, 888, 893-899,
901, 910, 919, 924

arithmetic operator, 295, 312
Boolean, 66, 122, 130, 133, 137-138, 146-148,

150, 153-155, 160-161, 162, 164,
178-179, 181, 185, 190, 197-201,
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220-221, 238-241, 267, 288, 339, 365,
393, 606, 893-894

buffer, 473-474, 569, 626, 630-632, 684, 687, 691,
852

case statement, 341, 473, 599, 623, 628
data types, 306, 895
elsif statement, 329
enumeration, 622, 634
for loop, 257, 263
function, 66, 118-119, 127, 147, 159, 161, 220-221,

246, 257, 263, 267-268, 270, 305, 313,
324, 338-339, 365, 394, 455, 457, 463,
504, 554, 570, 581, 605-606, 612, 617,
622, 692, 826, 852

if statement, 329, 464, 466, 473, 569, 578, 626,
659

if-then-else, 308, 312-313, 320, 324, 328-329,
341-342, 394, 464, 473

integer, 270, 295, 306, 312-313, 569, 623, 895
keywords, 130, 164, 894
library, 128-130, 157, 159, 240, 257, 263, 268,

305-306, 309, 312-313, 377, 485, 621,
634, 684, 686, 893, 896

loop, 257, 260, 262-263, 578, 623, 626-627, 691
package, 119-120, 125, 148, 157-158, 382, 488,

543, 581, 592, 594, 596, 605, 633, 635,
691

std_logic, 197-198, 295, 306, 308, 319, 329, 382,
473, 623, 895

structural approach, 686
VHSIC, 119, 158
virtual ground, 746, 749, 776-777
Voice, 4
Volatile memory, 790
voltage, 3-8, 23, 27, 30-33, 39-43, 45-46, 48, 50-51,

55, 57-59, 63, 72, 77, 83, 98, 333, 337-338,
344, 347, 369, 374-375, 389, 400, 402-404,
406-408, 410-414, 417, 421-422, 424-426,
430-439, 442, 444-445, 476, 484, 489,
504-505, 510, 512, 522-527, 529, 533-538,
540-547, 552-554, 592, 603, 606, 626-627,
648, 665, 671, 684, 691, 706, 708-716, 722,
724-727, 731, 733, 735-737, 740-741,
744-748, 750-753, 755-760, 762, 764-765,
768, 770-775, 777-782, 790, 795-796, 800,
802-805, 823, 852, 901-908

applied, 41, 48, 51, 55, 72, 410, 421, 444, 522,
543, 546, 627, 712-714, 733, 735, 741,
773, 790, 902

breakdown, 536, 547
phase, 538
supply, 41, 55, 77, 83, 98, 369, 403, 424-426,

430-433, 435-439, 442, 489, 523, 535,
544-545, 547, 552, 592, 684, 711,
726-727, 737, 762, 771, 790, 903-904,
906, 908

terminal, 39, 374, 389, 510, 522, 529, 533-535,
542, 606, 735, 770

voltage divider, 41-42, 724, 903
Voltage drop, 45-46, 417, 431, 527, 533, 592
Voltage gain, 746, 773, 775, 781
Voltage reference, 756-757, 771
Voltage regulator, 535, 544-545, 547
Voltage regulators, 535
Voltage-controlled oscillator, 733, 736
Voltage-controlled oscillator (VCO), 736
Voltmeter, 25, 392-393
Volume, 807

W
Waveform, 4-6, 27, 30-34, 37-38, 41-43, 49-50, 57-59,

62-63, 66, 72-74, 84, 86-93, 100-104, 106,
108, 113, 115, 119-121, 128-130, 132-133,
141-143, 145-146, 153-155, 158-161,
164-165, 178, 185-186, 199-200, 206-207,
221, 235-236, 238-241, 257-258, 268, 334,
341, 350, 362, 365, 367, 374, 377, 379-381,
390, 393-395, 411, 451, 455-457, 460, 462,
464, 466, 471, 473, 478, 480, 490-492,
494-496, 498-500, 505-507, 510, 519-522,
527-530, 533, 536, 546-547, 550-551,
559-560, 565, 569, 578, 605, 618, 621, 635,
642-644, 659, 667, 686, 692-694, 706, 712,
715, 729, 734, 752, 774, 780, 805, 907

Waveform editor, 133, 153-155, 178, 257, 341, 569,
578

waveforms, 30-31, 38, 43, 49, 59-60, 63, 66, 72-75,
86, 88, 90-96, 100-101, 106-109, 112-113,
120, 128-130, 141-142, 144-146, 165, 185,

198, 234-237, 240, 258, 267-268, 311, 327,
334, 339, 342, 348, 351, 361, 366, 376,
378-380, 382-384, 390, 394, 413, 415, 440,
443, 451, 460, 462, 478-480, 485-486, 492,
494, 498, 505-506, 508, 510, 513-518, 520,
522-523, 525, 528, 531-532, 546-549, 551,
554, 559-573, 584, 586-588, 601-602,
606-608, 614-616, 635-641, 643, 645, 650,
654, 656-658, 660-662, 665-667, 671,
673-675, 677, 679, 686, 690-692, 694-699,
706, 712-715, 718-720, 723, 726-727, 729,
731, 733, 735, 737-740, 753, 759-760, 788,
791-792, 795, 800, 805, 808, 820, 907

Web, 26, 121, 126, 132-133, 159, 407, 423, 427, 436,
510, 537, 612, 697, 850-851, 852

Weight, 9, 27, 57, 218-219, 240, 772
Wire, 423, 688
Wired-AND, 417-418, 439, 442
Wireless, 653
Word, 7, 26, 37-38, 72-73, 76, 91, 101, 140, 167,

235-236, 267, 301-303, 312, 382, 390-391,
498, 642-643, 753, 780, 822

Write, 15, 21, 89, 102, 106-107, 112-113, 156, 159,
162, 165-167, 173, 178, 184, 186, 191,
196-197, 206, 214, 219, 222-224, 226-227,
229, 233-235, 237, 240-241, 250, 264, 267,
282, 288, 316, 371, 374, 383, 389, 397, 418,
442, 626, 631, 675, 784-788, 790-792,
794-798, 804-805, 810-811, 814-815,
817-819, 821, 823-824, 826, 828-830, 832,
837-838, 842-843, 845-847, 883

X
XNOR, 894

Z
Zener breakdown, 536, 547
Zener current, 536
Zener diode, 535-536, 544, 547, 552
Zero suppression, 596
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